High-Performance, Multi-Function Inverter

FRENIC-MEGA (c2) series

User's Manual

$\triangle C A U T I O N$

Thank you for purchasing our multifunction FRENIC-MEGA series of high-performance, multi-function inverters.

- This product is designed to drive a three-phase motor under variable speed control. Read through this user's manual and become familiar with the handling procedure for correct use.
- Incorrect handling may hinder normal operation, or result in a shortening of the product life or failure.
- Deliver this manual to the end user of this product.
- Keep this manual in a safe place until this product is discarded.
- For how to use an optional device, refer to the instruction and installation manuals for that optional device.

The English version of this document can be downloaded from the following site.
https://www.fujielectric.com/products/drive-download/
The Chinese version of this document can be downloaded from the following site.
https://www.fujielectric.com.cn/download_list.php

Copyright © 2022 Fuji Electric Co., Ltd.
All rights reserved.
The copyright for this User's Manual lies with Fuji Electric Co., Ltd.
The unauthorized reproduction or reprinting of this instruction manual, in part or in full, is prohibited.
The names of companies and products mentioned in this manual are generally trademarks or registered trademarks of the relevant companies.
The information contained herein is subject to change without prior notice for improvement.
Every effort has been made to ensure the accuracy of the content of this manual, however, please contact your dealer or relevant Fuji Electric sales office at the end of this manual if there is anything that is unclear, or if any errors and so on are found.

Preface

Thank you for purchasing our "FRENIC-MEGA" series of high-performance, multi-function inverters. This product is designed to drive a three-phase motor under variable speed control.
This manual provides all the information on the FRENIC-MEGA series of inverters including its operating procedure and selection of peripheral equipment. Read this User's Manual carefully beforehand to ensure correct use. Incorrect handling may hinder normal operation, or result in a shortening of the product life or failure.

FRENIC-MEGA related documents are listed in the following table. Please refer to these documents based on the purpose.

Name	Document No.	Description
Catalog	24A1-E-0166 \square	Product overview, features, specifications, outline drawings, options, etc.
Instruction Manual	INR-SI47-2392 $\square-E$	Instruction manual packaged with the product
Instruction Manual	INR-SI47-2395 $\square-E ~$	Instruction manual for complete book (option)
RS-485 Communication User's Manual	24A7-E-0082 \square	Overview of functions implemented by using FRENIC- Series RS-485 communications facility, its communications specifications, Modbus RTU/Fuji general-purpose inverter protocol, function codes and related data formats

Revisions are made to the above documents whenever required, and therefore the latest version should be obtained before use.

How this manual is organized

This manual is configured as follows.

Chapter 1 BEFORE USE

This chapter describes the items to checked before the use of the inverter.

Chapter 2 INSTALLATION AND WIRING

This chapter describes the important points in installing and wiring inverters.

Chapter 2 OPERATION USING THE KEYPAD

This chapter describes inverter keypad operation.

Chapter 4 TEST RUN PROCEDURE

This chapter describes basic settings required for making a test run.

Chapter 5 FUNCTION CODES

This chapter explains the table of function codes used in FRENIC-MEGA, and details of each function code.

Chapter 6 TROUBLESHOOTING

This chapter describes troubleshooting procedures to be followed when the inverter malfunctions or detects an alarm or a light alarm condition. In this chapter, first check whether any alarm code or the "light alarm" indication (Ial) is displayed or not, and then proceed to the troubleshooting items.

Chapter 7 MAINTENANCE AND INSPECTION

This chapter describes the maintenance and inspection items of the inverter.

Chapter 8 BLOCK DIAGRAMS FOR CONTROL LOGIC

This chapter describes the main block diagrams of the control section.

Chapter 9 COMMUNICATION FUNCTIONS

This chapter describes an overview of inverter operation through the RS-485 and CANopen communications. For details on RS-485 communication, refer to the RS-485 Communication User's Manual (24A7-E-xxxx),

Chapter 10 SELECTING OPTIMAL MOTOR AND INVERTER CAPACITIES

This chapter provides you with information about the inverter output torque characteristics, capacity selection procedure, and equations for calculating capacities to help you select optimal motor and inverter models. It also helps you select braking resistors, inverter specification (HHD/HND), and motor drive control.

Chapter 11 SELECTING PERIPHERAL EQUIPMENT

This chapter describes how to use a range of peripheral equipment and options, FRENIC-Ace's configuration with them, and requirements and precautions for selecting wires and crimp terminals.

Chapter 12 SPECIFICATIONS

This chapter describes the inverter output ratings.

Chapter 13 EXTERNAL DIMENSIONS

This chapter gives external dimensions of the inverter.

APPENDICES

CONTENTS

Chapter 1 BEFORE USE
1.1 Acceptance Inspection (Nameplate and Inverter Type) 1-1
1.2 Product External Appearance 1-3
1.3 Precautions for Using Inverters 1-5
1.3.1 Usage environment 1-5
1.3.2 Storage environment 1-8
[1] Temporary storage 1-8
[2] Long-term storage 1-8
1.3.3 Precautions for connection of peripheral equipment 1-9
[1] Phase-advancing capacitors for power factor correction 1-9
[2] Power supply lines (application of DC/AC reactors) 1-9
[3] DC reactor (DCR) for correcting the inverter input power factor (for suppressing harmonics). 1-9
[4] PWM converter for correcting the inverter input power factor 1-10
[5] Molded case circuit breakers (MCCB)/earth leakage circuit breakers (ELCB) 1-10
[6] Magnetic contactor (MC) in the inverter input (primary) circuit 1-10
[7] Magnetic contactor (MC) in the inverter output (secondary) circuit 1-10
[8] Surge absorber/surge killer 1-10
1.3.4 Noise reduction 1-11
1.3.5 Leakage current 1-11
Chapter 2 INSTALLATION AND WIRING
2.1 Installation 2-1
2.2 Wiring 2-4
2.2.1 Basic connection diagrams 2-4
2.2.2 Removal and attachment of the front cover and wiring guide 2-6
2.2.3 Wiring precautions 2-7
2.2.4 Precautions for long wiring (between inverter and motor) 2-9
2.2.5 Main circuit terminals 2-11
[1] Screw specifications and recommended wire size (main circuit terminals). 2-11
[2] Terminal layout diagrams (main circuit terminals) 2-12
[3] Recommended wire size (main circuit terminals) 2-13
[4] Terminal function description (main circuit terminals) 2-22
2.2.6 Control circuit terminals (common to all models) 2-27
[1] Screw specifications and recommended wire size (control circuit terminals) 2-27
[2] Terminal layout diagram (control circuit terminals). 2-27
[3] Control circuit wiring precautions. 2-28
[4] Description of terminal functions (control circuit terminals) 2-29
2.2.7 Switching switches 2-40
2.3 Mounting and Removing the Keypad 2-43
Chapter 3 OPERATION USING THE KEYPAD
3.1 Name and Function of Each Keypad Part 3-1
3.2 Overview of Operation Modes 3-3
3.3 Running Mode 3-5
3.3.1 Operating state monitor 3-5
3.3.2 Status display. 3-7
3.3.3 Monitoring warnings 3-8
3.3.4 Running or stopping the motor with the keypad 3-9
3.3.5 Setting the reference frequency with the keypad 3-9
3.3.6 Setting PID commands with the keypad 3-10
[1] Settings under PID process control 3-10
[2] Settings under PID dancer control 3-12
3.3.7 Jogging operation 3-14
3.3.8 Switching between local and remote modes 3-15
3.3.9 Changing the M/Shift key function 3-16
3.3.10 Display when keypad operation disabled (command source display) 3-16
3.4 Programming Mode 3-17
3.4.1 Setting function codes "Data Setting: I.f _ to 1.1'_ _" 3-18
3.4.2 Checking changed function codes "Data Checking: E^{Z} ET" 3-20
3.4.3 Monitoring the running status "Drive Monitoring: 7. 3-21
3.4.4 Checking I/O signal status "I/O Checking: Ø. ו. ו. 3-25
3.4.5 Reading maintenance information "Maintenance Information: S. HE" 3-31
3.4.6 Reading alarm information "Alarm Information: G. Fit " 3-37
3.4.7 Copying data "Data Copying: "1.1-1.1" 3-41
3.4.8 Setting "Favorites" function code data "Favorites: $17 . \mathrm{F}_{1}$ のレ" 3-45
3.5 Alarm Mode 3-46
3.5.1 Releasing the alarm and switching to running mode 3-46
3.5.2 Displaying the alarm history 3-46
3.5.3 Displaying the status of inverter at the time of alarm 3-46
3.5.4 Switching to programming mode 3-46
3.6 USB Port 3-47
Chapter 4 TEST RUN PROCEDURE
4.1 Test Run Procedure Flowchart 4-1
4.2 Checking Prior to Powering On 4-2
4.3 Powering ON and Checking 4-3
4.4 Destination setting 4-4
4.5 Switching the Applicable Motor Rating (HHD/HND Specifications) 4-6
4.6 Selecting the Motor Control Method 4-7
4.6.1 V / f control without slip compensation (induction motors) 4-7
4.6.2 V/f control with slip compensation (induction motors) 4-7
4.6.3 Dynamic torque vector control (induction motors). 4-8
4.6.4 V/f control with sensor (induction motors) 4-8
4.6.5 Dynamic torque vector control with sensor (induction motors) 4-8
4.6.6 Sensorless vector control (induction motors) 4-8
4.6.7 Vector control with sensor (induction motors) 4-9
4.6.8 Sensorless vector control (synchronous motors) 4-9
4.6.9 Vector control with sensor (synchronous motors) 4-10
4.7 Performance Comparison for Drive Controls (Summary) 4-11
4.8 Configuring Function Codes for Drive Controls 4-13
4.8.1 Induction motor operation 4-15
[1] If running the motor with simple V/f control 4-15
[2] If running the motor with V/f control with sensor 4-16
[3] If running the motor with V/f control with slip compensation, dynamic torque vector control, or sensorless vector control 4-18
[4] If running the motor with dynamic torque vector control with sensor or vector control with sensor 4-20
[5] Induction motor tuning method 4-22
4.8.2 Synchronous motor operation 4-25
[1] If running the motor with sensorless vector control (synchronous motors) 4-25
[2] If driving the motor under vector control with sensor (synchronous motors) 4-28
[3] Synchronous motor tuning method 4-34
4.8.3 Motor temperature protection setting 4-38
[1] Electronic thermal overload relay (for motor 1 protection) 4-38
[2] Motor protection with thermistor 4-38
4.9 Setting function codes when switching from a conventional model 4-39
4.9.1 Switching from FRENIC-MEGA (G1S) 4-39
[1] Copying function codes using the keypad 4-39
[2] Entering function codes directly from the keypad 4-39
[3] Entering function codes from PC Loader 4-40
4.9.2 Switching from FRENIC5000G11S/P11S or FRENIC5000G9S/P9S 4-40
4.10 Operation Check 4-41
4.10.1 Test run procedure 4-41
4.10.2 Check points during a test run 4-41
4.10.3 Adjusting the function code for motor control 4-42
4.11 Selecting a Frequency Command Source 4-44
4.11.1 Setting the frequency from the keypad 4-44
4.11.2 Setting the frequency with an external potentiometer (variable resistor) 4-45
4.11.3 Setting the frequency with multistep frequency selection (1 speed, 2 speed, etc.) 4-46
4.12 Selecting a Run Command Source 4-47
4.12.1 Setting run commands from the keypad 4-47
4.12.2 Setting run commands with external signals (terminal [FWD, [REV]) 4-47
Chapter 5 FUNCTION CODES
5.1 Function Codes Overview 5-1
5.2 Function Code Tables 5-2
5.2.1 Supplementary note 5-2
5.2.2 Function code tables 5-4
[1] F codes: Fundamental functions 5-4
[2] E codes: Extension Terminal Functions (terminal functions) 5-8
[3] C codes: Control Functions of Frequency (Control function) 5-16
[4] P codes: Motor 1 Parameters (Motor 1 parameters) 5-18
[5] H codes: High Performance Functions (High level functions) 5-20
[6] A codes: Motor 2 Parameters (Motor 2 parameters) 5-26
[7] b codes: Motor 3 Parameters (Motor 3 parameters) 5-29
[8] r codes: Motor 4 Parameters (Motor 4 parameters) 5-31
[9] J codes: Application Functions 1 (Application function 1) 5-33
[10] d codes: Application Functions 2 (Application functions 2) 5-36
[11] U codes: Application Functions 3 (Customizable logic) 5-43
[12] y codes: LINK Functions (Link functions) 5-48
[13] o codes: Option Functions (Option functions) 5-50
[14] K codes: Keypad functions (Keypad functions) 5-53
5.3 Description of Function Codes 5-66
5.3.1 F codes (Fundamental functions) 5-66
[1] Setting the frequency with the keypad (F01 = 0 (factory default) or 8) 5-68
[2] Setting the frequency with analog input (F01 = 1 to $3,5,6$) 5-69
[3] Frequency setting by digital input signal "UP"/"DOWN" (F01=7) 5-76
[4] Frequency setting using digital input (option DIO interface card) (F01 = 11) 5-77
[5] Frequency setting using pulse train input (F01 = 12) 5-78
5.3.2 E codes (Extension terminal functions) 5-136
5.3.3 C codes (Control functions) 5-190
5.3.4 P codes (Motor 1 parameters) 5-201
5.3.5 H codes (High performance functions) 5-212
[1] Measuring the capacitance of DC link bus capacitor in comparison with initial one at shipment 5-233
[2] Measuring the capacitance of DC link bus capacitor under ordinary operating conditions at power shutdown 5-234
5．3．6 A，b，r codes（Motor 2 to 4 parameters） 5－261
5．3．7 b，r codes（Speed control 3 and 4 parameters） 5－266
5．3．8 J codes（Applied functions） 5－267
［ 1 ］PID command with keypad（ $\mathrm{JO2}=0$ ，factory default） 5－268
［2］PID command by analog inputs（ $\mathrm{JO2}=1$ ）． 5－269
［3］PID command with UP／DOWN control $(\mathrm{JO2}=3)$ 5－270
［ 4 ］PID command via communications link $(\mathrm{JO2}=4)$ 5－271
［5］Overload stop function 5－285
［6］Brake control signal 5－287
5．3．9 d codes（Applied functions 2） 5－296
［1］Speed control 5－296
［2］Line speed control 5－306
［3］Master－follower operation 5－309
［4］Hoist function 5－343
［5］Position control 5－350
［6］Setting example for conveyor performing sizing by position control 5－367
5．3．10 U codes（Customizable logic operation） 5－377
5．3．11 U1 codes（Customizable logic operation） 5－409
5．3．12 y codes（Link functions） 5－414
5．3．13 K codes（Keypad functions） 5－421
Chapter 6 TROUBLESHOOOTING
6．1 Protective Functions 6－1
6．2 Before Proceeding with Troubleshooting 6－3
6．3 If an Alarm Code Appears on the LED Monitor 6－4
6．3．1 Alarm code list 6－4
6．3．2 Causes，checks and measures of alarms 6－8
［1］［if ito ti 6－8
［2］［al Current input terminals［C1］，［C2］signal line break 6－8
［3］Díl Braking transistor broken 6－8
［4］日吅 Braking resistor overheat 6－9
［5］ELF EN circuit failure 6－9
［6］ELL Customizable logic error 6－10
［7］EF Ground fault protection（FRN0032G2S－2G／FRN0018G2口－4G or above） 6－10
［8］Er i Memory error 6－10
［9］ErİKeypad communication error 6－11
［10］Er ラ CPU error 6－11
［11］ErサOption communication error 6－11
［12］ErGOption error 6－11
［13］Er负Operation error 6－12
［14］Er＇7 Tuning error 6－13
［15］ErGRS－485 communication error（Communication port 1）／ ErIRS－485 communication error（Communication port 2） 6－14
［16］Er Step－out detection／detection failure of magnetic pole position at startup 6－15
［ 17 ］Erí Magnetic pole position detection error 6－16
［18］ErE Speed inconsistency／Excessive speed deviation 6－17
［19］ErFData saving error during undervoltage 6－18
［20］Eーけ Hardware error 6－18
［21］Era Positioning control error 6－18
［22］Err Simulated failure 6－19
［23］F！与 Blown fuse 6－19
［24］Filit DC fan lock 6－19
［25］i In Input phase loss 6－19
［26］ín＇Password protection 6－20
［27］í íl Undervoltage 6－20
［28］$\pi \pi^{6}$ NTC wire break error 6－20
［29］ 171% Instantaneous overcurrent 6－21
［30］保if Cooling fin overheat 6－22
［31］ RTHIC 2 External alarm 6－22
 6－22
［33］的品 Motor protection（PTC／NTC thermistor） 6－23
［34］品品 Charging resistor overheat 6－23
［35］iliL ח Motor overloads 1 to 4 6－24
［36］ifil î Inverter overload 6－25
［37］［17）Output phase－failure detection 6－26
［38］© Overspeed protection 6－26
［39］īiはに Overvoltage 6－27
［40］PロI Charge circuit fault（FRN0008G2S－2G／FRN0004G2口－4G or above） 6－27
［41］PG wire break 6－28
［42］믹 Excessive positioning deviation 6－28
6．4 If a Warning Code is Displayed 6－29
6．4．1 Warning code list． 6－29
6．4．2 Warning cause and check 6－29
［1］Éní Machine life（Number of startups） 6－29
［2］IGBT lifetime alarm 6－29
［3］Ĺ If Lifetime alarm 6－29
［4］Cooling fin overheat early warning 6－30
［5］［il Motor overload early warning 6－30
［6］GID alarm output 6－30
［7］FI－PTC thermistor activated 6－30
［8］rifl Cooling capability drop 6－30
［9］rEF Reference loss 6－30
［10］「ík Machine life（Cumulative motor running hours） 6－30
［11］Lif Li Low torque detection 6－31
［ 12］Low battery warnig（for Multi－function Keypad（TP－A2SW）） 6－31
6．5 Other Errors 6－32
6．5．1 Abnormal motor operation 6－32
［ 1］The motor does not rotate 6－32
［2］The motor rotates，but the speed does not increase 6－34
［3］The motor runs in the opposite direction to the command 6－35
［4］Speed fluctuation or current oscillation（e．g．，hunting）occurs during running at constant speed 6－36
［5］Unpleasant noises are emitted from motor or noises fluctuate 6－37
［6］Motor is not accelerated or decelerated according to set－up acceleration or deceleration times 6－38
［ 7 ］The motor does not restart even after the power recovers from a momentary power failure 6－39
［8］Motor generates heat abnormally 6－39
［9］The motor does not run as expected 6－39
［10］Motor stalls during acceleration 6－40
6．5．2 Problems with inverter settings 6－41
［1］Nothing appears on the keypad 6－41
［2］The desired menu is not displayed 6－41
［3］Display of under bars（ ．．．．） 6－41
［4］Display of center bars（－－－－－） 6－42
[5] [-] Display of parenthesis 6-42
[6] Data of function codes cannot be changed 6-42
[7] Function code data are not changeable (change from link functions) 6-43
[8] En.ifF appears 6-43
[9] Other status display 6-43
Chapter 7 MAINTENANCE AND INSPECTION
7.1 Inspection Interval 7-2
7.2 Daily Inspection 7-3
7.3 Periodic Inspection 7-4
7.3.1 Periodic inspection 1--Before the inverter is powered ON or after it stops running 7-4
7.3.2 Periodic inspection 2--When the inverter is ON or it is running 7-6
7.4 List of Periodic Replacement Parts 7-7
7.4.1 Judgment on service life 7-8
[1] Measuring the capacitance of DC link bus capacitor in comparison with initial value at time of shipment 7-10
[2] Measuring the capacitance of the DC link bus capacitor under ordinary operating conditions 7-11
[3] Early warning of lifetime alarm 7-11
7.5 Measuring the Amount of Electricity in Main Circuit 7-12
7.6 Insulation Test 7-13
7.6.1 Megger test of main circuit 7-13
7.6.2 Insulation test of control circuit 7-13
7.6.3 Insulation test of external main circuit and sequence control circuit 7-13
7.7 Product Inquiries and Warranty 7-14
7.7.1 Inquiry request 7-14
7.7.2 Product warranty 7-14
[1] Free of charge warranty period and warranty range 7-14
[2] Exclusion of liability for loss of opportunity, etc. 7-15
[3] Repair period after production stoppage, spare parts supply period (maintenance period) 7-15
[4] Delivery conditions 7-15
[5] Service description 7-15
[6] Applicable scope of service 7-15
Chapter 8 BLOCK DIAGRAMS FOR CONTROL LOGIC
8.1 Meanings of Symbols Used in the Control Block Diagrams 8-1
8.2 Frequency Setting Section 8-2
8.3 Operation Command Section 8-5
8.4 PID Control Section (for Processing) 8-6
8.5 PID Control Section (for Dancer) 8-7
8.6 Position Control Section 8-8
8.7 Control Section 8-9
8.7.1 V/f control 8-9
[1] Common 8-9
[2] Without speed sensor 8-10
[3] With speed sensor 8-11
8.7.2 Vector control 8-12
[1] Common 8-12
[2] Torque command / torque limit 8-13
[3] Speed control / torque control 8-14
[4] Speed limit and over speed protection processing 8-15
[5] Motor drive. 8-16
[6] PMSM drive 8-17
8.8 FM Output Section 8-19
Chapter 9 COMMUNICATION FUNCTIONS
9.1 Overview of RS-485 Communication 9-1
9.1.1 RS-485 common specifications 9-2
9.1.2 RS-485 communication terminal specifications 9-3
[1] RS-485 COM port 1 (RJ-45 connector for keypad connection) specification 9-3
[2] RS-485 COM port 2 (terminal block) specifications 9-3
9.1.3 Connection method 9-4
9.1.4 RS-485 connection devices 9-6
[1] Converter 9-6
[2] Requirements for the cable (COM port 1: for RJ-45 connector) 9-6
[3] Requirements for the cable (COM port 2: for RS-485 terminal block connection) 9-6
[4] Branch adapter for multi-drop 9-6
9.1.5 RS-485 noise suppression 9-7
9.2 FRENIC Loader Overview 9-8
9.2.1 Specifications 9-8
Chapter 10 SELECTING OPTIMAL MOTOR AND INVERTER CAPACITIES
10.1 Motor Output Torque Characteristics 10-1
10.2 Selection Procedure 10-3
10.3 Equations for Selections 10-6
10.3.1 Load torque during constant speed running 10-6
[1] General equation 10-6
[2] Obtaining the required force F 10-6
10.3.2 Acceleration and deceleration time calculation 10-8
[1] Calculation of moment of inertia 10-8
[2] Calculation of the acceleration time 10-10
[3] Calculation of the deceleration time 10-11
[4] Calculating non-linear acceleration/deceleration time 10-11
[5] Calculating non-linear deceleration time 10-12
10.3.3 Heat energy calculation of braking resistor 10-13
[1] Calculation of regenerative energy 10-13
10.3.4 Calculating the RMS rating of the motor 10-14
10.4 Selecting the Inverter Rating Specification (HHD/HND) 10-15
10.4.1 Precautions in making the selection 10-15
10.4.2 Guideline for selecting inverter specification and capacity 10-16
Chapter 11 SELECTING PERIPHERAL EQUIPMENT
11.1 Configuring the FRENIC-MEGA 11-1
11.2 Size of Current for Each Part of the Inverter 11-2
11.3 Molded Case Circuit Breakers (MCCB), Earth Leakage Circuit Breakers (ELCB) and Magnetic Contactors (MC) 11-5
11.3.1 Function Overview 11-5
11.3.2 Connection Example and Criteria for Selection of Circuit Breakers 11-6
11.4 Surge Killers 11-12
11.5 Lightning Surge Protection Device SPD 11-13
11.6 Surge Absorbers 11-14
11.7 Filter Capacitors for Suppressing AM Radio Band Noise 11-15
11.8 Braking Resistors (DB) and Braking Units 11-16
11.8.1 Selecting a Braking Resistor 11-16
[1] Selection procedure 11-16
[2] Notes on selection 11-16
11.8.2 Overview of Braking Resistors (DB) and Braking Units 11-17
[1] Standard type 11-17
[2] 10\%ED type 11-17
[3] Overview of braking unit 11-18
11.8.3 Specification 11-19
11.8.4 External dimensions 11-22
11.9 High Power Factor Power Supply Regeneration PWM Converters (RHC Series) 11-24
11.9.1 Overview 11-24
11.9.2 Specification 11-25
[1] Standard specification 11-25
[2] Common Specifications 11-29
11.9.3 Function Specifications 11-31
11.9.4 Device Configuration 11-36
11.9.5 External Dimensions 11-39
11.10 Compact Power Regeneration PWM Converter 11-48
11.10.1 Specifications 11-48
[1] Standard specification 11-48
[2] Common specifications 11-49
[3] Terminal functions 11-50
11.10.2 Device Configuration 11-52
[1] Device configuration table 11-52
[2] Basic connection diagrams 11-53
11.10.3 External Dimensions 11-54
11.10.4 Peripheral Equipment. 11-56
11.11 DC Reactors (DCRs) 11-61
11.12 AC Reactors (ACRs) 11-67
11.13 Surge Suppression Units (SSU) 11-72
11.14 Output Circuit Filters (OFL) 11-74
11.15 Zero-phase Reactors for Suppressing Radio Noise (ACL) 11-77
11.16 External Cooling Fan Attachments 11-78
11.17 IP40 Compatibility Attachment (P40ST-F■1) 11-80
11.18 External Frequency Command Potentiometer (External) 11-82
11.19 Extension Cable for Remote Operation 11-83
11.20 Selecting Measurement Options 11-84
11.20.1 Frequency meters 11-84
11.21 Control Terminal Block (G1S Compatible) OPC-G1-TB1 11-85
11.22 Built-in Option Card Types and Ports in Which They Can be Installed 11-86
11.22.1 T-Link Communication Card (OPC-TL) 11-87
11.22.2 SX-bus Communication Card (OPC-SX). 11-91
11.22.3 PROFIBUS-DP Communication Card (OPC-PDP2) 11-94
11.22.4 CANopen Communication Card (OPC-COP2) 11-97
11.22.5 DeviceNet Communication Card (OPC-DEV) 11-100
11.22.6 CC-Link Communication Card (OPC-CCL) 11-104
11.22.7 Multiprotocol Ethernet ${ }^{\circledR}$ Communication Card (OPC-ETM) 11-106
11.22.8 Digital Input Interface Card (OPC-DI). 11-109
11.22.9 Digital Output Interface Card (OPC-DO) 11-112
11.22.10 Analog Interface Card (OPC-AIO) 11-115
11.22.11 Relay Output Interface Card (OPC-RY) 11-121
11.22.12 PG Interface Card (OPC-PG) 11-123
11.22.13 PG Interface (5 V Line Driver) Card (OPC-PG2) 11-126
11.22.14 PG Interface (5 V Line Driver x 2 Systems) Card (OPC-PG22) 11-130
11.22.15 PG Interface Card for Synchronous Motor with Sensor (OPC-PMPG2) 11-133
11.23 Multi-function Keypad (TP-A2SW) 11-135
Chapter 12 SPECIFICATIONS
12.1 Standard Specifications 1 (Basic Type) 12-1
12.1.1 Three-phase 200V series 12-1
12.1.2 Three-phase 400 V series 12-4
12.2 Standard Specifications 2 (Type with Built-in EMC Filter) 12-8
12.2.1 Three-phase 400V series 12-8
12.3 Common Specifications 12-12
Chapter 13 EXTERNAL DIMENSIONS
13.1 Standard Specification, Semi-standard Specification 13-1
13.2 Keypad 13-17
APPENDICES
Appendix A Trouble-free Use of Inverters (Notes on Electrical Noise) 1
A. 1 Effect of inverters on other devices 1
[1] Effect on AM radios. 1
[2] Effect on telephones 1
[3] Effect on pressure sensors 1
[4] Effect on position detectors (pulse encoders) 1
[5] Effect on proximity switches 1
A. 2 Noise 2
[1] Inverter Operating Principle and Noise 2
[2] Types of noise 3
A. 3 Measure 5
[1] Noise prevention prior to installation 5
[2] Implementation of noise prevention measures 6
[3] Noise prevention examples 9
Appendix B Japanese Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage (General-purpose Inverters) 13
B. 1 Application of general-purpose inverters 13
[1] Application for Other Than Special Customers 13
[2] Application for "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage" 13
B. 2 Complying with "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage" 15
[1] Calculation of equivalent capacity (Pi) 15
[2] Harmonic Current Calculation 16
[3] Examples of calculation 18
Appendix C Effect on Insulation of General-purpose Motors Driven with 400 V Class Inverters 19
C. 1 Generating mechanism of surge voltages 19
C. 2 Effect of surge voltages 20
C. 3 Countermeasures against surge voltages 21
[1] Using a surge suppressor unit (SSU) 21
[2] Suppressing surge voltages 21
[3] Using motors with enhanced insulation 21
C. 4 Regarding existing equipment 22
[1] In case of a motor being driven with 400 V class inverter 22
[2] In case of an existing motor driven using a newly installed 400 V class inverter 22
Appendix D Inverter Generating Loss 23
Appendix E Conversion to other than SI Units 24
E. 1 Conversion of units 24
E. 2 Calculation formulas 25
Appendix F Permissible Current of Insulated Wires 26
Appendix G Conformity with Standards 29
G. 1 Compliance with European Standards (\boldsymbol{E}) 29
[1] Compliance with EMC standards 29
[2] Compliance with European Low Voltage Directive 34
G. 2 Harmonic Component Regulations in EU 43
[1] General comments 43
[2] Compliance with the harmonic component regulation 43
G. 3 Compliance with UL Standards and Canadian Standards (cUL certification) 44
[1] General comments 44
[2] UL Standards and Canadian Standards (cUL Certification) Compatibility 44
G. 4 Compliance with Functional Safety Standards 49
[1] General 49
[2] Notes for compliance with functional safety standards 51
[3] Inverter output status when STO is activated 52
[4] ELF alarm and inverter-output status 53
[5] Precautions for releasing STO 54
Appendix H Inverter Replacement Precautions (When Using PWM Converter (RHC series)) 55
H. 1 Applicable inverters 55
H. 2 Changing the connection method (inverter control power auxiliary input terminals (R0, TO)) 56

Safety precautions

Be sure to read this User's Manual thoroughly prior to installation, wiring (connection), operation, maintenance, or inspection to ensure correct use of the product. Furthermore, ensure a thorough understanding of device knowledge, safety information, as well as all related precautions.
Safety precautions contained in this User's Manual have been categorized as follows.

Indicates possible danger, leading to death or serious injury if the product is handled incorrectly.

Indicates possible danger, leading to minor or moderate injury, or physical property damage only if the product is handled incorrectly.

Failure to heed the information contained under the CAUTION title may also result in serious consequences. All items indicate important content and must therefore be observed.

Application

\square

- The FRENIC-MEGA is a piece of equipment used to run three-phase induction motors and synchronous motors. It cannot be used for single-phase motors or other applications.
Failure to observe this could result in fire or an accident.
- The FRENIC-MEGA cannot be used as is for applications which may have a direct effect on the human body such as life support machines.
- Strict quality control has been observed in the manufacture of this product, however, safety devices should be installed when the product is used for equipment which may result in a serious accident or loss in the event of failure.
Failure to observe this could result in an accident.

Installation

\triangle WARNING \triangle

- Install on noncombustibles such as metal.
- Do not install near combustibles.

Failure to observe this could result in fire.

- If using an optional DC reactor, there is a possibility of users coming into contact with main circuit terminal block parts (live parts). In such cases, take measures such as installing the product in a location where it will not easily come into contact with people.
Failure to observe this could result in electric shock or injury.

\triangle CAUTION

- Do not hold the surface cover when transporting the product.

Failure to observe this could result in injury if the product is dropped.

- Take measures to prevent foreign material such as lint, wastepaper, wood shavings, dust, or metal scraps getting into the inverter, or adhering to the cooling fan.
- Use the specified screws for changing the mounting base.

Failure to observe this could result in fire or an accident.

- Do not install or run inverters with damaged external or internal parts.

Failure to observe this could result in fire, an accident, or injury.

\triangle WARNING \wedge

- If no zero-phase current (earth leakage current) detective device such as a ground-fault relay is installed in the upstream power supply line in order to avoid the entire power supply system's shutdown undesirable to factory operation, install a residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) individually to inverters to break the individual inverter power supply lines only.
- Connect to the power supply via a molded case circuit breaker or earth leakage circuit breaker (with overcurrent protection function) for each inverter. Use the recommended molded case circuit breaker or earth leakage circuit breaker, and do not use devices that exceed the recommended capacity.
- Be sure to use the specified wire size.
- Tighten terminals with the prescribed tightening torque.
- If there are multiple inverter and motor combinations, do not use multi-core cables for the purpose of bundling and storing wiring for multiple combinations.
- Do not install a surge suppressor to the inverter output side (secondary side).
- Be sure to connect an optional DC reactor (DCR) when the capacity of the power supply transformer exceeds 500 kVA , and is at least 10 times the inverter rated capacity.
Failure to observe this could result in fire.
- Ground the inverter in compliance with the national or local electric code.
- Be sure to ground the inverter ground terminal [$\boldsymbol{B} \mathrm{G}$ G] grounding wire.

Failure to observe this could result in electric shock or fire.

- Wiring work should be carried out by qualified professionals.
- Carry out wiring work after ensuring that the power has been turned OFF.

Failure to observe this could result in electric shock.

- Always carry out wiring after installing the unit.

Failure to observe this could result in electric shock or injury.

- Ensure that the number of phases and rated voltage of the product input power supply matches that for the connected power supply.
- Do not connect the power lines to the inverter output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$).
- When connecting a DC braking resistor (DBR), never connect it to terminals other than terminals $P(+)$ and DB.
Failure to observe this could result in fire or an accident.
- Control signal lines generally do not have a reinforced insulation coating, and therefore if control signal lines come into contact with live parts of the main circuit, the insulation coating may be damaged for some reason. In such a case, there is a danger that high voltage from the main circuit will be applied to the control signal lines, and therefore care should be taken to ensure that they do not come into contact with live parts of the main circuit.
Failure to observe this could result in an accident or electric shock.

\triangle WARNING \triangle

- Switch all switches after first waiting 5 minutes or longer for units of FRN0115G2S-2G/FRN0060G2■-4G or lower, or 10 minutes or longer for units of FRN0146G2S-2G/FRN0075G2 \square-4G or Higher after turning OFF the power, ensuring that the LED monitor and charge lamp are OFF, and use a device such as a tester to ensure that the DC intermediate circuit voltage across main circuit terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$ has dropped to a safe level (+25 VDC or less).
Failure to observe this could result in electric shock.

\triangle CAUTION
 - The inverter, motor and wiring generate electric noise, which may cause nearby sensors and devices to malfunction. Employ noise countermeasures to prevent malfunction.
 Failure to observe this could result in an accident.

\triangle WARNING』

- Be sure to attach the inverter surface cover before turning the power ON. Do not remove the surface cover while the power is ON.
- Do not operate the unit with wet hands.

Failure to observe this could result in electric shock.

- If the product stops after being tripped when the retry function is selected, depending on the cause of the trip, the product will restart automatically, and the motor will rotate. Design the machinery so that human body and peripheral equipment safety is ensured even when the auto-resetting succeeds. Design machines in such a way as to ensure the safety of the human body and surrounding area even when operation is resumed.
- There may be times when the stall prevention function (torque limiting) causes the product to run at an acceleration/deceleration time or speed different from the set values. Design machines in such a way that safety is ensured even at such times.
Failure to observe this could result in an accident.
- The keypad key is enabled only when keypad operation is selected with function code F02. Please prepare a separate EMERGENCY STOP button. When function code H 96 has been set to " 0 " or " 2 ", the key will be disabled if the operation command method is changed from operation command with the keypad by selecting link operation "LE".
- If any of the protective functions has been activated, first remove the cause. Then, after checking that all run commands are set to OFF, release the alarm. If the alarm is released while any run command is set to ON, the inverter may supply the power to the motor, running the motor.
Failure to observe this could result in an accident.
- By selecting the momentary power failure resume operation (F14 $=3$ to 5), operation will resume automatically following recovery. Design machines in such a way as to ensure operator safety even when operation is resumed.
- Set function codes after ensuring a sufficient understanding of this User's Manual. If operation is performed after recklessly changing function code data, the motor may rotate at a torque and speed at which the machine is unable to tolerate.
- When auto tuning is started, the motor rotates. Conduct a sufficient check to ensure that there is no danger even when the motor rotates.
Failure to observe this could result in an accident or injury.
- Even if the inverter cuts off the supply of power to the motor, if voltage is being applied to main power supply input terminals L1/R, L2/S, and L3/T, voltage may be output to inverter output terminals U, V and W .
- Even if the motor is stopped by DC braking operation or pre-excitation operation, voltage will be output to the inverter output U, V and W terminals.
Failure to observe this could result in electric shock.
- Inverter high-speed operation settings can be specified easily. If settings are changed, use the product after sufficiently checking the motor and machine specification.
Failure to observe this could result in injury.

\triangle CAUTION

- The cooling fans and braking resistors become very hot. Do not touch.

Failure to observe this could result in burns.

- Mechanical holding is not possible with the inverter brake function.

Failure to observe this could result in injury.

- The digital input terminals are equipped with a function used to start and stop operation or change the speed command with the "FWD" operation command or "BX" free-run command and so on. Depending on the digital input terminal status, operation may start suddenly, or the speed may change significantly simply by changing the function code settings. Make changes to function code settings after sufficiently ensuring safety.
- With digital input, functions ("SS1, SS2, SS4, SS8", "Hz2/Hz1", "Hz/PID", "IVS", "LE", etc.) used to change the operation procedure for operation commands or command procedure for speed commands can be assigned. Depending on the conditions, changes to these signals may result in operation being started suddenly or the speed changing suddenly.
- Ensure safety before modifying customizable logic related function code settings (U codes and related function codes) or turning ON the "Cancel customizable logic" terminal command CLC. Depending upon the settings, such modification or cancellation of the customizable logic may change the operation sequence to cause a sudden motor start or an unexpected motor operation. Carry out a sufficient safety check beforehand.
Failure to observe this could result in an accident or injury.

Speed control mode

$\triangle C A U T I O N$

- If the control constant for the automatic speed regulator (ASR) used with speed control is not at an appropriate value, even if the operation command is turned OFF, deceleration control may not be performed, and stop conditions may not be met due to such reasons as hunting caused by a high gain setting. As a result, operation may continue.
- Hunting due to a high response may occur in the low-speed area when decelerating, the speed detection value may deviate from the zero speed area before the continuous zero speed control time (F39) has elapsed, the mode may change to low-speed mode again without stop conditions being met, and operation may continue.
- If the actual speed deviates from the speed command after adjusting the ASR control constant to an appropriate value and applying the speed mismatch alarm function, an alarm is tripped, allowing the motor to be stopped safely. Furthermore, taking measures such as changing the ASR control constant setting based on the speed, or judging stop speed detection with a speed command value allows the inverter to successfully control the motor.
Failure to observe this could result in an accident or injury.

Torque control mode

$\triangle C A U T I O N$

- When performing torque control, in cases such as when the motor is being rotated from the load side with torque greater than that specified with the torque command, there are times when torque conditions are not met, and operation continues even when the operation command is turned OFF.
- If wishing to cut the inverter output at such times, take measures such as changing to speed control and bringing the motor to a decelerated stop, or issuing a coast to stop command.
Failure to observe this could result in an accident or injury.

\triangle WARNING』

- Carry out inspection after waiting 5 minutes or longer for units of FRN0115G2S-2G/FRN0060G2■-4G or lower, or 10 minutes or longer for units of FRN0146G2S-2G/FRN0075G2 $\square-4 G$ or higher after turning OFF the power. Furthermore, ensure that the LED monitor and charge lamp are OFF, and use a device such as a tester to ensure that the $D C$ intermediate circuit voltage across main circuit terminals $P(+)$ and $N(-)$ has dropped to a safe level (+25 VDC or less).
Failure to observe this could result in electric shock.
- Be sure to perform the daily inspection and periodic inspection described in the instruction manual. Lengthy use of the product without inspection could result in inverter failure and damage, or accident and fire.
- A periodic inspection cycle of 1 to 2 years is recommended, however, the cycle may be shortened depending on the usage conditions.
- It is recommended that parts for periodic replacement be replaced after the standard number of years indicated in the instruction manual. Lengthy use of the product without replacing parts could result in inverter failure and damage, or accident and fire.
- Contact outputs [30A/B/C] and [Y5A/C] use relays, and may remain ON or OFF, or in an indefinite state when the life is reached. In the interests of safety, equip the product with an external protection function.
Failure to observe this could result in fire or an accident.
- Maintenance and inspection, and part replacement should only be carried out by the authorized personnel.
- Remove all metal objects (watches, rings, etc.) before beginning work.
- Be sure to use insulated tools.
- Never modify the product.

Failure to observe this could result in electric shock or injury.

Disposal

$\triangle C A U T I O N$

- If disposing of the FRENIC-MEGA, handle as industrial waste.

Failure to observe this could result in injury.

General precautions

$\triangle C A U T I O N$

The drawings in this User's Manual are used to provide detailed descriptions, and therefore some may be drawn with covers or safety shields removed. When running the product, do so only after returning covers or shields to their prescribed original locations, and then run as described in the User's Manual.

Icons

The following icons are used in this instruction manual.

[^0]This chapter explains the items to be checked before the use of the inverter.

Contents

1.1 Acceptance Inspection (Nameplate and Inverter Type)...1-1

1.3 Precautions for Using Inverters ...1-5

[1] Temporary storage ... 1-8
[2] Long-term storage ... 1-8
1.3.3 Precautions for connection of peripheral equipment …...1-9
[1] Phase-advancing capacitors for power factor correction ..-1-9
[2] Power supply lines (application of DC/AC reactors) .. 1-9
[3] DC reactor (DCR) for correcting the inverter input power factor
(for suppressing harmonics) ...-9
[4] PWM converter for correcting the inverter input power factor1-10
[5] Molded case circuit breakers (MCCB)/earth leakage circuit breakers (ELCB) $\cdots \cdots \cdots \cdots \cdots 1-10$
[6] Magnetic contactor (MC) in the inverter input (primary) circuit1-10
[7] Magnetic contactor (MC) in the inverter output (secondary) circuit $\cdot \ldots
[8] Surge absorber/surge killer ..1-10
1.3.4 Noise reduction…..11
1.3.5 Leakage current...1-11

1．1 Acceptance Inspection（Nameplate and Inverter Type）

Unpack the package and check the following：
（1）The package contains both the inverter unit and instruction manual（Simplified Edition），and the product has suffered no damage（breakage，dents，parts that have fallen off）during transport．
（2）The rating plate is affixed to inverter at the location shown in Fig．1．2－1．）Ensure that the product is the same as the one ordered．

（a）Main Nameplate

```
TYPE FRN0075G2S-4G
```

SERNo. 落奴奴洛奴奴汉奴
（b）Sub Nameplate

Fig．1．1－1 Nameplates

TYPE：Inverter type

Fig．1．1－2 Inverter type

[^1]There are two specifications of inverter, HHD and HND, and the specification is changed based on the load applied to the inverter.

The respective specification is indicated on the nameplate.
[D] For details on the HHD and HND specifications, refer to Chapter 4 " 4.4 Switching the Applicable Motor Rating (HHD/HND Specifications)" and Chapter 10 "10.4 Selecting the Inverter Rating Specification (HHD/HND)" in this manual.
Furthermore, the rated current differs for the HHD and HND specifications, and the diameter of the wiring and the applicable instruments and devices will therefore differ.
(1) Refer to Chapter 2 "2.2 Wiring" in this manual for details on the applicable wiring.Refer to Chapter 11 "11.3 Molded Case Circuit Breakers, Earth Leakage Circuit Breakers, and Magnetic Contactors" in this manual for details on molded case circuit breakers, earth leakage circuit breakers, and magnetic contactors. Refer to Chapter 11 in this manual for details on other applicable instruments and devices.

HHD: Specification for heavy duty applications, overload current rating: 1 min at 150% of rated output current, 3 s at 200\%
HND: Specification for normal applications, overload current rating: 1 min at 120% of rated output current
SOURCE: Number of input phases (three-phase: 3PH), input voltage, input frequency, input current
OUTPUT: Number of output phases, rated output voltage, output frequency range, rated output current, and overload capacity
MOTOR: Applicable motor
IE2/LOSS: ErP (Energy related products) directive indication (grade/loss (\%))
Loss data that occurs under all operating conditions can be referenced from a QR code.
MFG ErP (Energy related products) directive indication (year of manufacture (western calendar))
IP CODE Protection level
SCCR: Short-circuit capacity
MASS: Mass of the inverter in kilograms
SER. No.: Product number 31 A 123 A 0579 AA

Production year and week 601
Production week: The 1st week of January is indicated as
'01'. This indicates the week number that
is numbered from 1st week of January.

If you suspect the product is not working properly or if you have any questions about your product, contact your Fuji Electric representative.

1.2 Product External Appearance

(1) Overall external appearance

(b) FRN0059G2S-2G

(c) FRN0180G2S-4G

Fig. 1.2-1 Overall external appearance
（2）Warning plates and label

FRENIC－MEGA	
¢ WARNING 4	
－RISK OF INJURY OR ELECTRIC SHOCK －Refer to the instruction manual before installation and operation －Do not remove this cover while applying power －This cover can be removed after at least 10 min of power off and after the＂CHARGE＂lamp turns off． －More than one live circuit．See instruction manual． －Do not insert fingers or anything else into the inverter． －Securely ground（earth）the equipment． －High touch current	
\triangle AVERTISSEMENT	
－RISQUE DE BLESSURE OU DE CHOC ÉLECTRIQUE －No ratirez pas le colvercle lorsqua vous mettez sous tension －Ce couvercle peut étre retiría au moins 10 minutes aprés la mise hors tension et quand le temoin＜＜ACTIF＞＞séteint． －Plus dun circuit éloctrique actif． Reportez－vous an manuel d instruction．	\triangle WARNING
	4．RISK OF EEECTEC SHOCK
警告	\triangle 警告
－有可能胧起受伤，蝇 	（4） $\begin{aligned} & \text { 有可能 } \\ & \text { 引起触电 }\end{aligned}$
	\triangle 警告
	$\text { 今盛電の } \begin{gathered} \text { おそれあり } \end{gathered}$
警告	

（a）FRN0115G2S－2G or lower， FRN0060G2 \square－4G or lower

（b）FRN0146G2S－2G or higher， FRN0075G2 \square－4G or higher

Warning label

Fig．1．2－2 Warning plates and label

1.3 Precautions for Using Inverters

This section provides precautions in introducing inverters, e.g. precautions for installation environment, power supply lines, wiring, and connection to peripheral equipment. Be sure to observe those precautions.

1.3.1 Usage environment

Install FRENIC-MEGA in an environment that satisfies the operating environment requirements listed in Table 1.31.

Table 1.3-1 Operating environment

Item	Specifications				
Site location	Indoors Environmental conditions: IEC60721-3-3:3C2				
Ambient temperature	-10 to $+55^{\circ} \mathrm{C}\left(14\right.$ to $\left.131^{\circ} \mathrm{F}\right)$ (Current derating is necessary in the +50 to $+55^{\circ} \mathrm{C}$ (122 to $131^{\circ} \mathrm{F}$) range.) (Note 3) When installed closely side-by-side (FRN0115G2 \square-2G / FRN0060G2 $\square-4 G$ or lower): -10 to $+40^{\circ} \mathrm{C}$ (14 to $104^{\circ} \mathrm{F}$)				
Relative humidity	5 to $95 \% \mathrm{RH}$ (there should be no condensation)				
Atmosphere	The inverter must not be exposed to dust, direct sunlight, corrosive gases, flammable gases, oil mist, vapor or water droplets. (Pollution degree 2 (IEC60664-1)) (Note 1) The atmosphere can contain a small amount of salt ($0.01 \mathrm{mg} / \mathrm{cm}^{2}$ or less per year). The inverter must not be subjected to sudden changes in temperature that will cause condensation to form.				
Altitude	1,000 m (3,300 ft) max. (Note 2)				
Atmospheric pressure	86 to 106 kPa				
Vibration	Type of inverter	2 to less than 9 Hz	9 to less than 20 Hz	20 to less than 55 Hz	55 to less than 200 Hz
	FRN0115G2 \square-2G or lower, FRN0060G2■-4G or lower	3 mm (max. amplitude)	9.8 m/ ${ }^{2}$	$5.9 \mathrm{~m} / \mathrm{s}^{2}$	$1 \mathrm{~m} / \mathrm{s}^{2}$
	FRN0288G2 \square-2G or lower, FRN0180G2■-4G or lower			$2 \mathrm{~m} / \mathrm{s}^{2}$	
	FRN0346G2 \square-2G or higher, FRN0216G2 \square-4G or higher		$2 \mathrm{~m} / \mathrm{s}^{2}$		

(Note 1) Do not install the inverter in an environment where it may be exposed to lint, cotton waste or moist dust or dirt which will clog the heat sink of the inverter.
If the inverter is to be used in such an environment, install it in cabinet to prevent lint, etc. getting in.
(Note 2) If you use the inverter in an altitude above $1,000 \mathrm{~m}(3,300 \mathrm{ft})$, you should apply an output current derating factor as listed in Table 1.3-2 below.

Table 1.3-2 Output current derating factor relative to altitude

Altitude	Output current derating factor
$1,000 \mathrm{~m}(3,300 \mathrm{ft})$ or less	1.00
1,000 to $1500 \mathrm{~m}(3,300$ to $4,900 \mathrm{ft})$	0.97
1,500 to $2,000 \mathrm{~m}(4,900$ to $6,500 \mathrm{ft})$	0.95
2,000 to $2,500 \mathrm{~m}(6,500$ to $8,200 \mathrm{ft})$	0.91
2,500 to $3,000 \mathrm{~m}(8,200$ to $9,800 \mathrm{ft})$	0.88

(Note 3) If the inverter is used in an environment which exceeds $50^{\circ} \mathrm{C}$, output current derating will be necessary.

*1: This applies to FRN0008G2S-2G, FRN0023G2■-4G, and FRN0045G2■-4G

Fuji Electric strongly recommends installing inverters in a panel for safety reasons, in particular, when installing the ones whose enclosure rating is IP00.
When installing the inverter in a place out of the specified environmental requirements, it is necessary to derate the inverter or consider the panel engineering design suitable for the special environment or the panel installation location. For details, refer to the Fuji Electric technical information "Engineering Design of Panels" or consult your Fuji Electric representative.
The special environments listed below require using the specially designed panel or considering the panel installation location.

Environments	Possible problems	Sample measures	Applications
Highly concentrated sulfidizing gas or other corrosive gases	Corrosive gases cause parts inside the inverter to corrode, resulting in an inverter malfunction.	Any of the following measures may be necessary. - Mount the inverter in a sealed panel with IP6X or air-purge mechanism. - Place the panel in a room free from influence of the gases.	Paper manufacturing, sewage treatment, sludge treatment, tire manufacturing, plaster manufacturing, metal processing, certain applications in the textile industry
A lot of conductive dust or foreign material (e.g., metal powders or shavings, carbon fibers, or carbon dust)	Entry of conductive dust into the inverter causes a short circuit.	Any of the following measures may be necessary. - Mount the inverter in a sealed panel. - Place the panel in a room free from influence of the conductive dust.	Wiredrawing machines, metal processing in general, extruders, printing machines, garbage incinerators, industrial waste disposal, etc.
A lot of fibrous or paper dust	Fibrous or paper dust accumulated on the heat sink lowers the cooling effect. Entry of dust into the inverter causes the electronic circuitry to malfunction.	Any of the following dust measures may be necessary. - Mount the inverter in a sealed panel that shuts out dust. - Ensure a maintenance space for periodical cleaning of the heat sink in panel engineering design. - Employ external cooling when mounting the inverter in a panel for easy maintenance and perform periodical maintenance.	Textile manufacturing and paper manufacturing
High humidity or dew condensation	In an environment where a humidifier is used or where the air conditioner is not equipped with a dehumidifier, high humidity or dew condensation results, which causes a short-circuiting or malfunction of electronic circuitry inside the inverter.	- Put a heating module such as a space heater in the panel.	Outdoor installation, film manufacturing lines, pumps, food processing, etc.
Vibration or shock exceeding the specified level	If a large vibration or shock exceeding the specified level is applied to the inverter, for example, due to a carrier running on seam joints of rails or blasting at a construction site, the inverter structure gets damaged.	Insert shock-absorbing material between the mounting base of the inverter and the panel for safe mounting.	Installation of an inverter panel on a carrier or selfpropelled machine. Ventilating fan at a construction site or a press machine.
Fumigation for export packaging	Halogen compounds such as methyl bromide used in fumigation corrodes some parts inside the inverter.	- When exporting an inverter built in a panel or equipment, pack them in a previously fumigated wooden crate. - When packing an inverter alone for export, use a laminated veneer lumber (LVL).	Exporting overseas

1.3.2 Storage environment

The storage environment in which the inverter should be stored after purchase differs from the usage environment. Store the FRENIC-MEGA in an environment that satisfies the requirements listed below.

[1] Temporary storage

Table 1.3-3 Storage and transport environments

Item	Specifications	
Storage temperature	During transport: -25 to $+70^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+158^{\circ} \mathrm{F}\right)$	Places not subjected to abrupt temperature changes or
	During storage: -25 to $+65^{\circ} \mathrm{C}\left(-13\right.$ to $\left.+153^{\circ} \mathrm{F}\right)$	
	5 to $95 \% \mathrm{RH} * 1$	
Atmosphere	The inverter must not be exposed to dust, direct sunlight, corrosive or flammable gases, oil mist, vapor, water drops or vibration. The atmosphere must contain only a low level of salt. $\left(0.01 \mathrm{mg} / \mathrm{cm}^{2}\right.$ or less per year)	
	During storage: 86 to 106 kPa	
	During transport: 70 to 106 kPa	

*1 Even if the humidity is within the specified requirements, avoid such places where the inverter will be subjected to sudden changes in temperature that will cause condensation or freezing.

Precautions for temporary storage

(1) Do not leave the inverter directly on the floor.
(2) If the environment does not satisfy the specified requirements listed in Table 1.3-3, wrap the inverter in an airtight vinyl sheet or the like for storage.
(3) If the inverter is to be stored in a high-humidity environment, put a drying agent (such as silica gel) in the airtight package.

[2] Long-term storage

The long-term storage method of the inverter varies largely according to the environment of the storage site. General storage methods are described below.
(1) The storage site must satisfy the requirements specified for temporary storage. However, for storage exceeding three months, the surrounding temperature range should be within the range from -10 to $+35^{\circ} \mathrm{C}\left(14\right.$ to $\left.95^{\circ} \mathrm{F}\right)$. This is to prevent electrolytic capacitors in the inverter from deterioration.
(2) The package must be airtight to protect the inverter from moisture. Add a drying agent (such as silica gel) inside the package to maintain the relative humidity inside the package within 70%.
(3) If the inverter has been installed to the equipment or panel at construction sites where it may be subjected to humidity, dust or dirt, then temporarily remove the inverter and store it in the environment specified in Table 1.3-3.

Precautions for storage over 1 year

If the inverter has not been powered on for a long time, the property of the electrolytic capacitors may deteriorate. Power the inverters on once a year and keep the inverters powering on for 30 to 60 minutes. Do not connect the inverters to the load circuit (secondary side) or run the inverter.

1.3.3 Precautions for connection of peripheral equipment

[1] Phase-advancing capacitors for power factor correction

Do not mount a phase-advancing capacitor for power factor correction in the inverter's input (primary) or output (secondary) circuit. Mounting it in the input (primary) circuit takes no effect.
To correct the inverter power factor, use a DC reactor (DCR) (option). Mounting it in the output (secondary) circuit causes an overcurrent trip, disabling operation.

An overvoltage trip that occurs when the inverter is stopped or running with a light load is assumed to be due to surge current generated by open/close of phase-advancing capacitors in the power system. The use of a DC reactor (DCR) or AC reactor (ACR) (options) is recommended as a measure to be taken at the inverter side.

Inverter input current to an inverter contains harmonic components that may affect other motors and phaseadvancing capacitors on the same power supply line. If the harmonic components cause any problems, connect a DCR/ACR to the inverter.

In some cases, it is necessary to insert a reactor in series with the phase-advancing capacitors.

[2] Power supply lines (application of DC/AC reactors)

Use a DC reactor (DCR) when the capacity of the power supply transformer is 500 kVA or more and is 10 times or more the inverter rated capacity or when there are thyristor-driven loads. If no DCR is used, the percentagereactance of the power supply decreases, and harmonic components and their peak levels increase. These factors may break rectifiers or capacitors in the converter section of the inverter, or decrease the capacitance of the capacitors.

If the input voltage interphase unbalance ratio is between 2% and 3%, use an AC reactor.
Interphase unbalance ratio [\%]

$$
=(\text { Max. voltage }[\mathrm{V}]-\text { min. voltage [V]) / Three-phase average voltage [V] } \times 67 \text { (see IEC/EN61800-3) }
$$

[3] DC reactor (DCR) for correcting the inverter input power factor (for suppressing harmonics)

To correct the inverter input power factor (to suppress harmonics), use a DCR. Using a DCR increases the reactance of inverter's power source so as to decrease harmonic components on the power source lines and correct the power factor of the inverter.

DC reactor type	Input power factor	Remarks
	Approx. 90\% to 95\%	The last letter identifies the capacitance.
DCR2/4-ロロC	Approx. 86\% to 90\%	Only selectable for 37 kW or higher models.

Note - Select a DCR matching not the inverter capacity but the rated capacity of the applied motor. Applicable reactors differ depending upon the selected HHD or HND specification, even on the same type of inverters.

[4] PWM converter for correcting the inverter input power factor

Using a PWM converter (High power-factor, regenerative PWM converter, RHC series) corrects the inverter power factor up to nearly "1."
When combining an inverter with a PWM converter, disable the main power down detection by setting the function code H72 (main power detection) to " 0 " (default). If the main power down detection is enabled (H72 = 1, factory default), the inverter interprets the main power as being shut down, ignoring an entry of a run command.

[5] Molded case circuit breakers (MCCB)/earth leakage circuit breakers (ELCB)

Install a recommended MCCB or ELCB (with overcurrent protection) in the primary circuit of the inverter to protect the wiring. Since using an MCCB ELCB with a lager capacity than recommended ones breaks the protective coordination of the power supply system, be sure to select recommended ones. Also select ones with short-circuit breaking capacity suitable for the power source impedance.

\triangle WARNING

If no zero-phase current (earth leakage current) detective device such as a ground-fault relay is installed in the upstream power supply line in order to avoid the entire power supply system's shutdown undesirable to factory operation, install a residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) individually to inverters to break the individual inverter power supply lines only.

Failure to observe this could result in fire.

[6] Magnetic contactor (MC) in the inverter input (primary) circuit

Avoid frequent ON/OFF operation of the magnetic contactor (MC) in the input circuit; otherwise, the inverter failure may result. If frequent start/stop of the motor is required, use FWD/REV terminal signals or the wisise keys on the inverter keypad.
The frequency of the MC's ON/OFF should not be more than once per 30 minutes. To assure 10-year or longer service life of the inverter, it should not be more than once per hour.
Tip - From the system's safety point of view, it is recommended to employ such a sequence that shuts down the magnetic contactor (MC) in the inverter input circuit with an alarm output signal ALM issued on inverter's programmable output terminals. This sequence minimizes the secondary damage even if the inverter breaks. When this sequence is employed, connecting the MC's primary power line to the inverter's control power auxiliary input makes it possible to monitor the inverter's alarm status on the keypad.

- The breakdown of a braking unit or misconnection of an external braking resistor may cause damage of the inverter's internal parts (e.g., charging resistor). To avoid such a breakdown linkage, introduce an MC and configure a sequence that shuts down the MC if a DC link voltage establishment signal is not issued within three seconds after the MC is switched on. For the braking transistor built-in type of inverters, assign a transistor error output signal DBAL on inverter's programmable output terminals to switch off the MC in the inverter input circuit.

[7] Magnetic contactor (MC) in the inverter output (secondary) circuit

If a magnetic contactor (MC) is inserted in the inverter's output (secondary) circuit for switching the motor to a commercial power or for any other purposes, it should be switched on and off when both the inverter and motor are completely stopped. This prevents the contact point from getting damaged due to a switching arc of the MC. The MC should not be equipped with any main circuit surge killer.
Applying a commercial power to the inverter's output (secondary) circuit breaks the inverter. To avoid this, employ an interlock to ensure that the magnetic contactor at the commercial power supply side does not turn ON at the same time as the magnetic contactor at the inverter output side.

[8] Surge absorber/surge killer

Do not install any surge absorber or surge killer in the inverter's output (secondary) lines.

1.3.4 Noise reduction

If noise generated from the inverter affects other devices, or that generated from peripheral equipment causes the inverter to malfunction, follow the basic measures outlined below.
(1) If noise generated from the inverter affects the other devices through power wires or grounding wires:

- Isolate the grounding terminals of the inverter from those of the other devices.
- Connect a noise filter to the inverter power wires.
- Isolate the power system of the other devices from that of the inverter with an insulated transformer.
- Decrease the inverter's carrier frequency (F26). See Note below.
(2) If induction or radiated noise generated from the inverter affects other devices:
- Isolate the main circuit wires from the control circuit wires and other devices wires.
- Put the main circuit wires through a metal conduit pipe, and connect the pipe to the ground near the inverter.
- Install the inverter into the metal panel and connect the whole panel to the ground.
- Connect a noise filter to the inverter power wires.
- Decrease the inverter's carrier frequency (F26). See Note below.
(3) When implementing measures against noise generated from peripheral equipment:
- For inverter's control signal wires, use twisted or shielded-twisted wires.

When using shielded-twisted wires, connect the shield of the shielded wires to the common terminals of the control circuit.

- Connect a surge absorber in parallel with magnetic contactor's coils or other solenoids (if any).

Note: Running a permanent magnet synchronous motor (PMSM) at a low carrier frequency may heat the permanent magnet due to the output current harmonics, resulting in demagnetization. When decreasing the carrier frequency setting, be sure to check the allowable carrier frequency of the motor.

1.3.5 Leakage current

A high frequency current component generated by insulated gate bipolar transistors (IGBTs) switching on/off inside the inverter produces leakage current through stray capacitance of inverter input and output wires or a motor. If any of the problems listed below occurs, take an appropriate measure against them.

Defect phenomenon	Measure
An earth leakage circuit breaker* that is connected to the input (primary) side has tripped. *With overcurrent protection	1) Decrease the carrier frequency. See Note below. 2) Make the wires between the inverter and motor as short as possible.
	3) Use an earth leakage circuit breaker with lower sensitivity than the one currently used.
	4) Use an earth leakage circuit breaker that features measures against the high frequency current component (Fuji SG and EG series).
An external thermal relay was falsely activated.	1) Decrease the carrier frequency. See Note below. 2) Increase the current setting of the thermal relay.

Note: Running a permanent magnet synchronous motor (PMSM) at a low carrier frequency may heat the permanent magnet due to the output current harmonics, resulting in demagnetization. When decreasing the carrier frequency setting, be sure to check the allowable carrier frequency of the motor.

This chapter describes the important points in installing and wiring inverters.

Contents

2.1 Installation 2-1
2.2 Wiring 2-4
2.2.1 Basic connection diagrams 2-4
2.2.2 Removal and attachment of the front cover and wiring guide 2-6
2.2.3 Wiring precautions 2-7
2.2.4 Precautions for long wiring (between inverter and motor) 2-9
2.2.5 Main circuit terminals 2-11
[1] Screw specifications and recommended wire size (main circuit terminals) 2-11
[2] Terminal layout diagrams (main circuit terminals) 2-12
[3] Recommended wire size (main circuit terminals) 2-13
[4] Terminal function description (main circuit terminals) 2-22
2.2.6 Control circuit terminals (common to all models) 2-27
[1] Screw specifications and recommended wire size (control circuit terminals) 2-27
[2] Terminal layout diagram (control circuit terminals) 2-27
[3] Control circuit wiring precautions 2-28
[4] Description of terminal functions (control circuit terminals) 2-29
2.2.7 Switching switches 2-40
2.3 Mounting and Removing the Keypad -2-43

2．1 Installation

（1）Installation environment

Please install FRENIC－MEGA in locations which meet the requirements specified in Chapter 1＂1．3．1 Operating environment＂．

（2）Installation surface

Please install the inverter on noncombustibles such as metal．Also，do not mount it upside down or horizontally．

（3）Surrounding space

Secure the surrounding space shown in Fig．2．1－1 and Table 2．1－1．If enclosing the product in a cabinet and so on，be sure to provide adequate ventilation to the cabinet，as the ambient temperature may rise．Do not contain it in small enclosures with low heat dissipation capacity．

■ Installation of multiple inverters

If installing two or more units inside the same equipment or cabinet，they must be installed side by side as a rule．If vertical installation is unavoidable，install partitions to prevent heat dissipation from inverters below affecting those above．
With FRN0115G2S \square－2G／FRN0060G2 \square－4G or lower，only in the case of an ambient temperature of $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$ or below is it possible to install inverters and converters closely together horizontally．

Table 2．1－1 Surrounding space（mm（inch））

Type of Inverter		A	B	C
FRND口■口 G2S－2G	FRNDロロロ G2 $\square-4 \mathrm{G}$			
0003 to 0008	0002 to 0004	$\begin{gathered} 50 \\ (1.97) \end{gathered}$	$\begin{gathered} 100 \\ (3.9) \end{gathered}$	0
0011 to 0115	0006 to 0060	$\begin{gathered} 10 \\ (0.39) \\ \hline \end{gathered}$		（0）
0146 to 0432	0075 to 0520	$\begin{gathered} 50 \\ (1.97) \end{gathered}$		$\begin{gathered} 100 \\ (3.9) \end{gathered}$
－	0650 to 1386		$\begin{gathered} \hline 150 \\ (5.9) \\ \hline \end{gathered}$	$\begin{gathered} \hline 150 \\ (5.9) \\ \hline \end{gathered}$

C：Space in front of inverter unit

Fig．2．1－1 Installation direction

- Installation with external cooling

The external cooling installation reduces the generated heat inside the panel by dissipating approximately 70% of the total heat generated (total heat loss) by mounting the cooling fins protruding outside the equipment or cabinet. The external cooling unit body has a protective construction of IP55.
Installation with external cooling is possible for inverters FRN0115G2S2G / FRN0060G2 \square-4G or lower with the addition of an external cooling attachment (option), and for FRN0146G2S-2G / FRN0075G2 \square-4G or higher by moving the mounting base.
(Refer to Chapter 11 "11.16 External Cooling Fan Attachments" for details on external cooling attachments.)

$\triangle C A U T I O N$

Take measures to prevent foreign material such as lint, wastepaper, wood shavings, dust, or metal scraps getting into the inverter, or adhering to the cooling fan.

Failure to observe this could result in fire or an accident.

* Current derating is necessary in the +50 to $+55^{\circ} \mathrm{C}(122$ to $131^{\circ} \mathrm{F}$) range.

Fig. 2.1-2 External cooling installation method

If installing a FRN0146G2S-2G / FRN0075G2 $\square-4 G$ or higher inverter with external cooling, change the mounting position of the upper and lower mounting bases using the following procedure. (See Fig. 2. 1-3 below.)
The screw types and number of screws used will differ depending on the inverter type. Please check the following table.

Table 2.1-2 Screw type, screw quantity, and tightening torque

Inverter type	Mounting base securing screw	Case mounting screw	Tightening torque $\mathrm{N} \cdot \mathrm{m}$ $(\mathrm{lb}-\mathrm{in})$
FRN0146G2S-2G/FRN0180G2S-2G FRN0075G2 $\square-4 G ~ t o ~ F R N 0150 G 2 ~$			
FRN0215G2S-2G/FRN0288G2S-2G FRN0180G2 $\square-4 G$	M6x20 (top 5, bottom 3)	M6x20 (3 each for top and bottom)	M6x12 (3 for top only)

1) Remove all of the mounting base securing screws and case mounting screws from the top of the inverter unit.
2) Secure the mounting base to the screw holes for the case mounting screws with the mounting base securing screws. There will be screws remaining after changing the mounting base position.
3) Change the mounting base position at the bottom also using steps 1) and 2).
(Inverters type of FRN0520G2 $\square-4 \mathrm{G}$ or lower have no case mounting screws on the bottom.)

Fig. 2.1-3 Mounting base position change method

UAUTION
Use the specified screws for changing the mounting base.
Failure to observe this could result in fire or an accident.

2.2 Wiring

2.2.1 Basic connection diagrams

Fig. 2.2-1 Basic connection diagram
(*1) Install the molded case circuit breaker (MCCB) or earth leakage circuit breaker (ELCB) (with overcurrent protection function) recommended for each inverter on the inverter input side (primary side) to protect wiring. Do not use a circuit breaker that exceeds the recommended rated current.
An MCCB or ELCB is also used if isolating the inverter from the power supply, and therefore the magnetic contactor (MC) recommended for each inverter should be installed if required. Please note that if installing a coil such as an MC or solenoid near the inverter, connect a surge absorber in parallel.

If wishing to retain the integrated alarm signal issued if the protective function is triggered even when the inverter main power supply is cut off, or to constantly display the keypad, connect these terminals to the power supply. (on FRN0008G2S-2G or higher / FRN0004G2 $\square-4 G$ or higher)
The inverter can be run even without inputting the power supply to these terminals.
(*5) Remove the shorting bar between the inverter main circuit terminals P 1 and $\mathrm{P}(+)$ before connecting the DC reactor (DCR) (option). Be sure to connect the DC reactor in the case of FRN0288G2S-2G / FRN0150G2 \square-4G HND specification and FRN0346G2S-2G or higher / FRN0180G2 \square-4G or higher inverters. Use a DC reactor (DCR) when the capacity of the power supply transformer is 500 kVA or more and is 10 times or more the inverter rated capacity, or when there are "thyristor-driven" loads.
(*6) FRN0288G2S-2G or lower / FRN0180G2 $\square-4 G$ or lower inverters are equipped with a built-in braking transistor, allowing direct connection of braking resistors between $\mathrm{P}(+)$ and DB .
If connecting a braking resistor (DB) (option) to FRN0346G2S-2G or higher / FRN0216G2 \square-4G or higher inverters, a braking unit (BU) (option) is necessary. A built-in braking resistor is connected between terminals $\mathrm{P}(+)$ and DB on FRN0046G2S-2G or lower / FRN0023G2 $\square-4 \mathrm{G}$ or lower inverters. If connecting a braking resistor (DB), be sure to disconnect the built-in braking resistor.
(*7) This terminal is used for grounding the motor. Connect if required.
(*8) Use twisted wire or shielded wire for control signal lines.
Shielded wires are generally grounded, however, if subject to significant induction noise from outside, it may be possible to suppress the effect of the noise by connecting wires to [CM]. Isolate control signal lines from the main circuit wiring as best as possible, and do not run inside the same duct (a distance of 10 cm or greater is recommended.) If lines intersect, ensure that they do so almost perpendicularly to the main circuit wiring.
(*9) Each of the functions described for terminals [FWD] and [REV], terminals [X1] to [X9] (digital input), terminals [Y1] to [Y4] (transistor output), terminal [Y5A/C], and terminal [30A/B/C] (contact output) indicate functions assigned by factory default.
(*11) These are the switches on control PCBs, and are used to specify settings for inverter operation. Refer to the User's Manual, "2.2.7 Switching switches" for details.
(*12) Safety function terminals [EN1] and [EN2] are disabled with SW7 (2-pole switch) on the control PCB by factory default. If using this terminal function, be sure to change the respective SW7 switches to the OFF position and connect.
(*13) Install a thermal relay if necessary. Make the circuit breakers (MCCB) or the magnetic contactors (MC) trip by the thermal relay auxiliary contacts (manual recovery).
(*15) 0 V and (OV are isolated and insulated.
(*16) The factory default setting for SW1 of FRN-G2E-4G is "SOURCE".

Carry out wiring work in the following order (The descriptions assume that the inverter has already been installed).

2.2.2 Removal and attachment of the front cover and wiring guide

$\triangle C A U T I O N$

If using the RS-485 communication cable for such purposes as remotely operating the keypad, always remove the RS-485 communication cable from the RJ-45 connector before removing the front cover.
Failure to observe this could result in fire or an accident.

(1) FRN0115G2S-2G / FRN0060G2■-4G or lower inverters

1) Loosen the screws of the front cover. Hold both sides of the front cover with the hands, slide the cover downward, and pull. Then remove it to the upward direction.
2) Push the wiring guide upward and pull. Let the wiring guide slide and remove it.
3) After routing the wires, attach the wiring guide and the front cover reversing the steps above.

Fig. 2.2-2 Removal of front cover and wiring guide (for FRN0059G2S-2G)

(2) FRN0146G2S-2G / FRN0075G2■-4G or higher inverters

1) Loosen the screws of the front cover. Hold both sides of the front cover by hand, and slide the cover upward to remove.
2) After carrying out wiring work, align the top of the front cover with the hole on the cover, and reattach using the opposite procedure to that in Fig. 2.2-3.

Tip
 Open the keypad case to expose the control PCB.

Tightening torque: $1.8 \mathrm{~N} \cdot \mathrm{~m}(15.9 \mathrm{lb}-\mathrm{in})$ (M4)

Fig. 2.2-3 Front cover removal (FRN146G2S-2G)

2.2.3 Wiring precautions

Pay attention to the following items when carrying out wiring.
(1) Confirm that the supply voltage is within the input voltage range described on the rating plate.
(2) Always connect the power lines to the inverter main power input terminals L1/R, L2/S, and L3/T (three-phase). (The inverter will be damaged when power is applied if the power lines are connected to the wrong terminals.)
(3) Be sure to connect a ground wire in order to prevent accidents such as electric shock or fire, and to reduce noise.
(4) For the lines connecting to the main circuit terminals, use crimped terminals with insulating sleeves or use crimped terminals in conjunction with insulating sleeves for high connection reliability.
(5) Separate the routing of the lines connected to the main circuit input side terminals (primary side) and the output side terminals (secondary side) and the lines connected to the control circuit terminals.
The control circuit terminal lines should be routed as far as possible from the main circuit routing. Malfunction may occur due to noise.
(6) To prevent direct contact with the main circuit live sections (such as the main circuit terminal block), route the control circuit wiring inside the inverter as bundles using cable ties.
(7) After removing a main circuit terminal screw, always restore the terminal screw in position and tighten even if lines are not connected.
(8) The wiring guide is used to separately route the main circuit wiring and the control circuit wiring. The main circuit wiring and the control circuit wiring can be separated. Exercise caution for the order of wiring.

Fig. 2.2-4 FRN0005G2S-2G

Fig. 2.2-5 FRN0059G2S-2G

- Handling the wiring guide

When wiring the main circuit on FRN0059G2S-2G to FRN0115G2S-2G / FRN0031G2 $\square-4 G$ to FRN0060G2 $\square-4 G$ inverters, the wiring space may become insufficient when routing the main circuit wires, depending on the wire material used. In these cases, the relevant cut-off sections (see figure below) can be removed using a pair of nippers to secure routing space. Be warned that removing the wiring guide to accommodate the enlarged main circuit wiring may result in non-conformance with IP20 requirements.

Fig. 2.2-6 Wiring guide (for FRN0075G2S-2G)
(9) Depending on the inverter capacity, straight routing of the main circuit wires from the main circuit terminal block may not be possible. In these cases, route the wires as shown in the figure below and securely attach the front cover.

Fig. 2.2-7
(10) The L2/S input terminals on FRN1170G2 $\square-4 G$ and FRN1386G2 $\square-4 G$ inverters is located in the vertical direction when facing the unit. When connecting wires to these terminals, do so using the bolts, washers, and nuts provided as shown below.

Fig. 2.2-8

2.2.4 Precautions for long wiring (between inverter and motor)

(1) When multiple motors are connected to one inverter, the wiring length is the total of all wire lengths.
(2) Precautions for high-frequency leakage current

Precautions shall be taken for high frequency leakage current when the wiring length from the inverter to the motor is long, in this case the high frequency current may flow through the stray capacitance between the wires with various phases. The effect may cause the inverter to become overheated, or trip due to overcurrent. Leakage current may increase and the accuracy of the displayed current may not be ensured. Depending on the conditions, excessive leakage current may damage the inverter. To avoid the above problems when directly connecting an inverter to a motor, keep the wiring length to 50 m (164 ft) or less for FRN0018G2S-2G / FRN0009G2 $\square-4 \mathrm{G}$ inverters or lower, and to $100 \mathrm{~m}(328 \mathrm{ft})$ or less for FRN0032G2S-2G / FRN0018G2 $\square-$ 4 G inverters or higher.
If using with longer wire lengths than those above, use with a carrier frequency of 5 kHz or less, and if using a 400 V series inverter, use an output circuit filter (OFL- $\square \square \square-4 \mathrm{~A}$) (option).
When multiple motors are operated in parallel connection configuration (group operation), and especially when shielded cables are used for the connections, the ground to ground stray capacitance will be large. In this case, use with a carrier frequency of 5 kHz or less, and if using a 400 V series inverter, use an output circuit filter (OFL- $\square \square \square-4 \mathrm{~A}$) (option).

Without output circuit filter	With output circuit filter

When the output circuit filter is used, the total wiring length should be below 400 m (1312ft) in case of using V/f control.
For motors with encoders, the wiring length between the inverter and motor should be below 100 m (328ft).
The restriction comes from the encoder specifications. For distances beyond 100 m (328ft), insulation converters should be used. Please contact Fuji Electric when operating with wiring lengths beyond the upper limit.
(3) Precautions on the surge voltage when driving the inverter (especially for 400 V series motor)

When motors are driven by inverters using the PWM method, the surge voltage generated by the switching of the inverter elements is added to the output voltage and is applied onto the motor terminals. Especially when the motor wiring length is long, the surge voltage can cause insulation degradation in the motor. Please perform one of the countermeasures shown below.

- Use motor with insulation enhancement (Fuji's standard motors have insulation enhancements)
- Connect a surge suppression unit on the motor side (SSU50/100TA-NS).
- Connect an output circuit filter (OFL- $\square \square \square-4 \mathrm{~A}$) to the inverter output side (secondary side).
- Reduce the wiring length from the inverter to the motor to less than 10 to 20 meters (33 to 66 ft).
(4) When an output circuit filter (OFL- $\square \square \square-4 \mathrm{~A}$) is inserted in the inverter, or when the wiring length is long, the voltage applied to the motor will decrease due to the voltage drop caused by the filter or wiring. In these cases, current oscillation and lack of torque may occur due to insufficient voltage.

\triangle WARNING』

- Connect to the power supply via a molded case circuit breaker or earth leakage circuit breaker (with overcurrent protection function) for each inverter.
Use the recommended molded case circuit breaker or earth leakage circuit breaker, and do not use circuit breakers that exceed the recommended rated current.
- Be sure to use the specified wire size.
- Tighten terminals with the prescribed tightening torque.
- If there are multiple inverter and motor combinations, do not use multi-core cables for the purpose of bundling and storing wiring for multiple combinations.
- Do not install a surge suppressor to the inverter output side (secondary side).

Failure to observe this could result in fire.

- Ground the inverter in compliance with the national or local electric code.
- Be sure to ground the inverter ground terminal [$\boldsymbol{\beta}_{\boldsymbol{D}} \mathrm{G}$] grounding wire.

Failure to observe this could result in electric shock or fire.

- Wiring work should be carried out by qualified professionals.
- Carry out wiring work after ensuring that the power has been turned OFF.

Failure to observe this could result in electric shock.

- Always carry out wiring after installing the unit.

Failure to observe this could result in electric shock or injury.

- Ensure that the number of phases and rated voltage of the product input power supply matches that for the connected power supply.
- Do not connect the power lines to the inverter output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$).

Failure to observe this could result in fire or an accident.

2.2.5 Main circuit terminals

[1] Screw specifications and recommended wire size (main circuit terminals)

The specifications for the screws used in the main circuit wiring and the wire sizes are shown below. Exercise caution as the terminal position varies depending on inverter capacity. In the diagram in "[2] Terminal layout diagrams (main circuit terminals)", the two ground terminals [$\boldsymbol{B}^{\boldsymbol{\theta}} \mathrm{G}$] are not differentiated for the input side (primary side) and the output side (secondary side).

Also, use crimped terminals with insulating sleeves compatible for main circuit or terminals with insulating tubes. The recommended wire sizes are shown depending on cabinet temperature and wire type.

Table 2.2-1 Screw specifications

[2] Terminal layout diagrams (main circuit terminals)

The dimensions for each terminal indicate the "dimensions between walls" as shown in the diagram on the left.

\1WARNINGA	
The following terminals will have high voltage when power is ON.	
Main circuit: L1/R, L2/S, L3/T, P1, P(+), N(-), DB, U, V, W, R0, T0, AUX-contact (30A, 30B, 30C, Y5A, Y5C) Insulation level	
Main circuit - casing	: Basic insulation (overvoltage category III, pollution degree 2)
Main circuit - control circuit	: Reinforced insulation (overvoltage category III, pollution degree 2)
Contact output - control circuit	Reinforced insulation (overvoltage category II, pollution degree 2)

[3] Recommended wire size (main circuit terminals)

The following wires are recommended unless special requirements exist.
If using in an ambient temperature of 50 to $55^{\circ} \mathrm{C}\left(122\right.$ to $\left.131^{\circ} \mathrm{F}\right)$, select wires by referring to the $55^{\circ} \mathrm{C}$ field in Appendix F "Allowable Current of Insulated Wires" in "APPENDICES".

- 600 V polyvinyl chloride insulated wire (IV wire)

This wire is used in circuits except the inverter control circuit. The wire is difficult to twist and is not recommended for the inverter control circuit. The maximum permissible temperature for the insulated wire is $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$.

600 V heat-resistant polyvinyl chloride wire (HIV wire)

In comparison to the IV wire, this wire is smaller, more flexible, and the maximum permissible temperature for the insulated wire is $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ (higher), making it suitable for both the inverter main circuit and control circuit. However, the wiring distance should be short and the wire must be twisted for use in the inverter control circuit.

■ 600 V cross-linked polyethylene insulated wire (FSLC wire)

This wire is used mainly in the main circuit and the grounding circuits. The size is even smaller than the IV wire or the HIV wire and also more flexible. Due to these features, the wire is used to reduce the area occupied by wiring and to improve work efficiency in high temperature areas. The maximum permissible temperature for the insulated wire is $90{ }^{\circ} \mathrm{C}\left(194{ }^{\circ} \mathrm{F}\right)$. As a reference, Furukawa Electric Co., Ltd. produces Boardlex which satisfies these requirements.

Shielded-twisted wire for internal wiring of electronic/electrical equipment

This product is used in inverter control circuits. Use this wire with high shielding effect when risk of exposure to or effect of radiated noise and induced noise exists. Always use this wire when the wiring distance is long, even within the cabinet. Furukawa Electric's BEAMEX S shielded cables XEBV or XEWV satisfy these requirements.

Table 2.2-2 Recommended wire sizes (common terminals)

Common terminals	Recommended wire size $\left(\mathrm{mm}^{2}\right)$ [AWG]	Remarks
Control power auxiliary input terminals R0, T0	$2.0[14]$	-

Panel internal temperature of $50^{\circ} \mathrm{C}\left(122{ }^{\circ} \mathrm{F}\right)$ or lower

Table 2.2-3 Wire size (main power supply input and inverter output)
HHD specification: High, Heavy Duty applications HND specification: High, Normal Duty applications

		Inverter type		Recommended wire size (mm^{2})															
				Main power supply input [L1/R, L2/S, L3/T]								Inverter output [U, V, W]							
				With DC reactor (DCR)				Without DC reactor (DCR)				HHD specification				HND specification			
		HHD specification	HND specification	Permissible temperature (Note 1)			Curren t value (A)	Permissible temperature (Note 1)			Curren t value (A)	Permissible temperature (Note 1)			Curren t value (A)	Permissible temperature (Note 1)			Curre nt value (A)
				$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	
	0.4	FRN0003G2S-2G	-	2.0	2.0	2.0	1.6	2.0	2.0	2.0	3.1	2.0	2.0	2.0	3.0	-	-	-	-
	0.75	FRN0005G2S-2G	-	2.0	2.0	2.0	3.2	2.0	2.0	2.0	5.3	2.0	2.0	2.0	5.0	-	-	-	-
	1.5	FRN0008G2S-2G	-	2.0	2.0	2.0	6.1	2.0	2.0	2.0	9.5	2.0	2.0	2.0	8.0	-	-	-	-
	2.2	FRN0011G2S-2G	-	2.0	2.0	2.0	8.9	2.0	2.0	2.0	13.2	2.0	2.0	2.0	11.0	-	-	-	-
	3.7	FRN0018G2S-2G	-	2.0	2.0	2.0	15.0	5.5	2.0	2.0	22.2	3.5	2.0	2.0	18.0	-	-	-	-
	5.5	FRN0032G2S-2G	-	5.5	2.0	2.0	21.1	8.0	3.5	3.5	31.5	5.5	3.5	2.0	27.0	-	-	-	-
	7.5	FRN0046G2S-2G	FRN0032G2S-2G	8.0	3.5	2.0	28.8	14	5.5	5.5	42.7	14	5.5	3.5	37.0	8.0	3.5	3.5	31.8
	11	FRN0059G2S-2G	FRN0046G2S-2G	14	5.5	5.5	42.2	22 *5	14	8.0	60.7	14	8.0	5.5	49.0	14.0	8.0	5.5	46.2
	15	FRN0075G2S-2G	FRN0059G2S-2G	22	14	8.0	57.6	38 *1	14	14	80.0	22	14	8.0	63.0	22.0	14.0	8.0	59.4
	18.5	FRN0088G2S-2G	FRN0075G2S-2G	38 *1	14	14	71.0	60 *2	22	14	97.0	$38 * 1$	14	14	76.0	38 *1	14.0	14.0	74.8
	22	FRN0115G2S-2G	FRN0088G2S-2G	38 *1	22	14	84.4	60 *2	38 *1	22	112.0	$38 * 1$	22	14	90.0	38 *1	22.0	14.0	88.0
	30	-	FRN0115G2S-2G	60 *2	38 *1	22	114	100 *6	60 *2	38 *1	151	60	38	22	119	60 *2	38 *1	22.0	115.0
	30	FRN0146G2S-2G	-	60	38	22	114	100	60	38	151	60	38	22	119	-	-	-	-
	37	-	FRN0146G2S-2G	100	38	38	138	150	60	38	185	-	-	-	-	100	38	38	146
	37	FRN0180G2S-2G	-	100	38	38	138	150	60	38	185	100	38	38	146	-	-	-	-
	45	FRN0215G2S-2G	FRN0180G2S-2G	100	60	38	167	150	100	60	225	150	60	38	180	150	60	38	180
	55	FRN0288G2S-2G	FRN0215G2S-2G	150	100	60	203	200	100	100	270	150	100	60	215	150	100	60	215
	75	-	FRN0288G2S-2G	250	150	100	282	-	-	-	-	-	-	-	-	250	150	100	288
		FRN0346G2S-2G	-	250	150	100	282	-	-	-	-	250	150	100	288	-	-	-	-
	90	-	FRN0346G2S-2G	325	150	100	334	-	-	-	-	-	-	-	-	325	150	150	346
	90	FRN0432G2S-2G	-	325	150	100	334	-	-	-	-	325	150	150	346	-	-	-	-
	110	-	FRN0432G2S-2G	400	200	150	410	-	-	-	-	-	-	-	-	500	250	150	432

(Note 1) "IV wire" is used for permissible temperature of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, " 600 V HIV insulated wire" is used for $75^{\circ} \mathrm{C}$ ($167{ }^{\circ} \mathrm{F}$), and " 600 V cross-linked polyethylene insulated wire" is used for $90^{\circ} \mathrm{C}\left(194{ }^{\circ} \mathrm{F}\right)$. These values are for aerial wiring.
*1) For compatible crimped terminals, please use model 38-6 by JST Mfg. Co., Ltd. or equivalent.
*2) For compatible crimped terminals, please use model 60-6 by JST Mfg. Co., Ltd. or equivalent.
*3) Not applicable
*4) Not applicable
*5) For compatible crimped terminals, please use model 22-S5 by JST Mfg. Co., Ltd. or equivalent.
*6) For compatible crimped terminals, please use model CB100-S8 by JST Mfg. Co., Ltd. or equivalent.
*7) Not applicable

Table 2.2-3 Wire size (main power supply input and inverter output) (cont.)
HHD specification: High, Heavy Duty applications HND specification: High, Normal Duty applications

		Inverter type		Recommended wire size (mm^{2})															
				Main power supply input [L1/R, L2/S, L3/T]								Inverter output [U, V, W]							
				With DC reactor (DCR)				Without DC reactor (DCR)				HHD specification				HND specification			
		HHD specification	HND specification	Permissible temperature (Note 1)			Curren t value (A)	Permissible temperature (Note 1)			Curren t value (A)	Permissible temperature (Note 1)			Curren t value (A)	Permissible temperature (Note 1)			Curren t value (A)
				$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	
	0.4	FRN0002G2ם-4G		2.0	2.0	2.0	0.85	2.0	2.0	2.0	1.7	2.0	2.0	2.0	1.5	-	-	-	-
	0.75	FRN0003G2ם-4G		2.0	2.0	2.0	1.6	2.0	2.0	2.0	3.1	2.0	2.0	2.0	2.5	-	-	-	-
	1.5	FRN0004G2ם-4G		2.0	2.0	2.0	3.0	2.0	2.0	2.0	5.9	2.0	2.0	2.0	4.0	-	-	-	-
	2.2	FRN0006G2ם-4G		2.0	2.0	2.0	4.5	2.0	2.0	2.0	8.2	2.0	2.0	2.0	5.5	-	-	-	-
	3.7	FRN0009G2ם-4G		2.0	2.0	2.0	7.5	2.0	2.0	2.0	13.0	2.0	2.0	2.0	9.0	-	-	-	-
	5.5	FRN0018G2ם-4G		2.0	2.0	2.0	10.6	3.5	2.0	2.0	17.3	2.0	2.0	2.0	13.5	-	-	-	-
	7.5	FRN0023G2ם-4G	FRN0018G2ם-4G	2.0	2.0	2.0	14.4	5.5	2.0	2.0	23.2	3.5	2.0	2.0	18.5	3.5	2.0	2.0	16.5
	11	FRN0031G2ם-4G	FRN0023G2ם-4G	8.0	2.0	2.0	21.1	8.0	3.5	3.5	33.0	5.5	3.5	2.0	24.5	5.5	2.0	2.0	23.0
	15	FRN0038G2ם-4G	FRN0031G2ם-4G	8 *3	3.5	2.0	28.8	14	5.5	5.5	43.8	8 *3	3.5	3.5	32.0	8 *3	3.5	2.0	30.5
	18.5	FRN0045G2ם-4G	FRN0038G2ם-4G	14	5.5	3.5	35.5	22	8 *3	5.5	52.3	14	5.5	3.5	39.0	14.0	5.5	3.5	37.0
	22	FRN0060G2ם-4G	FRN0045G2■-4G	14	5.5	5.5	42.2	22	14	8 *3	60.6	14	8 *3	5.5	45.0	14.0	8 *3	5.5	45.0
	30	-	FRN0060G2ם-4G	22	14	8 *3	57.0	38 *1	14	14	77.9	22	14	8.0	60.0	22	14	8 *3	60.0
		FRN0075G2ם-4G	-	22	14	8	57.0	38	14	14	77.9	22	14	8	60.0	22	14	8.0	60.0
	37	FRN0091G2ם-4G	FRN0075G2ם-4G	38	14	8	68.5	60	22	14	94.3	38	14	14	75.0	38	14	14	75.0
	45	FRN0112G2ם-4G	FRN0091G2ם-4G	38	22	14	83.2	60	38	22	114	38	22	14	91.0	38	22	14	91.0
	55	FRN0150G2ם-4G	FRN0112G2ם-4G	60	22	22	102	100	38	38	140	60	38	22	112	60	38	22	112
	75	-	FRN0150G2ם-4G	100	38	38	138	-	-	-	-	-	-	-	-	100	60	38	150
		FRN0180G2ם-4G	-	100	38	38	138	-	-	-	-	100	60	38	150	-	-	-	-
	90	FRN0216G2ם-4G	FRN0180G2ם-4G	100	60	38	164	-	-	-	-	150	60	38	180	150	60	38	180
	110	FRN0260G2ם-4G	FRN0216G2ם-4G	150	100	60	201	-	-	-	-	150	100	60	216	150	100	60	216
	132	-	FRN0260G2ם-4G	200	100	60	238	-	-	-	-	-	-	-	-	200	100	100	260
		FRN0325G2ם-4G	- -	200	100	60	238	-	-	-	-	200	100	100	260	-	-	-	-
	160	FRN0377G2ם-4G	FRN0325G2■-4G	250	150	100	286	-	-	-	-	325	150	100	325	325	150	100	325
	200	FRN0432G2ם-4G	FRN0377G2ם-4G	325	150	150	357	-	-	-	-	400	200	150	377	400	200	150	377
	220	FRN0520G2ם-4G	FRN0432G2ם-4G	400	200	150	390	-	-	-	-	500	250	150	432	500	250	150	432
	280	FRN0650G2ם-4G	FRN0520G2ם-4G	-	250	200	500	-	-	-	-	-	325	200	520	-	325	200	520
	315	FRN0740G2ם-4G	- -	-	325	250	559	-	-	-	-	-	325	250	585	-	-	-	-
	355	FRN0960G2ם-4G	FRN0650G2ם-4G	-	2x200	250	628	-	-	-	-	-	2x200	325	650	-	2x200	325	650
	400	FRN1040G2ם-4G	FRN0740G2ם-4G	-	2x200	325	705	-	-	-	-	-	2x250	325	740	-	2x250	325	740
	500	-	FRN0960G2ם-4G	-	2x325	2x200	881	-	-	-	-	-	-	-	-	-	2x325	2x250	960
	500	FRN1170G2ם-4G	-	-	2x325	2x200	881	-	-	-	-	-	2x325	2x250	960	-	-	-	-
	560	-	FRN1040G2ם-4G	-	3×250	2x250	990	-	-	-	-	-	-	-	-	-	3x250	2x250	1040
	630	FRN1386G2ם-4G	FRN1170G2ם-4G	-	3×325	2×325	1115	-	-	-	-	-	3×325	2x325	1170	-	3x325	2×325	1170
	710	-	FRN1386G2ם-4G	-	4×250	3×250	1256	-	-	-	-	-	-	-	-	-	4×325	3×325	1386

(Note 1) "IV wire" is used for permissible temperature of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, "600 V HIV insulated wire" is used for $75^{\circ} \mathrm{C}$ $\left(167^{\circ} \mathrm{F}\right)$, and " 600 V cross-linked polyethylene insulated wire" is used for $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. These values are for aerial wiring.
(Note 2) \square is replaced by a letter of the alphabet indicating the inverter type.
\qquad S (basic type), E (type with built-in EMC filter)
*1) For compatible crimped terminals, please use model 38-6 by JST Mfg. Co., Ltd. or equivalent.
*2) Not applicable
*3) For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*4) Not applicable
*5) Not applicable
*6) Not applicable
*7) Not applicable

Table 2.2-3 Wire size (for DC reactor connection, for braking resistor connection, and for inverter grounding) (cont.)

HHD specification: High, Heavy Duty applications HND specification: High, Normal Duty applications

		Inverter type		Recommended wire size (mm^{2})																		
				For DC reactor connection$[\mathrm{P} 1, \mathrm{P}(+)]$				For braking resistor connection [P(+), DB] (Note 2)								For inverter grounding [${ }^{-1} \mathrm{G}$]						
				HHD specification	HND specification																	
		HHD specification	HND specification					Permissible temperature (Note 1)			Current value (A)	Permissible temperature (Note 1)			Current value (A)	Permissible temperature (Note 1)			Current value (A)	Permissible temperature (Note 1)		
				$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$					
	0.4	FRN0003G2S-2G	-	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.2	-	-	-	-	2.0	2.0	2.0				
	0.75	FRN0005G2S-2G	-	2.0	2.0	2.0	4.0	2.0	2.0	2.0	1.6	-	-	-	-							
	1.5	FRN0008G2S-2G	-	2.0	2.0	2.0	7.5	2.0	2.0	2.0	3.6	-	-	-	-							
	2.2	FRN0011G2S-2G	-	2.0	2.0	2.0	11.0	2.0	2.0	2.0	3.5	-	-	-	-							
	3.7	FRN0018G2S-2G	-	3.5	2.0	2.0	18.4	2.0	2.0	2.0	4.1	-	-	-	-							
	5.5	FRN0032G2S-2G	-	5.5	3.5	2.0	25.9	2.0	2.0	2.0	6.4	-	-	-	-	3.5	3.5	3.5				
	7.5	FRN0046G2S-2G	FRN0032G2S-2G	14.0	5.5	3.5	35.3	2.0	2.0	2.0	6.1	2.0	2.0	2.0	6.4	5.5	5.5	5.5				
	11	FRN0059G2S-2G	FRN0046G2S-2G	22 *5	8.0	5.5	51.7	2.0	2.0	2.0	9.1	2.0	2.0	2.0	6.1	5.5	5.5	5.5				
	15	FRN0075G2S-2G	FRN0059G2S-2G	38 *1	14.0	14.0	70.6	2.0	2.0	2.0	11	2.0	2.0	2.0	9.1	8 *3	8 *3	8 *3				
	18.5	FRN0088G2S-2G	FRN0075G2S-2G	38 *1	22.0	14.0	87.0	2.0	2.0	2.0	14	2.0	2.0	2.0	11.0	8 *3	8 *3	8 *3				
	22	FRN0115G2S-2G	FRN0088G2S-2G	60 *2	22.0	22.0	103	2.0	2.0	2.0	15	2.0	2.0	2.0	14.0	14	14	14				
		-	FRN0115G2S-2G	100 * 6	38 *1	38 *1	140	-	-	-	-	2.0	2.0	2.0	15.0	14	14	14				
	30	FRN0146G2S-2G	-	100	38	38	140	3.5	2	2	19	-	-	-	-	14	14	14				
	37	-	FRN0146G2S-2G	100	60	38	170	-	-	-	-	3.5	2	2	19	22	22	22				
	37	FRN0180G2S-2G	-	100	60	38	170	5.5	3.5	2	25	-	-	-	-	22	22	22				
	45	FRN0215G2S-2G	FRN0180G2S-2G	150	100	60	205	8	3.5	2	30	5.5	3.5	2	25	22	22	22				
	55	FRN0288G2S-2G	FRN0215G2S-2G	200	100	60	249	14	5.5	3.5	37	8	3.5	2	30	22	22	22				
	75	-	FRN0288G2S-2G	325	150	150	345	-	-	-	-	14	5.5	3.5	37	22	22	22				
	75	FRN0346G2S-2G	FRN0288GS	325	150	150	346	14	8	5.5	48	-	-	-	-	22	22	22				
	90	-	FRN0346G2S-2G	400	200	150	409	-	-	-	-	14	8	5.5	48	22	22	22				
	90	FRN0432G2S-2G	-	400	200	150	410	22	14	8	61	-	-	-	-	22	22	22				
	110	-	FRN0432G2S-2G	-	250	200	502	-	-	-	-	22	14	8	61	38	38	38				

(Note 1) "IV wire" is used for permissible temperature of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, " 600 V HIV insulated wire" is used for $75^{\circ} \mathrm{C}$ ($167{ }^{\circ} \mathrm{F}$), and " 600 V cross-linked polyethylene insulated wire" is used for $90^{\circ} \mathrm{C}\left(194{ }^{\circ} \mathrm{F}\right)$. These values are for aerial wiring.
(Note 2) A braking unit (BU) (option) is necessary for FRN0346G2S-2G and above.
*1) For compatible crimped terminals, please use model 38-6 by JST Mfg. Co., Ltd. or equivalent.
*2) For compatible crimped terminals, please use model 60-6 by JST Mfg. Co., Ltd. or equivalent.
*3) For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*4) Not applicable
*5) For compatible crimped terminals, please use model 22-S5 by JST Mfg. Co., Ltd. or equivalent.
*6) For compatible crimped terminals, please use model CB100-S8 by JST Mfg. Co., Ltd. or equivalent.
*7) Not applicable

Table 2.2-3 Wire size (for DC reactor connection, for braking resistor connection, and for inverter grounding) (cont.)
(Note 1) "IV wire" is used for permissible temperature of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, " 600 V HIV insulated wire" is used for $75^{\circ} \mathrm{C}$ ($167{ }^{\circ} \mathrm{F}$), and " 600 V cross-linked polyethylene insulated wire" is used for $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. These values are for aerial wiring.
(Note 2) \square is replaced by a letter of the alphabet indicating the inverter type.
$\square \quad \square$ (basic type), E (type with built-in EMC filter)
(Note 3) A braking unit (BU) (option) is necessary for FRN0216G2■-4G and above.
*1) For compatible crimped terminals, please use model 38-6 by JST Mfg. Co., Ltd. or equivalent.
*2) Not applicable
*3) For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*4) Not applicable
*5) Not applicable
*6) Not applicable
*7) Not applicable

Panel internal temperature of $40^{\circ} \mathrm{C}\left(104{ }^{\circ} \mathrm{F}\right)$ or lower
Table 2.2-4 Wire size (main power supply input and inverter output)
HHD specification: High, Heavy Duty applications HND specification: High, Normal Duty applications

		Inverter type		Recommended wire size (mm^{2})															
				Main power supply input [L1/R, L2/S, L3/T]								Inverter output [U, V, W]							
				With DC reactor (DCR)				Without DC reactor (DCR)				HHD specification				HND specification			
		HHD specification	HND specification		ermissib erature 1)	(Note	Curren t value	$\text { \|\|tempe } \begin{array}{r} \mathrm{P} \end{array}$	ermissib rature (Note 1)	Curren t value	$\begin{array}{r} \mathrm{Pe} \\ \text { tempe } \end{array}$	$\begin{aligned} & \text { rmissib } \\ & \text { ature } \end{aligned}$	1)	Curren t value	$\begin{array}{r} \mathrm{Pe} \\ \text { tempe } \end{array}$	ermissi rature 1)	ble (Note	Curren t value
				$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	
	0.4	FRN0003G2S-2G	-	2.0	2.0	2.0	1.6	2.0	2.0	2.0	3.1	2.0	2.0	2.0	3.0	-	-	-	-
	0.75	FRN0005G2S-2G	-	2.0	2.0	2.0	3.2	2.0	2.0	2.0	5.3	2.0	2.0	2.0	5.0	-	-	-	-
	1.5	FRN0008G2S-2G	-	2.0	2.0	2.0	6.1	2.0	2.0	2.0	9.5	2.0	2.0	2.0	8.0	-	-	-	-
	2.2	FRN0011G2S-2G	-	2.0	2.0	2.0	8.9	2.0	2.0	2.0	13.2	2.0	2.0	2.0	11.0	-	-	-	-
	3.7	FRN0018G2S-2G	-	2.0	2.0	2.0	15.0	3.5	2.0	2.0	22.2	2.0	2.0	2.0	18.0	-	-	-	-
	5.5	FRN0032G2S-2G	-	2.0	2.0	2.0	21.1	5.5	3.5	2.0	31.5	3.5	2.0	2.0	27.0	-	-	-	-
	7.5	FRN0046G2S-2G	FRN0032G2S-2G	3.5	2.0	2.0	28.8	8.0	5.5	3.5	42.7	5.5	3.5	3.5	37.0	5.5	3.5	2.0	31.8
	11	FRN0059G2S-2G	FRN0046G2S-2G	8.0	5.5	3.5	42.2	14.0	8.0	5.5	60.7	8.0	5.5	5.5	49.0	8.0	5.5	3.5	46.2
	15	FRN0075G2S-2G	FRN0059G2S-2G	14.0	8.0	5.5	57.6	22.0	14.0	14.0	80.0	14.0	8 *3	5.5	63.0	14.0	8.0	5.5	59.4
	18.5	FRN0088G2S-2G	FRN0075G2S-2G	14.0	14.0	8 *3	71.0	38 *1	22.0	14.0	97.0	22.0	14.0	8 *3	76.0	22.0	14.0	8 *3	74.8
	22	FRN0115G2S-2G	FRN0088G2S-2G	22.0	14.0	14.0	84.4	38 *1	22.0	14.0	112.0	22.0	14.0	14.0	90.0	22.0	14.0	14.0	88.0
	30	-	FRN0115G2S-2G	38 *1	22.0	22.0	114	60 *2	38 *1	38 *1	151	-	-	-	-	38 *1	22.0	22.0	115.0
	30	FRN0146G2S-2G	-	38	22	22	114	60	38	38	151	38	22	22	119	-	-	-	-
	37	-	FRN0146G2S-2G	60	38	22	138	100	60	38	185	-	-	-	-	60	38	22	146
	37	FRN0180G2S-2G	-	60	38	22	138	100	60	38	185	60	38	22	146	-	-	-	-
	45	FRN0215G2S-2G	FRN0180G2S-2G	60	38	38	167	100	60	60	225	100	60	38	180	100	60	38	180
	55	FRN0288G2S-2G	FRN0215G2S-2G	100	60	38	203	150	100	60	270	100	60	60	215	100	60	60	215
	75	-	FRN0288G2S-2G	150	100	100	282	-	-	-	-	-	-	-	-	150	100	100	288
	75	FRN0346G2S-2G	-	150	100	100	282	-	-	-	-	150	100	100	288	-	-	-	-
	0	-	FRN0346G2S-2G	200	150	100	334	-	-	-	-	-	-	-	-	200	150	100	346
		FRN0432G2S-2G	-	200	150	100	334	-	-	-	-	200	150	100	346	-	-	-	-
	110	-	FRN0432G2S-2G	250	150	150	410	-	-	-	-	-	-	-	-	250	200	150	432

(Note 1) "IV wire" is used for permissible temperature of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, " 600 V HIV insulated wire" is used for $75^{\circ} \mathrm{C}$ ($167{ }^{\circ} \mathrm{F}$), and " 600 V cross-linked polyethylene insulated wire" is used for $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. These values are for aerial wiring.
*1) For compatible crimped terminals, please use model 38-6 by JST Mfg. Co., Ltd. or equivalent.
*2) For compatible crimped terminals, please use model 60-6 by JST Mfg. Co., Ltd. or equivalent.
*3) For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*4) Not applicable
*5) Not applicable
*6) Not applicable
*7) Not applicable

Table 2.2-4 Wire size (main power supply input and inverter output) (cont.)
HHD specification: High, Heavy Duty applications HND specification: High, Normal Duty applications

		Inverter type		Recommended wire size (mm^{2})															
				Main power supply input [L1/R, L2/S, L3/T]								Inverter output [U, V, W]							
				With DC reactor (DCR)				Without DC reactor (DCR)				HHD specification				HND specification			
		HHD specification	HND specification	Permissible temperature (Note 1)			Curren t value (A)	Permissible temperature (Note 1)			Curren t value (A)	Permissible temperature (Note 1)			Curren t value (A)	Permissible temperature (Note 1)			Curren t value (A)
				$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$		$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	
	0.4	FRN0002G2ם-4G		2.0	2.0	2.0	0.85	2.0	2.0	2.0	1.7	2.0	2.0	2.0	1.5	-	-	-	-
	0.75	FRN0003G2ם-4G		2.0	2.0	2.0	1.6	2.0	2.0	2.0	3.1	2.0	2.0	2.0	2.5	-	-	-	-
	1.5	FRN0004G2ם-4G		2.0	2.0	2.0	3.0	2.0	2.0	2.0	5.9	2.0	2.0	2.0	4.0	-	-	-	-
	2.2	FRN0006G2ם-4G		2.0	2.0	2.0	4.5	2.0	2.0	2.0	8.2	2.0	2.0	2.0	5.5	-	-	-	-
	3.7	FRN0009G2ם-4G		2.0	2.0	2.0	7.5	2.0	2.0	2.0	13.0	2.0	2.0	2.0	9.0	-	-	-	-
	5.5	FRN0018G2ם-4G		2.0	2.0	2.0	10.6	2.0	2.0	2.0	17.3	2.0	2.0	2.0	13.5	-	-	-	-
	7.5	FRN0023G2ם-4G	FRN0018G2ם-4G	2.0	2.0	2.0	14.4	3.5	2.0	2.0	23.2	2.0	2.0	2.0	18.5	2.0	2.0	2.0	16.5
	11	FRN0031G2ם-4G	FRN0023G2ם-4G	2.0	2.0	2.0	21.1	5.5	3.5	2.0	33.0	3.5	2.0	2.0	24.5	3.5	2.0	2.0	23.0
	15	FRN0038G2ם-4G	FRN0031G2ם-4G	3.5	2.0	2.0	28.8	8.0	5.5	3.5	43.8	5.5	3.5	2.0	32.0	5.5	3.5	2.0	30.5
	18.5	FRN0045G2ם-4G	FRN0038G2ם-4G	5.5	3.5	3.5	35.5	14.0	8 *3	5.5	52.3	5.5	3.5	3.5	39.0	5.5	3.5	3.5	37.0
	22	FRN0060G2ם-4G	FRN0045G2ם-4G	8 *3	5.5	3.5	42.2	14.0	8 *3	5.5	60.6	8 *3	5.5	3.5	45.0	8 *3	5.5	3.5	45.0
	30	-	FRN0060G2ם-4G	14	8 *3	5.5	57.0	22	14	14	77.9	-	-	-	-	14.0	8 *3	5.5	60.0
		FRN0075G2ם-4G	-	14	8	5.5	57.0	22	14	8	77.9	14	8	5.5	60.0	-	-	-	-
	37	FRN0091G2ם-4G	FRN0075G2ם-4G	14	14	8	68.5	38	14	14	94.3	22	14	8	75.0	22	14	8	75.0
	45	FRN0112G2ם-4G	FRN0091G2ם-4G	22	14	14	83.2	38	22	22	114	22	14	14	91.0	22	14	14	91.0
	55	FRN0150G2ם-4G	FRN0112G2ם-4G	38	22	14	102	60	38	22	140	38	22	14	112	38	22	14	112
	75	FRN0180G2ם-4G	FRN0150G2ם-4G	60	38	22	138	-	-	-	-	60	38	38	150	60	38	38	150
	90	FRN0216G2ם-4G	FRN0180G2ם-4G	60	38	38	164	-	-	-	-	100	60	38	180	100	60	38	180
	110	FRN0260G2ם-4G	FRN0216G2ם-4G	100	$\begin{gathered} 60 \\ 100 \end{gathered}$	$\begin{aligned} & 38 \\ & 60 \end{aligned}$	$\begin{aligned} & 201 \\ & 238 \\ & \hline \end{aligned}$	-	-	-	-	100	60	60	216	100	60	60	216
	132	FRN0325G2ם-4G	FRN0260G2ם-4G	100				-	-	-	-	150	100	60	260	150	100	60	260
	160	FRN0377G2ם-4G	FRN0325G2ם-4G	150	100	100	286	-	-	-	-	200	150	100	325	200	150	100	325
	200	FRN0432G2ם-4G	FRN0377G2ם-4G	200	150	100	357	-	-	-	-	200	150	100	377	200	150	100	377
	220	FRN0520G2ם-4G	FRN0432G2ם-4G	250	150	150	390	-	-	-	-	250	200	150	432	250	200	150	432
	280	FRN0650G2ם-4G	FRN0520G2ם-4G	325	200	150	500	-	-	-	-	325	250	200	520	325	250	200	520
	315	FRN0740G2ם-4G	-	400	250	200	559	-	-	-	-	400	250	200	585	-	-	-	-
	355	FRN0960G2ם-4G	FRN0650G2■-4G	500	325	250	628	-	-	-	-	500	325	250	650	500	325	250	650
	400	FRN1040G2ם-4G	FRN0740G2■-4G	-	$\begin{gathered} 2 \times 15 \\ 0 \\ \hline \end{gathered}$	250	705	-	-	-	-	-	2x200	325	740	-	$\begin{gathered} 2 \times 20 \\ 0 \\ \hline \end{gathered}$	325	740
	500	-	FRN0960G2ם-4G	-	$\begin{gathered} 2 \times 25 \\ 0 \end{gathered}$	$\begin{gathered} 2 \times 20 \\ 0 \end{gathered}$	881	-	-	-	-	-	-	-	-	-	$\begin{gathered} 2 \times 25 \\ 0 \end{gathered}$	$\begin{gathered} 2 \times 20 \\ 0 \end{gathered}$	960
	500	FRN1170G2ם-4G	-	-	$\begin{gathered} 2 \times 25 \\ 0 \\ \hline \end{gathered}$	$\begin{gathered} 2 \times 20 \\ 0 \\ \hline \end{gathered}$	881	-	-	-	-	-	2x250	2x200	960	-	-	-	-
	560	-	FRN1040G2■-4G	-	$\begin{gathered} 2 \times 25 \\ 0 \end{gathered}$	$\begin{gathered} 2 \times 20 \\ 0 \end{gathered}$	990	-	-	-	-	-	-	-	-	-	$\begin{gathered} 2 \times 32 \\ 5 \end{gathered}$	$\begin{array}{c\|} \hline 2 \times 25 \\ 0 \end{array}$	1040
	630	FRN1386G2ם-4G	FRN1170G2ם-4G	-	$\begin{gathered} 2 \times 32 \\ 5 \end{gathered}$	$\begin{gathered} 2 \times 25 \\ 0 \end{gathered}$	1115	-	-	-	-	-	3×250	2x250	1170	-	$\begin{gathered} 3 \times 25 \\ 0 \end{gathered}$	$\begin{gathered} 2 \times 25 \\ 0 \end{gathered}$	1170
	710	-	FRN1386G2■-4G	-	$\begin{gathered} 3 \times 25 \\ 0 \end{gathered}$	$\begin{gathered} 2 \times 32 \\ 5 \end{gathered}$	1256	-	-	-	-	-	-	-	-	-	$\begin{gathered} 3 \times 32 \\ 5 \end{gathered}$	$\begin{gathered} 2 \times 32 \\ 5 \end{gathered}$	1386

(Note 1) "IV wire" is used for permissible temperature of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, " 600 V HIV insulated wire" is used for $75^{\circ} \mathrm{C}$ ($167{ }^{\circ} \mathrm{F}$), and " 600 V cross-linked polyethylene insulated wire" is used for $90^{\circ} \mathrm{C}\left(194{ }^{\circ} \mathrm{F}\right)$. These values are for aerial wiring.
(Note 2) \square is replaced by a letter of the alphabet indicating the inverter type.
\square S (basic type), E (type with built-in EMC filter)
*1) Not applicable
*2) Not applicable
*3) For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*4) Not applicable
*5) Not applicable
*6) Not applicable
*7) Not applicable

Table 2.2-4 Wire size (for DC reactor connection, for braking resistor connection, and for inverter grounding) (cont.)

HHD specification: High, Heavy Duty applications HND specification: High, Normal Duty applications

		Inverter type		Recommended wire size (mm^{2})																		
				For DC reactor connection$[\mathrm{P} 1, \mathrm{P}(+)]$				For braking resistor connection [P(+), DB] (Note 2)								For inverter grounding [者G]						
				HHD specification	HND specification																	
		HHD specification	HND specification					Permissible temperature (Note 1)			Current value (A)	Permissible temperature (Note 1)			Current value (A)	Permissible temperature (Note 1)			Current value (A)	Permissible temperature (Note 1)		
				$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$	$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$	$60^{\circ} \mathrm{C}$		$75^{\circ} \mathrm{C}$	$90^{\circ} \mathrm{C}$					
	0.4	FRN0003G2S-2G	-	2.0	2.0	2.0	2.0	2.0	2.0	2.0	1.2	-	-	-	-	2.0	2.0	2.0				
	0.75	FRN0005G2S-2G	-	2.0	2.0	2.0	4.0	2.0	2.0	2.0	1.6	-	-	-	-							
	1.5	FRN0008G2S-2G	-	2.0	2.0	2.0	7.5	2.0	2.0	2.0	3.6	-	-	-	-							
	2.2	FRN0011G2S-2G	-	2.0	2.0	2.0	11.0	2.0	2.0	2.0	3.5	-	-	-	-							
	3.7	FRN0018G2S-2G	-	2.0	2.0	2.0	18.4	2.0	2.0	2.0	4.1	-	-	-	-							
	5.5	FRN0032G2S-2G	-	3.5	2.0	2.0	25.9	2.0	2.0	2.0	6.4	-	-	-	-	3.5	3.5	3.5				
	7.5	FRN0046G2S-2G	FRN0032G2S-2G	5.5	3.5	3.5	35.3	2.0	2.0	2.0	6.1	2.0	2.0	2.0	6.4	5.5	5.5	5.5				
	11	FRN0059G2S-2G	FRN0046G2S-2G	14.0	5.5	5.5	51.7	2.0	2.0	2.0	9.1	2.0	2.0	2.0	6.1	5.5	5.5	5.5				
	15	FRN0075G2S-2G	FRN0059G2S-2G	14.0	14.0	8 *3	70.6	2.0	2.0	2.0	11	2.0	2.0	2.0	9.1	8 *3	8 *3	8 *3				
	18.5	FRN0088G2S-2G	FRN0075G2S-2G	22.0	14.0	14.0	87.0	2.0	2.0	2.0	14	2.0	2.0	2.0	11.0	8 *3	8 *3	8 *3				
	22	FRN0115G2S-2G	FRN0088G2S-2G	38 *1	22.0	14.0	103	2.0	2.0	2.0	15	2.0	2.0	2.0	14.0	14	14	14				
	30	-	FRN0115G2S-2G	60 *2	38 *1	22.0	140	-	-	-	-	2.0	2.0	2.0	15.0	14	14	14				
	30	FRN0146G2S-2G	-	60	38	22	140	2	2	2	19	-	-	-	-	14	14	14				
	37	FRN0180G2S-2G	FRN0146G2S-2G	60	38	38	169	3.5	2	2	25	2	2	2	19	22	22	22				
	45	FRN0215G2S-2G	FRN0180G2S-2G	100	60	38	205	3.5	3.5	2	30	3.5	2	2	25	22	22	22				
	55	FRN0288G2S-2G	FRN0215G2S-2G	150	100	60	249	5.5	3.5	3.5	37	3.5	3.5	2	30	22	22	22				
	75	-	FRN0288G2S-2G	200	150	100	345	-	-	-	-	5.5	3.5	3.5	37	22	22	22				
	75	FRN0346G2S-2G	-	200	150	100	346	8	5.5	5.5	48	-	-	-	-	22	22	22				
	90	-	FRN0346G2S-2G	250	150	150	409	-	-	-	-	8	5.5	5.5	48	22	22	22				
	90	FRN0432G2S-2G	-	250	150	150	410	14	8	5.5	61	-	-	-	-	22	22	22				
	110	-	FRN0432G2S-2G	325	200	150	502	-	-	-	-	14	8	5.5	61	38	38	38				

(Note 1) "IV wire" is used for permissible temperature of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, " 600 V HIV insulated wire" is used for $75^{\circ} \mathrm{C}$ ($167{ }^{\circ} \mathrm{F}$), and " 600 V cross-linked polyethylene insulated wire" is used for $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. These values are for aerial wiring.
(Note 2) A braking unit (BU) (option) is necessary for FRN0346G2S-2G and above.
*1) For compatible crimped terminals, please use model 38-6 by JST Mfg. Co., Ltd. or equivalent.
*2) For compatible crimped terminals, please use model 60-6 by JST Mfg. Co., Ltd. or equivalent.
*3) For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*4) Not applicable
*5) Not applicable
*6) Not applicable
*7) Not applicable

Table 2.2-4 Wire size (for DC reactor connection, for braking resistor connection, and for inverter grounding) (cont.)
(Note 1) "IV wire" is used for permissible temperature of $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$, " 600 V HIV insulated wire" is used for $75^{\circ} \mathrm{C}$ ($167^{\circ} \mathrm{F}$), and " 600 V cross-linked polyethylene insulated wire" is used for $90^{\circ} \mathrm{C}\left(194^{\circ} \mathrm{F}\right)$. These values are for aerial wiring.
(Note 2) \square is replaced by a letter of the alphabet indicating the inverter type.
\square S (basic type), E (type with built-in EMC filter)
(Note 3) A braking unit (BU) (option) is necessary for FRN0216G2■-4G and above.
*1) Not applicable
*2) Not applicable
*3) For compatible crimped terminals, please use model 8-L6 by JST Mfg. Co., Ltd. or equivalent.
*4) Not applicable
*5) Not applicable
*6) Not applicable
*7) Not applicable

[4] Terminal function description (main circuit terminals)

Classifi cation	Terminal symbol	Terminal command	Detailed specifications
	L1/R, L2/S, L3/T	Main power supply input	Connect a three-phase power supply.
	U, V, W	Inverter output	Terminals to connect three-phase motors.
	$\mathrm{P}(+), \mathrm{P} 1$	For DC reactor connection	Connect a DC reactor (DCR) (option). Be sure to connect if using motors with output of 75 kW or higher.
	$\mathrm{P}(+), \mathrm{N}(-)$	For direct current bus connection	Used for connection to direct current intermediate circuits of other inverters and PWM converters.
	$P(+)$, DB	For braking resistor connection	Connect braking resistor (DB) (option) terminal (+) and DB (wiring length: 5 meters (16.4 ft) or shorter).
	感G	For inverter chassis (case) grounding	This is the grounding terminal for the inverter chassis (casing) and motor. Ground to the earth at one end, and connect to the motor grounding terminal at the other end. Two of these terminals have been provided.
	R0, T0	Control power auxiliary input	If wishing to retain the integrated alarm signal issued if the protective function is triggered even when the inverter main power supply is cut off, or to constantly display the keypad, connect this terminal to the power supply (FRN0008G2S-2G or higher / FRN0004G2■4G or higher).

Wire in the following order.
(1) Inverter grounding terminal (${ }^{(1)} \mathrm{G}$)
(2) Inverter output terminals ($\mathrm{U}, \mathrm{V}, \mathrm{W}$), motor grounding terminal ($\boldsymbol{(\exists)}$)
(3) Direct current reactor connection terminals (P1, P(+))*
(4) Braking resistor connection terminals ($\mathrm{P}(+)$, DB$)^{*}$
(5) Direct current bus connection terminals ($\mathrm{P}(+), \mathrm{N}(-))^{*}$
(6) Main power supply input terminals (L1/R, L2/S, L3/T)
(7) Control power auxiliary input terminals (R0, T0) * (FRN0008G2S-2G / FRN0004G2S-4G or higher)
*: Connect if necessary.

(1) Inverter grounding terminal $\boldsymbol{\theta} \mathbf{\theta}$

Be sure to ground grounding terminals to ensure safety, and as a noise countermeasure. In order to prevent accidents such as an electric shock or fire, users are obligated by the Electrical Equipment Technical Standards to carry out grounding work for the metal frames of electrical equipment.

Ground the inverter in compliance with the national or local electric code.
(2) Inverter output terminals $\mathbf{U}, \mathrm{V}, \mathrm{W}$, motor grounding terminal ©

1) Connect the three-phase motor terminals U, V, and W while matching the phase sequence.
2) Connect the ground line of the outputs ($\mathrm{U}, \mathrm{V}, \mathrm{W}$) to the ground terminal ($\boldsymbol{B}^{\boldsymbol{\theta}} \mathrm{G}$).

Note
If there are multiple inverter and motor combinations, do not use multi-core cables for the purpose of bundling and storing wiring for multiple combinations.

(3) Direct current reactor connection terminals $\mathrm{P} 1, \mathrm{P}(+)$

Connect a DC reactor (DCR).

1) Remove the shorting bar from terminals $P 1$ and $P(+)$. (A shorting bar is not connected to FRN0346G2S-2G / FRN0180G2 \square-4G and higher)
2) Connect the $D C$ reactor $P 1$ and $P(+)$ terminals.

- Keep the wiring length below 10 meters (32.8 ft).
- Do not remove the shorting bar if the direct current reactor is not used.
- Be sure to connect if using motors with output of 75 kW or higher.
- Direct current reactors do not have to be connected when connecting PWM converters.

\triangle WARNING

- Be sure to connect an optional DC reactor when the capacity of the power supply transformer exceeds 500 kVA , and is at least 10 times the inverter rated capacity.
- Be sure to connect if using motors with output of 75 kW or higher.

Failure to observe this could result in fire.
(4) Braking resistor connection terminals $\mathrm{P}(+)$, DB

Table 2.2-5

Type of Inverter		Braking transistor	Built-in braking resistor	Additional connected devices (option)	Work procedure
$\begin{gathered} \text { FRN } \square \square \square \square G 2 S-2 G \\ \text { (Capacity kW) } \end{gathered}$	$\begin{gathered} \text { FRN } \square \square \square \square \mathrm{G} 2 \square-4 \mathrm{G} \\ \text { (Capacity kW) } \end{gathered}$				
$\begin{gathered} 0003 \text { to } 0046 \\ (0.4 \text { to } 7.5) \end{gathered}$	$\begin{gathered} 0002 \text { to } 0023 \\ (0.4 \text { to } 7.5) \end{gathered}$	Built-in	Built-in	Breaking resistor (higher capacity)	Perform 1), 2), 3), and 4).
$\begin{aligned} & 0059 \text { to } 0288 \\ & (11 \text { to } 55) \end{aligned}$	$\begin{gathered} 0031 \text { to } 0180 \\ (11 \text { to } 75) \end{gathered}$	Built-in	Not equipped	Breaking resistor	Perform 2), 3), and 4).

If there is insufficient capacity with the built-in braking resistor in models FRN0046G2S-2G/FRN0023G2 \square-4G and lower (for frequent operation or high inertial load operation, etc.), it will be necessary to use an optional braking resistor (standard type or 10% ED type) to increase braking ability. If doing so, it will be necessary to remove the built-in braking resistor. Use the following procedure to remove the built-in braking resistor.

1) On FRN0003G2S-2G / FRN0002G2 $\square-4 G$ to FRN0018G2S-2G / FRN0009G2 $\square-4 G$ inverters, disconnect the built-in braking resistor wiring connected to terminals $P(+)$ and DB. On FRN0032G2S-2G / FRN0018G2 $\square-$ 4G and FRN0046G2S-2G / FRN0023G2 $\square-4 G$ inverters, disconnect the built-in braking resistor wiring connected to terminal DB and the internal relay terminal (see figure below). Insulate the ends of the disconnected wires with insulating tape, etc.

Fig. 2.2-9
2) Connect braking resistor terminals $P(+)$ and $D B$.

The internal relay terminal is not used on FRN0032G2S-2G / FRN0018G2■-4G and FRN0046G2S-2G / FRN0023G2 \square-4G inverters.
3) Mount the inverter main body and the braking resistor such that the wiring length will be less than 5 m (16ft) and route the two wires twisted or in contact with each other (parallel).
4) Change the DB resistor electronic thermal setting.

\triangle WARNING
When connecting a DC braking resistor (DBR), never connect it to terminals other than terminals $\mathrm{P}(+$) and DB.

Failure to observe this could result in fire.
(5) Direct current bus connection terminals $\mathrm{P}(+), \mathrm{N}(-)$

Table 2.2-6

Type of Inverter		Braking transistor	Built-in braking resistor	Additional connected devices (option)	Connected device, terminal
FRN $\square \square \square \square G 2 S-2 G$ (Capacity kW)	FRN $\square \square \square \square$ G2 $\square-4 G$ (Capacity kW)				
$\begin{gathered} 0346 \text { to } 0432 \\ (75 \text { to } 90) \end{gathered}$	$\begin{gathered} 0216 \text { to } 1386 \\ (90 \text { to } 630) \end{gathered}$	Not equipped	Not equipped	Braking unit	Between inverter and braking unit: $\mathrm{P}(+), \mathrm{N}(-)$
				Breaking resistor	Between braking unit and braking resistor: $\mathrm{P}(+)$, DB

1) Braking unit/braking resistor (option connection

A braking unit and braking resistor are necessary on FRN0346G2S-2G or higher (200V series) / FRN0216G2 $\square-4 \mathrm{G}$ or higher (400V series) inverters.
Connect braking unit terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$ to inverter terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$. Wire so that the wiring length is no longer than $5 \mathrm{~m}(16 \mathrm{ft})$, and either twist or wire the two wires closely together (in parallel).
Connect braking resistor terminals $\mathrm{P}(+)$ and DB to braking unit terminals $\mathrm{P}(+)$ and DB . Wire so that the wiring length is no longer than 10 m (33 ft), and either twist or wire the two wires closely together (in parallel).
Refer to the braking unit instruction manual for details on other wiring, etc.
2) Connection of other devices

The direct current intermediate circuit of other inverters and PWM converters can be connected.
Note
Contact Fuji Electric if using terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$ for DC bus bar connection.
(6) Main power supply input terminals L1/R, L2/S, and L3/T (three-phase input)

Connect a three-phase power supply.

1) To ensure safety, confirm that the molded case circuit breaker (MCCB) or magnetic contactor (MC) is OFF prior to wiring the main power supply.
2) Connect the power lines ($\mathrm{L} 1 / \mathrm{R}, \mathrm{L} 2 / \mathrm{S}, \mathrm{L} 3 / \mathrm{T}$) via a molded case circuit breaker (MCCB) or earth leakage circuit breaker (ELCB)*, and if necessary, via a magnetic contactor (MC). There is no need to align the power line and inverter phase sequence.
*With overcurrent protection function
Tip In the case of emergencies such as when the inverter protective function is activated, it is recommended that the inverter be disconnected from the power supply, and that an MC which allows manual disconnection of the power supply be installed to prevent magnification of failure or accident.

(7) Control power auxiliary input terminals R0, T0 (FRN0008G2S-2G / FRN0004G2■-4G or higher)

The inverter can be run even without inputting the power supply to the control power auxiliary input terminals. However, control power will also be lost by cutting off the inverter main power supply, and therefore all inverter output signals will stop, and the keypad will no longer display.
If wishing to retain the integrated alarm signal issued if the protective function is activated even when the inverter main power supply is cut off, or to constantly display the keypad, connect the control power auxiliary input terminals to the power supply. If the inverter is equipped with a magnetic contactor (MC) at the input side, wire from the magnetic contactor (MC) input side (primary side).

Terminal rating: 200 to $240 \mathrm{VAC}, 50 / 60 \mathrm{~Hz}$, maximum current 1.0 A (FRN0115G2S-2G or lower)
200 to 230 VAC, $50 / 60 \mathrm{~Hz}$, maximum current 1.0 A (FRN0146G2S-2G or higher)
380 to 480 VAC, $50 / 60 \mathrm{~Hz}$, maximum current 0.5 A (400 V series))
Note
When using the earth leakage breaker, connect terminals R0, T0 to the output side of the earth leakage breaker. When connections are made to the input side of the earth leakage breaker, the earth leakage breaker will malfunction because the inverter input is three-phase and the terminals RO, T0 are single phase. When connecting to terminals R0, T0 to the input side of the earth leakage breaker, make sure that the connection is done through an insulating transformer or, alternatively, through the auxiliary B contacts of the magnetic contactor as shown in the figure below.

Fig. 2.2-10 Earth leakage circuit breaker connection
When connecting with the PWM converter, do not connect power source directly to the inverter's auxiliary power input terminals (RO, TO) for control circuit. Insert an insulating transformer or the auxiliary B contacts of a magnetic contactor on the power supply side.
Refer to the PWM converter instruction manual for PWM converter side connection examples.
There are cases where the power supply is connected directly to RO and TO on older models, and caution is therefore required particularly when replacing inverters.

Fig. 2.2-11 Example of connection of RO, TO terminals in combination with PWM converter

2.2.6 Control circuit terminals (common to all models)

[1] Screw specifications and recommended wire size (control circuit terminals)

The specifications for the screws used in the control circuit wiring and the wire sizes are shown below.
The control circuit terminal block is common, regardless of the inverter capacity.
The control terminal block for the conventional model MEGA (GS1) is available as an option to allow round crimp terminals to be connected.
Refer to Chapter 11 "11.21 Control Terminal Block (G1S Compatible) OPC-G1-TB1" for details.
Table 2.2-7 Screw specifications and recommended wire sizes

*1: Recommended rod terminal: Phoenix Contact Refer to Table 2.2-8 below for details.
*2: Defined according to IEC/EN 60947-1.

Table 2.2-8 Recommended rod terminals

Wire size	Type	
	With insulating collar	Without insulating collar
$0.34 \mathrm{~mm}^{2}$ (AWG22)	Al 0.34-6 TQ	A 0.34-7
$0.5 \mathrm{~mm}^{2}$ (AWG20)	Al 0.5-6 WH	A 0.5-6
$0.75 \mathrm{~mm}^{2}$ (AWG18)	Al 0.75-6 GY	A 0.75-6
$1.25 \mathrm{~mm}^{2}$ (AWG16)	Al 1.5-6-BK	A 1.5-7

[2] Terminal layout diagram (control circuit terminals)

Fig. 2.2-12

```
                        \WARNING^
The following terminals will have high voltage when power is ON.
Control terminals: AUX-contact ([30A], [30B], [30C], [Y5A], [Y5C])
Insulation level
Contact output - control circuit : Reinforced insulation (overvoltage category II, pollution degree 2)
Failure to observe this could result in electric shock.
```


[3] Control circuit wiring precautions

FRN0346GS-2G, FRN0432G2S-2G, FRN0325G2 $\square-4 G$ to FRN1386G2 $\square-4 G$

(1) Run the wiring along the plate on the left side of the inverter as shown in Fig. 2.2-13.
(2) Secure the wiring to wire holders with cable ties (INSULOK, etc.)

Use cable ties with width of no greater than $3.8 \mathrm{~mm}(0.15 \mathrm{in})$, and thickness of no greater than $1.5 \mathrm{~mm}(0.06$ in).

Fig. 2.2-13 Control circuit wiring route and securing locations

Note - The control circuit terminal lines should be routed as far as possible from the main circuit routing.

 Malfunction may occur due to noise.- To prevent direct contact with the main circuit live sections (such as the main circuit terminal block), route the control circuit wiring inside the inverter as bundles using cable ties.

\triangle WARNING \wedge

Control signal lines generally do not have a reinforced insulation coating, and therefore if control signal lines come into contact with live parts of the main circuit, the insulation coating may be damaged for some reason. In such a case, there is a danger that high voltage from the main circuit will be applied to the control signal lines, and therefore care should be taken to ensure that they do not come into contact with live parts of the main circuit.
Failure to observe this could result in an accident or electric shock.

$\triangle C A U T I O N$

Noise is produced by the inverter, motors, and wiring.
Take care to prevent the malfunction of peripheral sensors and devices.
Failure to observe this could result in an accident.

[4] Description of terminal functions (control circuit terminals)

A description of control circuit terminal functions is shown in Table 2.2-9. The control circuit terminal connection method differs based on function code settings to suit the purpose for which the inverter is used.
Wire appropriately to minimize the effect of noise from main circuit wiring.

Analog input terminals
Table 2.2-9 Description of control circuit terminal functions

	Terminal symbol	Terminal command	Function description
	[13]	Power supply for variable resistor	The terminal is used for the power supply (+10 VDC) for the external frequency setter (variable resistor: 1 to $5 \mathrm{k} \Omega$). Connect variable resistors larger than $1 / 2 \mathrm{~W}$.
	[12]	Analog setting voltage input	(1) Frequency is set up according to the external analog voltage input command value. - 0 to $\pm 10 \mathrm{VDC} / 0$ to ± 100 (\%) (normal operation), - +10 to $0 \mathrm{VDC} / 0$ to $100(\%)$ (inverse operation) (2) Other than frequency settings, this terminal can be assigned to PID commands, PID control feedback signals, frequency auxiliary settings, ratio settings, torque limit value settings, torque command values *1, *2/torque current command values *1, *2, speed limit values, and analog input monitors with analog input. (3) Hardware specifications * Input impedance: 22 ($k \Omega$) * Up to ± 15 VDC can be input. However, input exceeding ± 10 VDC will be recognized as ± 10 VDC. * To input bipolar (0 to $\pm 10 \mathrm{VDC}$) analog setting voltage at terminal [12], set function code C35 to "0".

*1 These are valid specifications and functions when performing speed sensorless vector control.
*2 These are valid specifications and functions when performing vector control with speed sensor. A PG interface card (option) is required.

Table 2.2-9 Description of control circuit terminal functions (cont.)

	Terminal symbol	Terminal command	Function description
	[C1]	Analog setting current input (C1 function)	(1) Frequency is set up according to the external analog current input command value. . 4 to $20 \mathrm{~mA} \mathrm{DC/0}$ to $100(\%), 0$ to $20 \mathrm{mADC/0}$ to 100(\%) (normal operation) - 20 to $4 \mathrm{~mA} \mathrm{DC/0}$ to 100(\%), 20 to $0 \mathrm{~mA} \mathrm{DC/0} \mathrm{to} 100$ (\%) (inverse operation) (2) Other than frequency settings, this terminal can be assigned to PID commands, PID control feedback signals, frequency auxiliary settings, ratio settings, torque limit value settings, torque command values *1, *2/torque current command values *1, *2, speed limit values, and analog input monitors with analog input. (3) Hardware specifications Input impedance: 250 (Ω) * Up to 30 mA DC can be input. However, input exceeding 20 mA DC will be recognized as 20 mADC .
		Analog setting voltage input (V3 function)	(1) Frequency is set up according to the external analog voltage input command value. - 0 to $\pm 10 \mathrm{VDC} / 0$ to ± 100 (\%) (normal operation) - 10 to $\pm 0 \mathrm{VDC} / 0$ to ± 100 (\%) (inverse operation) (2) Other than frequency settings, this terminal can be assigned to PID commands, PID control feedback signals, frequency auxiliary settings, ratio settings, torque limit value settings, torque command values *1, *2/torque current command values *1, *2, speed limit values, and analog input monitors with analog input. (3) Hardware specifications Input impedance: 22 ($\mathrm{k} \Omega$) * Up to ± 15 VDC can be input. However, input exceeding ± 10 VDC will be recognized as ± 10 VDC. * To input bipolar (0 to $\pm 10 \mathrm{VDC}$) analog setting voltage at terminal [V3], set function code C78 to "0".
	[V2]	Analog setting voltage input (V2 function)	(1) Frequency is set up according to the external analog voltage input command value. - 0 to $\pm 10 \mathrm{VDC} / 0$ to ± 100 (\%) (normal operation) - 10 to $\pm 0 \mathrm{VDC} / 0$ to ± 100 (\%) (inverse operation) (2) Other than frequency settings, this terminal can be assigned to PID commands, PID control feedback signals, frequency auxiliary settings, ratio settings, torque limit value settings, torque command values *1, *2/torque current command values *1, *2, speed limit values, and analog input monitors with analog input. (3) Hardware specifications Input impedance: 22 (k Ω) * Up to ± 15 VDC can be input. However, input exceeding ± 10 VDC will be recognized as ± 10 VDC. * To input bipolar (0 to $\pm 10 \mathrm{VDC}$) analog setting voltage at terminal [V2], set function code C45 to "0".

*1 These are valid specifications and functions when performing speed sensorless vector control.
*2 These are valid specifications and functions when performing vector control with speed sensor. A PG interface card (option) is required.

Table 2.2-9 Description of control circuit terminal functions (cont.)

Fig. 2.2-15 Connection diagram for shielded wire
Fig. 2.2-16 Example of noise countermeasures

Digital input terminals

Table 2.2-10 Description of control circuit terminal functions

	[PLC]	Programmable controller signal power supply		Connect the output signal power supply for the programmable controller. (Rated voltage +24 VDC (power supply voltage fluctuation range: 20 to +27 VDC), maximum 100 mA) The terminal can also be used as the power supply for loads connected to transistor outputs. Refer to the "Transistor output" section for details.

Table 2.2-10 Description of control circuit terminal functions (cont.)

Fig. 2.2-18 Example of circuit configuration using relay contacts controller

An example of a circuit configuration using a programmable controller is shown in Fig. 2.2-19. Circuit (a) in the diagram shows the circuit configuration when the switch (SW1) is at the SINK side, and circuit (b) shows the circuit configuration when the switch is at the SOURCE side.
In circuit (a), terminals [X1] to [X9], [FWD], and [REV] can be turned ON/OFF by shorting/opening the open collector transistor output of the programmable controller using an external power supply. Follow the instructions below when using this type of circuit.

- Connect the + side of an external power supply insulated from the programmable controller power supply to the [PLC] terminal.
- Do not connect the inverter [CM] terminal and the common terminal of the programmable controller.

(a) If switch at SINK side

(b) If switch at SOURCE side

Fig. 2.2-19 Example of circuit configuration using programmable controller
(1) Refer to "2.2.7 Switching switches" for details on switches.

Analog output, pulse output, transistor output, contact output terminals

Table 2.2-12 Description of control circuit terminal functions

(\%	Terminal symbol	Terminal command	Function description
	[FM1] [FM2]	Analog monitor (FMA function)	These terminals output analog DC voltage of 0 to $\pm 10 \mathrm{VDC}$, and analog DC current of 4 to 20 mA DC or 0 to 20 mA DC monitor signals. The [FM1] output form (VO1/IO1) can be switched using SW4 on the PCB and function code F29. The signal content is selected from the following by setting function code F31 data. The [FM2] output form (VO2/IO2) can be switched using SW6 on the PCB and function code F32. The signal content is selected from the following by setting function code F61 data. - Output frequency - Output current - Output voltage - Output torque - Load factor - Power consumption - PID feedback value - Speed (PG feedback value) - DC intermediate circuit voltage - Universal AO - Motor output - Analog output test - PID command value - PID output - Position error in master-follower operation * Allowable impedance for connection: Min. $5 \mathrm{k} \Omega$ (with output of 0 to $\pm 10 \mathrm{VDC}$) (up to two analog voltmeters (0 to 10 VDC , input impedance $10 \mathrm{k} \Omega$) can be connected.) * Allowable impedance for connection: Max. 500Ω (with output of 4 to 20 mADC) * Gain adjustable range: 0 to 300\%
	[11]	Analog common	This is a common terminal for analog input/output signals. The terminal is insulated from terminals [CM], [CMY].
	[FMP]	Pulse monitor (FMP function)	This terminal outputs a pulse signal. The signal content is selected in the same way as that as for the FM1/2 function by setting function code F35 data. * Allowable impedance for connection: Min. $5 \mathrm{k} \Omega$ (up to two analog voltmeters (0 to 10 VDC, input impedance $10 \mathrm{k} \Omega$) can be connected.) Set F34 to between 1 and 300% if using as average voltage output. * Pulse duty: Approx. 50\%, pulse rate: 25 to $6000 \mathrm{p} / \mathrm{s}$ (at full scale) <Voltage waveform specification>
			- Pulse output waveform - FMP output circuit
			Fig. 2.2-20 Fig. 2.2-21
	[CM]	Digital common	This is a common terminal for digital input signals and terminal [FMP]. The terminal is insulated from terminals [11], [CMY]. This is the same terminal as terminal [CM] for digital input.

Table 2.2-12 Description of control circuit terminal functions (cont.)

	Terminal symbol	Terminal command	Function description
	[Y1] [Y2] [Y3]	Transistor output 1 Transistor output 2 Transistor output 3	(1) Various signals (running signal, frequency reached signal, overload forecast signal, etc.) set up by function code E20 to E24 can be output. Refer to "Chapter 5 FUNCTION CODES" for details. (2) The operating mode between transistor output terminals [Y1] to [Y4] and terminal [CMY] can be switched to "ON when signal output (active ON)" or "OFF when signal output (active OFF)". <Transistor output circuit specifications> Table 2.2-13
	[Y4]	Transistor output 4	Fig. 2.2-22 Transistor output circuitItem Maximum Operating voltage ON level 2 V Max. load current when ON 50 mA Leakage current when OFF 0.1 mA An example of a circuit configuration connected to a programmable controller is shown in Fig. 2.2-23. Note - Connect a surge absorbing diode to both ends of the excitation coil when connecting control relays. - If a power supply is required for the circuit to be connected, terminal PLC can be used as the power supply terminal. In this case, terminal [CMY] must be shorted to terminal [CM].
	[CMY]	Transistor output common	This is a common terminal for transistor output signals. The terminal is insulated from terminals [CM], [11].

Table 2.2-12 Description of control circuit terminal functions (cont.)

	Terminal symbol	Terminal command	Function description
	Tip ■ If connecting a programmable controller to terminals [Y1] to [Y4] An example of a circuit configuration in which inverter transistor output is connected to a programmable controller is shown in Fig. 2.2-23 below. Circuit (a) in shows the programmable controller input circuit as the sink input, and circuit (b) shows it as the source input. (a) Connection drawing of connection with sink input type programmable controller (b) Connection drawing of connection with source input type programmable controller Fig. 2.2-23 Example of circuit configuration for connection with programmable controller		
		Generalpurpose relay output	(1) The same signals as those of terminals [Y1] to [Y4] can be selected and output as multipurpose relay outputs. Contact capacity: 250 VAC $0.3 \mathrm{~A} \cos \varphi=0.3$, $48 \mathrm{VDC} 0.5 \mathrm{~A}$ (2) It is possible to switch between a "short circuit between terminals [Y5A] to [Y5C] when an ON signal is output (excitation: active ON)" or an "open circuit between terminals [Y5A] and [Y5C] when an ON signal is output (non-excitation: active OFF)".
管	$\begin{aligned} & \text { [30A] } \\ & \text { [30B] } \\ & {[30 \mathrm{C}]} \end{aligned}$		(1) When the inverter stops with an alarm, an integrated alarm is output at the relay contact (1C). Contact capacity: 250 VAC $0.3 \mathrm{~A} \cos \varphi=0.3$, $48 \mathrm{VDC} 0.5 \mathrm{~A}$ (2) The same signals as those of terminals [Y1] to [Y4] can be selected and output. (3) It is possible to switch between a "short circuit between terminals [30A] and [30C] when an ON signal is output (excitation: active ON)" or an "open circuit between terminals [30A] and [30C] when an ON signal is output (non-excitation: active OFF)".
	$\begin{aligned} & \text { [DX+] } \\ & \text { [DX-] } \\ & \text { [SD] } \end{aligned}$	Via RS-485 communicatio ns link port 2	This is an input/output terminal used to connect a computer or programmable controller, etc. by RS-485 communication. (Refer to "2.2.7 Switching switches" for details on terminating resistance). With a multi-drop (cross-wire) connection, use the recommended rod terminal. (Refer to "2.2.6 [1] Screw specifications and recommended wire size (control circuit terminals)" for details on recommended rod terminals).

RS-485 communication connector

Table 2.2-14 Description of control circuit terminal functions

	Terminal symbol	Terminal command	Function description
	RJ-45 connector for keypad connectio n	RS-485 communicatio n port 1 (for keypad connection)	(1) This is used as a connector for connecting the keypad. The keypad power is supplied from the inverter via an extension cable for remote operation. If using an extension cable, turn ON the SW3 terminating resistor. (2) This is used to connect a computer or programmable controller, etc. by RS-485 communication after disconnecting the keypad. (Refer to "2.2.7 Switching switches" for details on terminating resistance). Fig. 2.2-24 RJ-45 connector pin arrangement - Pins $1,2,7$, and 8 are assigned as the power supply source for the keypad. When connecting this RJ-45 connector to other devices, do not use these pins.
	USB connector	USB port (keypad)	This is a USB connector (miniB specification) for connecting to a computer. Function codes can be edited, transferred, and verified, an inverter test run can be performed, and all states can be monitored using the inverter support loader (FRENIC Loader)*. * Refer to Chapter 9 "9.2 FRENIC Loader Overview" for details.

- The control circuit terminal lines should be routed as far as possible from the main circuit routing. Malfunction may occur due to noise.
- To prevent direct contact with the main circuit live sections (such as the main circuit terminal block), route the control circuit wiring inside the inverter as bundles using cable ties.

2.2.7 Switching switches

Abstract

\triangle WARNING』 Switch all switches after first waiting for at least 5 minutes for FRN0115G2S-2G / FRN0060G2 \square-4G or lower, or 10 minutes for FRN0146G2S-2G / FRN0075G2 \square-4G or higher after turning off the power, ensuring that the LED monitor and charge lamp are off, and using a device such as a tester to ensure that the DC intermediate circuit voltage across main circuit terminals $\mathrm{P}(+)-\mathrm{N}(-)$ has dropped to a safe level (+25 VDC or less).

Failure to observe this could result in electric shock.

The I/O terminal specification can be changed, such as switching the analog output form, by operating the slide switches on the printed circuit board (see Fig. 2.2-25 Switch positions).
To change all slide switches remove the front cover to expose the control PCB. (With FRN0146G2S-2G / FRN0075G2■-4G or higher inverters, open the keypad case also.)

Refer to Chapter 2 "2.2.2 Removal and attachment of the front cover and wiring guide" for details on how to remove the front cover, and to open/close the keypad case.
A functional description of the slide switches is given in "Table 2.2-15" below.
Table 2.2-15 Functional description of slide switches

Switch symbol	Function description		
SW1	<Switch to change sink/source setting of digital input terminals> - This switch determines the type of input (sink or source) to use for digital input terminals [X1] to [X9], [FWD], and [REV]. - The switch is set to the SINK side by factory default *1. Unless there is no particular mention of it in this manual, this description will be based on the premise that the switch is set to the SINK side. *1 The factory default setting for SW1 of FRN-G2E-4G is "SOURCE"		
SW2	<Terminating resistor changeover switch for RS-485 communication (RS-485 communication port 2 (on terminal board))> - Move the switch to the ON side when RS-485 communication is used and the inverter is located at either end of the communication network.		
SW3	<Terminating resistor changeover switch for RS-485 communication (RS-485 communication port 1 (for keypad connection))> Move the switch to the ON side when RS-485 communication is used and the inverter is located at either end of the communication network.		
SW4	<Terminal [FM1] voltage/current output changeover switch> This switch changes the output type for terminal [FM1]. When operating this switch, also change function code F29. Table 2.2-16		
	Output type	SW4	F29 data
	Voltage output (factory default)	VO1 side	0
	Current output	IO1 side	$\begin{aligned} & 1(4 \text { to } 20 \mathrm{~mA}) \\ & 2(0 \text { to } 20 \mathrm{~mA}) \end{aligned}$

SW5	<Terminal [V2] function changeover switch> The switch can be set to either analog setting voltage input or PTC/NTC thermistor input as the terminal [V2] function. When operating this switch, also change function code H 26 . Table 2.2-17				
	Input type	SW5	H26 data		
	Analog setting voltage input (factory default)	V2 side	0		
	PTC/NTC thermistor input	PTC/NTC side	1 or 2 or 3		
SW6	<Terminal [FM2] voltage/current output changeover switch> This switch changes the output type for terminal [FM2]. When operating this switch, also change function code F32. Table 2.2-18				
	Output type	SW6	F32 data		
	Voltage output (factory default)	VO2 side	0		
	Current output	IO2 side	$\begin{aligned} & 1(4 \text { to } 20 \mathrm{~mA}) \\ & 2(0 \text { to } 20 \mathrm{~mA}) \\ & \hline \end{aligned}$		
$\begin{gathered} \text { SW7 } \\ \text { (2-pole) } \end{gathered}$	<Functional safety input terminal [EN1], [EN2] enable/disable changeover switch> This switch is used to enable or disable terminals [EN1] and [EN2]. If using functional safety input terminals [EN1] and [EN2], be sure to set this switch to the OFF side for both the left and right poles. Table 2.2-19				
	Input type		SW7		
			EN1	EN2	
	EN1/2 terminal input disable (factory default)		ON side	ON side	
	EN1/2 terminal input enable		OFF side	OFF side	
SW8	<Terminal [C1] current/voltage input changeover switch> The switch can be set to either analog setting current input or analog setting voltage input as the terminal [C1] function. Table 2.2-20				
	Input type		SW8		
	Analog setting current input (fac	default)	C1 side		
	Analog setting voltage input		V3 side		

The switch locations on the control PCB are shown below.

Fig. 2.2-25 Switch positions
Table 2.2-21 Switch changeover and factory default settings

\begin{tabular}{|c|c|c|c|c|c|c|c|c|}
\hline \& SW1 \& SW2 \& SW3 \& SW4 \& SW5 \& SW6 \& SW7 \& SW8 \\
\hline Variable range \& \begin{tabular}{l}
SINK \\
SOURCE
\end{tabular} \& \& \& \& PTC/NTC \& \& \& C1

\square

\hline Factory default \& | SINK |
| :--- |
| $* 1$ | \& \& \& \& \& \& \&

\hline
\end{tabular}

*1 The factory default setting for SW1 of FRN-G2E-4G is "SOURCE".

Note
To change the switch settings, use a tool with fine tip (tweezers, etc.), and be careful not to touch any other electronic components. The switch will be at open state when the slider is in the middle, so be sure to push it fully in to the end.

2.3 Mounting and Removing the Keypad

The keypad can be removed from the inverter unit, and installed on the panel, or used for remote manual operation.

Fig. 2.3-1 If installing the keypad on the panel

The following parts are necessary if mounting the keypad on locations other than the inverter unit.
Table 2.3-1

Part name	Type	Remarks
Extension cable for remote operation (Note 1)	CB-5S, CB-3S, CB-1S	Three lengths available (1 m,3 m,5 m) (3.3 ft, $9.8 \mathrm{ft}, 16.4 \mathrm{ft})$
Keypad mounting screws	$\mathrm{M} 3 \mathrm{x} \square$ (Note 2)	2 screws required (prepared by user)

(Note 1) When using a commercially available LAN cable, use a 10BASE-T/100BASE-TX straight cable (within 20 meters (65 ft)) which meets the ANSI/TIA/EIA-568A category 5 or higher standards of the US.
(Note 2) When attaching to the cabinet, use a fixing screw of appropriate length to the cabinet thickness. (The keypad screw hole depth is $11 \mathrm{~mm}(0.43 \mathrm{in})$.)

- Removing and mounting the keypad

Pull the keypad toward you to remove while pressing down on the hook indicated by the arrow. Use the opposite procedure to mount the keypad.

Fig. 2.3-2 Keypad removal

Chapter 3

OPERATION USING THE KEYPAD

This chapter describes inverter keypad operation.

Contents

3.1 Name and Function of Each Keypad Part 3-1
3.2 Overview of Operation Modes 3-3
3.3 Running Mode 3-5
3.3.1 Operating state monitor 3-5
3.3.2 Status display 3-7
3.3.3 Monitoring warnings 3-8
3.3.4 Running or stopping the motor with the keypad 3-9
3.3.5 Setting the reference frequency with the keypad 3-9
3.3.6 Setting PID commands with the keypad 3-10
[1] Settings under PID process control 3-10
[2] Settings under PID dancer control 3-12
3.3.7 Jogging operation 3-14
3.3.8 Switching between local and remote modes 3-15
3.3.9 Changing the M/Shift key function 3-16
3.3.10 Display when keypad operation disabled (command source display) 3-16
3.4 Programming Mode 3-17
3.4.1 Setting function codes "Data Setting: 1.1F _ to $1.1^{\prime \prime}$ 3-18
3.4.2 Checking changed function codes "Data Checking: IT, IT" 3-20
3.4.3 Monitoring the running status "Drive Monitoring: 7. 3-21
3.4.4 Checking I/O signal status "I/O Checking: П. ו. ו" 3-25
3.4.5 Reading maintenance information "Maintenance Information: 与.1 K" 3-31
3.4.6 Reading alarm information "Alarm Information: G17L" 3-37
 3-41
 3-45
3.5 Alarm Mode 3-46
3.5.1 Releasing the alarm and switching to running mode 3-46
3.5.2 Displaying the alarm history 3-46
3.5.3 Displaying the status of inverter at the time of alarm 3-46
3.5.4 Switching to programming mode 3-46
3.6 USB Port 3-47

3.1 Name and Function of Each Keypad Part

The keypad allows you to run and stop the inverter, display various data, configure function code data, monitor I/O signal states, and display maintenance information and alarm information.

Table 3.1-1 Names of each keypad part and overview of functions

Item	Display and keys	Function overview
$\begin{aligned} & \text { LED } \\ & \text { monitor } \end{aligned}$	$\text { B. B. B. B. } 8$	Five-digit, 7-segment LED monitor which displays the following content based on the operation mode. - In Running mode: Running status information (e.g., output frequency, current, and voltage) Changes to the status display (see Chapter 3.3.2) when not in the normal running status. Changes to the warning display (see Chapter 3.3.3) when a warning occurs. - In Programming mode: Menus, function codes and their data - In Alarm mode: Alarm code, which identifies the alarm factor that has activated the protective function.
Operation keys	PRE)	Program/Reset key which switches the operation modes of the inverter. - In Running mode: Pressing this key switches the inverter to Programming mode. - In Programming mode: Pressing this key switches the inverter to Running mode. - In Alarm mode: Pressing this key after removing the alarm factor resets the alarm and switches back to Running mode.
	(1)	Function/Data key which switches the operations you want to do in each mode as follows: - In Running mode: Pressing this key switches the information to be displayed concerning the status of the inverter (output frequency (Hz), output current (A), output voltage (V), etc.) - In Programming mode: Pressing this key displays the function code or establishes data. ■ In Alarm mode: Pressing this key displays the details of the problem indicated by the alarm code that has come up on the LED monitor.
	Run)	Press to run the motor (when performing keypad operation).
	(s70)	Press to stop the motor (when performing keypad operation).
	\bigcirc	Press these keys to select the setting items and change the function code data displayed on the LED monitor.
	()	- In Running mode: Functions assigned with function code E70 can be used. Hold down (for 1 second) to turn the function ON and OFF. The function is always OFF when the power is turned ON. Refer to "3.3.8 Switching between local and remote modes" for details. - In Programming mode While menu displayed: Jumps to the next menu number. While function code displayed: Jumps to the displayed number +10 . While setting numerical values: Moves the cursor digit to the right. - In Alarm mode: The alarm detailed information number shifts +10 .

Item	Display and keys	Function overview
LED indicators	RUN (green)	Lights when running with a run command entered by the RUN key, by terminal command "FWD" or "REV", or through the communications link.
	KEYPAD CONTROL (green)	Lights up when the keypad Run key is valid as a run command. In Programming and Alarm modes, however, pressing this key cannot run the inverter even if this indicator lights. The LED blinks every second while in local mode.
	$\begin{gathered} \mathrm{M} \\ \text { (blue) } \end{gathered}$	Indicates the signal selected with function code E71. Refer to Chapter 5 "5.3.2 E codes (terminal functions)" for details.
	Unit LEDs (3 red LEDs)	Unit: $\mathrm{Hz}, \mathrm{A}, \mathrm{kW}, \mathrm{r} / \mathrm{min}$ and $\mathrm{m} / \mathrm{min}$ These three LED indicators identify the unit of numeral displayed on the LED monitor in Running mode by combination of lit and unlit states of them. Refer to "3.3.1 Operating state monitor" for details.
		While the inverter is in Programming mode, OHz the LEDs of Hz and kW light. After changing to Programming mode, the 2 LEDs on the left and right light up. $(\bigcirc \mathrm{Hz} \bigcirc \mathrm{~A} \bigcirc \mathrm{~kW})$
USB port		The inverter and PC can be connected with a USB cable. The connector shape at the inverter side is a miniB type.

- LED monitor

In Running mode, the LED monitor displays running status information (output frequency, current or voltage); in Programming mode, it displays menus, function codes and their data; and in Alarm mode, it displays an alarm code which identifies the alarm factor that has activated the protective function.
If one of LED5 through LED1 is blinking, it means that the cursor is at this digit, allowing you to change it.

Fig. 3.1-2 7-segment LED monitor (LED2 is blinking)
Table 3.1-2 7-segment LED monitor display

Character	7-segment	Character	7-segment	Character	7-segment	Character	7-segment
0	${ }^{17}$	9	9	$1{ }^{*}$	1 or 1	R	r
1	i	A	9	J	\ldots	S	5
2	\because	B	\square	K	$\stackrel{-1}{ }$	T*	F or t
3	3	C *	\underline{L} or 5	L	1	U*	il) or 4
4	4	D	\square	M	17	V*	i.jor ${ }_{4}$
5	5	E	E	N	\square	W	\square
6	6	F	F	O *	17 or \square	X	t
7	7	G *	占 or 9	P	p	Y	\square
8	\square	H^{*}	Hor in	Q	9	Z	$L^{\prime \prime}$
Special characters and symbols (numbers with decimal point, minus and underscore)							
0 . to 9.	in. to 9.	-	-	-	-	\sim	-
		[$\underline{1}$]	7	\%	$=$
		:	E	;	1	\wedge	\wedge

[^2]
3.2 Overview of Operation Modes

FRENIC-MEGA is equipped with the following three operation modes.
Table 3.2-1 Operation modes

Operation mode	Description
Running Mode	When powered ON, the inverter automatically enters this mode. This mode allows you to specify the reference frequency, PID command value and etc., and run/stop the motor with the Run)/sror) keys. The running status can also be monitored in real time. Changes to the status display (see 3.3.2) when not in the normal running status. Changes to the warning display (see 3.3.3) when a warning occurs.
Programming Mode	This mode allows you to configure function code data and check a variety of information relating to the inverter status and maintenance.
Alarm Mode	If an alarm condition arises, the inverter automatically enters Alarm mode in which you can view the corresponding alarm code* and its related information on the LED monitor. * Alarm code: Indicates the cause of the alarm condition. For details, first see "Table 6.1-1 Abnormal States Detectable ("Alarm" and "Warning" Objects)" in Chapter 6 "6.1 Protective Function", and then read the troubleshooting information for each alarm.

Fig. 3.2-1 below shows the status transition of the inverter between these three operation modes.

Fig. 3.2-1 Status transition between operation modes

Tip Simultaneous keying

Simultaneous keying means pressing two keys at the same time. The simultaneous keying operation is expressed by a " + " letter between the keys throughout this manual.
For example, the expression "(ञro) + Re keys" stands for pressing the Rey with the soo key held down.

3.3 Running Mode

3.3.1 Operating state monitor

In running mode, the items in Table 3.3-1 below can be monitored. The monitor items set with function code E43 are displayed immediately after turning the power on. Press the key to switch between monitor items.

Table 3.3-1 Monitor items

Monitor item	Monitor example	LED indication	Unit	Meaning of displayed value	Data for E43
Speed monitor Output frequency 1	Function code E48 specifies what to be displayed on the LED monitor and LED indicators.				$\begin{gathered} 0 \\ (E 48=0) \end{gathered}$
	50100	- Hz OA OkW	Hz	Frequency (before slip compensation) actually being output	
Output frequency 2	501.170	- Hz OA OkW	Hz	Frequency (after slip compensation) actually being output	$(E 48=1)$
Rerefernce frequency	50100	-Hz OA OkW	Hz	Reference frequency being set	$(E 48=2)$
Motor rotation speed	15010	- Hz - A OkW	min^{-1}	Output frequency (Hz) $\times \frac{120}{\mathrm{P} 01}$	$(\mathrm{E} 48=3)$
Load rotation speed	37610	-Hz ©A OkW	min^{-1}	Output frequency (Hz) x E50/E39	E48 = 4)
Feed speed	37106	OHz - ${ }^{\text {-kW }}$	m/min	Output frequency (Hz) x E50/E39	(E48 = 5)
Transport time for specified length	50	OHz OA OkW	min	$\frac{\text { E50 }}{\text { Output frequency }(\mathrm{Hz}) \times \text { E39 }}$	(E48 = 6)
Speed (\%)	$5[1.6$	OHz OA OkW	\%	$\frac{\text { Output frequency }(\mathrm{Hz})}{\text { Max. frequency }} \times 100$	$(E 48=7)$
Line speed set value	181818	OHz OA OkW	m/min	Line speed setting value after calculating acceleration/deceleration with d168 and d169 for feed speed set with E48 = 5	(E48=8)
Line speed output value	18610	OHz OA OkW	m/min	Roll frequency setting value compensated with winding diameter calculation result for line speed set with E48 $=5$	(E48=9)
Output current	12.34	OHz - A OkW	A	Current output from the inverter in RMS	3
Power consumption	181.75	OHz OA - kW	kW	Input power to the inverter	9
Calculated torque *1	50	OHz OA OkW	\%	Motor output torque in \% (Calculated value)	8
Output voltage *2	2070	OHz OA OkW	V	Output voltage (RMS) of the inverter	4

Table 3.3-1 Monitor items (cont.)

Monitor item	Monitor example	LED indication	Unit	Meaning of displayed value	Data for E43
Motor output *3	9.95	OHz OA-kW	kW	Motor output (kW)	16
Load factor *4	511	OHz OA OkW	\%	Load factor of the motor in \% as the rated output being at 100%	15
PID output *5, *6	161.170	OHz OA OkW	-	PID command/feedback amount converted to a physical quantity of the object to be controlled (e.g. temperature) Refer to function codes J106 and J107 for details.	10
$\underset{* 7}{\text { PID feedback value*5, }}$	9.610	OHz OA OkW	-		12
PID deviation*5, *7	1.1010.	OHz OA OkW	-	PID command value and PID feedback value deviation converted into physical quantities of the object to be controlled	29
PID output *5, *6	151010.6	OHz OA OkW	\%	PID output in \% as the maximum frequency (F03) being at 100%	14
Timer *10	50	OHz OA OkW	s	Remaining time for timer operation	13
Analog input monitor *8	83. 10	OHz OA OkW	-	An analog input to the inverter in a format suitable for a desired scale. Refer to the following function codes. Terminal [12]: C59, C60 Terminal [C1] (C1 function): C65, C66 Terminal [C1] (V2 function): C71, C72	17
Command position*11	$\begin{array}{r} 965 \\ 4391 . \end{array}$	OHz OA OkW	-	Alternate display of 4 higher order digits (with sign) and 4 lower order digits	21
Positioning deviation*11	$\begin{array}{r} 765 \\ 430^{\prime} 1 . \end{array}$	OHz OA OkW	-	Alternate display of 4 higher order digits (with sign) and 4 lower order digits	22
Position control start position*11	$\begin{array}{r} 765 \\ 430^{9} 8 . \end{array}$	OHz OA OkW	-	Alternate display of 4 higher order digits (with sign) and 4 lower order digits (with sign) for position when run command ON or when POS-SET enabled with user value	27
Stop target position*11	$\begin{array}{r} 765 \\ 4301 \\ 487 . \end{array}$	OHz OA OkW	-	Alternate display of 4 higher order digits (with sign) and 4 lower order digits (with sign) for stop target position with user value	28
Torque current *9	40	OHz OA OkW	\%	Torque current command value or calculated torque current	23
Magnetic flux command *9	50	OHz OA OkW	\%	Magnetic flux command value	24
Input watt-hour	181610	OHz OA OkW	kWh	$\frac{\text { Input watt-hour }(\mathrm{kWh})}{100}$	25
Winding diameter*12	54371	OHz OA OkW	mm	Winding diameter calculation result display for constant surface speed control	26
Torque bias	25	OHz OA OkW	\%	Torque bias value display	30
Estimated inertia acceleration/ deceleration time conversion value (supported soon)	1.630	OHz OA OkW	s	Display of estimated inertia result in logic acceleration/deceleration time See function code P24.	31
Customizable logic output*13	83. 10	OHz OA OkW	-	Display of output content for specific customizable logic step See function codes U98, U99.	32

*1 Calculated torque 100% is equal to the motor rated torque. For the calculation formula of the motor rated torque, refer to E. 2 "Calculated formula" (1) in Appendix E "Conversion from SI Units."
*2 If displaying the output voltage, $\mathrm{L}_{\mathrm{i}} \mathrm{l}$ is displayed as the last digit on the LED monitor to denote the unit for V (volts).
*3 When the LED monitor displays the motor output, the unit LED indicator "kW" blinks.
*4 When the LED monitor displays the load factor, the 7 -segment letter $_$in the lowest digit stands for "\%".
*5 These PID related items appear only under the PID control specified by function code J01 ($=1,2$ or 3).
*6 When the LED monitor displays a PID command or its output amount, the dot (decimal point) attached to the lowest digit of the 7 -segment letter blinks.
*7 When the LED monitor displays a PID feedback amount, the dot (decimal point) attached to the lowest digit of the 7-segment letter lights.
*8 The analog input monitor appears only when the analog input monitor function is assigned to one of the analog input terminals by one of function codes E61 to E63 (= 20). Specify the unit with C58, C64 and C70.
*9 Displays î́l (zero) under V/f control.
*10 Displays (function code C21 = 3) only if performing timer operation.
*11 Displays when the position control function is enabled.
*12 Displays only if constant surface speed control is enabled with d41 $=1$.
*13 Displays only if $\mathrm{U} 00=1$ and $\mathrm{U} 98 \neq 0$.
Tip The monitoring signals for the monitor items such as keypad output frequency and output current can be filtered with function code E42 (LED display filter). If the display varies unstably so as to be hard to read due to load fluctuation or other causes, increase this filter time constant.
(®al Function code E42)

3.3.2 Status display

Changes to the status display when not in the normal running status while in Running mode.
For example, this applies if the $B X$ (coast to stop) command is entered and the motor is stopped with a run command entered, or if the inverter output differs from the command while restarting after a momentary power failure or during output limiting.
Depending on the applicable status, only the status code may appear on the LED monitor, or the running state monitor (frequency display, etc.) and status code may display alternately.

Table 3.3-2 Status display items

Status code	Content	Display method
	A run command has been entered while either or both of the Status code only	Status code only

Tip The status display can be disabled if unnecessary. ($\mathbb{\square}$ Function code K08)

3.3.3 Monitoring warnings

The FRENIC-MEGA identifies abnormal states in two categories-- Alarm and Warning. If a warning occurs, the running status monitor (frequency display, etc.) and warning code* display alternately on the LED monitor.
Which abnormal states are categorized as a warning ("Warning" object) should be defined with function codes H81, H82, and H83 beforehand. Furthermore, by assigning the warning "L-ALM" (data $=98$) to a general-purpose output terminal, "L-ALM" signals are out to that terminal when a warning occurs.

* -- is added to the first 2 digits of the alarm code.

Example)"--ITil" is displayed if cooling fin overheating

Running status monitor display

Warning display

For details of the warning objects, refer to Chapter 6 "TROUBLESHOOTING."

- Checking the content of past warnings

The content of warnings in 5.37 (Warning content (previous)) to 5.97 (Warning content (3rd last)).
For details on the menu transition of the maintenance information, refer to "3.4.5 Reading maintenance information "Maintenance Information: 5.1 HE ".

■ Resetting light warnings

Refer to function codes H81, H82, and H83, and Chapter 6 " 6.4 If a Warning Code is Displayed", and eliminate the cause of the warning.
Once the cause has been eliminated, the warning code will no longer be displayed, and the general-purpose output "L-ALM" will also turn OFF.

3.3.4 Running or stopping the motor with the keypad

By factory default, pressing the Rey ktarts running the motor in the forward direction and pressing the key decelerates the motor to stop. The Run key is enabled only in Running mode.
When the inverter is running, the RUN LED lights.
To run the motor in the reverse direction or to run it reversibly, change the data of function code F02 to " 3 " or " 0 ," respectively.

Note: The rotation direction of IEC-compliant motors is opposite to the one shown above.
Table 3.3-3 Operation relationship between function code F02 "Run, Operation" and "Run) key"

Data for F02	Motor rotation direction
0	In the direction commanded by terminal [FWD] or [REV]
1	Disable key (The motor is driven by terminal [FWD] or [REV] command.)
2	In the forward direction
3	In the reverse direction

Tip If the motor cannot be run or stopped even by pressing the run/(sroof key at such times as when function code F02 = 1 , or if running and stopping the motor with RS-485 communication, display "3.3.10 Display when keypad operation disabled (command source display)" for 2 seconds.
Test running can be stopped with the (soop key from Loader even while performing a test run. Set y99 again to resume the test run after stopping.

3.3.5 Setting the reference frequency with the keypad

The frequency setting can be specified using the keypad keys. The set frequency can also display the load rotation speed, etc. based on the E48 setting.

Setting the frequency with the keypad (F01 = 0 (factory default) or 8)

(1) Set function code F01 to "0" (keypad operation using keys) or "8" (keypad operation using keys, balanceless/bumpless). Frequency setting with the keypad is disabled in Programming or Alarm mode. To enable it, switch to Running mode. When the keypad is set to Programming or Alarm mode, the keys are disabled to modify the reference frequency. You need to switch to Running mode to enable frequency setting with the keys.
(2) By pressing the key, the set frequency is displayed, and the rightmost digit flashes.
(3) By pressing the keys again, it is possible to change the reference frequency. The new setting can be saved into the inverter's internal memory.

Tip - In order to perform setting such as reference frequency, press \odot once and when the least significant digit flashes, push down the key, and then, the flashing digit will move. Therefore, it is possible to change the large numerical number easily.

- Holding down the key changes data in the least significant digit and generates a carry.
- The reference frequency can be saved either automatically by turning the main power OFF or only by pressing the ((Automatic saving when main power is turned OFF)).
- While the function code F01 data is set to " 0 " or " 8 ", when a setting method other than frequency setting 1 (frequency setting 2, communication, multistep frequency, etc.) is selected as the frequency setting, it is not possible to change the reference setting with the keys even if the keypad is in running mode. In this case, display "3.3.10 Display when keypad operation disabled (command source display)" for 2 seconds.
- By setting function code F01 data to "8: Keypad operation using $ه$ keys (with balanceless/bumpless)" balanceless/bumpless is enabled.
Balanceless-bumpless switching refers to the function that makes the inverter inherit the current frequency that has applied before the frequency command source is switched to the keypad from any other source, providing smooth switching and shockless running. By using this function, even if the frequency setting method is switched, it is possible to perform operation without shock.

3.3.6 Setting PID commands with the keypad

PID commands can be set with the and keys on the keypad.

[1] Settings under PID process control

To enable the PID process control, you need to set the J01 data to " 1 " or "2."
Under the PID control, the items that can be specified or checked with and keys are different from those under regular frequency control, depending upon the current LED monitor setting. If the LED monitor is set to the speed monitor ($\mathrm{E} 43=0$), the item accessible is a manual speed command (reference frequency); if it is set to any other, the item is a PID process command.

Setting the PID process command with and keys

(1) Set function code J02 to "0" (\odot keys on keypad).
(2) Set the LED monitor to other than the speed monitor (E43=0) in keypad Running mode. When the keypad is in Programming or Alarm mode, you cannot modify the PID process command with the key. To make it possible for PID process commands to be set using the keys, switch to running mode.
(3) Press the key to display the PID process command. The lowest digit and its decimal point blink on the LED monitor.
(4) To change the PID process command, press the key again. The new setting can be saved into the inverter's internal memory.

- The PID process command can be saved either automatically by turning the main power OFF or only by pressing the
- Even if multistep frequency is selected as a PID command (PID-SS1 or PID-SS2 = ON), it is possible to set a PID command using the keypad.
- When function code J 02 is set to any value other than " 0 ," pressing the key displays, on the LED monitor, the PID command currently selected, but does not allow any change.
- On the LED monitor, the decimal point of the lowest digit is used to discriminate the PID related data from the reference command. The decimal point blinks or lights when a PID command or PID feedback amount is displayed, respectively.

Table 3.3-4 PID process command manually set with key and requirements

PID control (Mode selection) J01	PID control (Remote command SV) J02	LED monitor E43	PID control multistage command PID-SS1, PID-SS2	With key
	0	Other than 0	ON or OFF	PID process command with keypad
	Other than 0		PID process command currently selected	

Setting up the reference frequency with and keys under PID process control

When function code F01 is set to " 0 " keys on keypad) and frequency setting 1 is selected as a manual speed command (when disabling the frequency setting command via communications link, multistep frequency command, and PID control), switching the LED monitor to the speed monitor in Running mode enables you to modify the reference frequency with the and keys.
However, when the keypad is set to Programming or Alarm mode, the and \odot keys are disabled to modify the reference frequency. You need to switch to Running mode to enable frequency setting with the \uparrow and keys. Table 3.3-5 below lists the combinations of the commands. Table 3.3-5 illustrates how the manual speed command entered via the keypad is translated to the final frequency command.
The setting procedure is the same as that for setting of a usual reference frequency.
In the case of conditions other than the above, the following is displayed by pressing the keys.
Table 3.3-5 Manual speed (frequency) command specified with \rightarrow keys and required settings

PID control (Mode selection) J01	$\begin{aligned} & \text { LED } \\ & \text { monitor } \end{aligned}$ E43	Frequency setting 1 F01	Multistep frequency SS2	Multistep frequency SS1	Select link operation LE	Cancel PID control Hz/PID	Pressing \odot keys controls:
1 or 2	0	0	OFF	OFF	OFF	ON (PID disabled)	Manual speed command (frequency) set with keypad
		Other than above					Manual speed command (frequency) currently selected
		Not required				$\begin{gathered} \text { OFF } \\ \text { (PID } \\ \text { enabled) } \end{gathered}$	PID output (as final frequency command)

[2] Settings under PID dancer control

To enable the PID dancer control, you need to set the J01 data to "3."
Under the PID control, the items that can be specified or checked with and keys are different from those under regular frequency control, depending upon the current LED monitor setting.
If the LED monitor is set to the speed monitor ($\mathrm{E} 43=0$), the item accessible is the primary frequency command; if it is set to any other, the item is the PID dancer position set point.

Setting the PID dancer position set point with the and keys

(1) Set function code J02 to "0" keys on keypad).
(2) Set the LED monitor to other than the speed monitor (E43=0) in keypad Running mode. When the keypad is in Programming or Alarm mode, you cannot modify the PID dancer position set point with the \triangle key. To enable PID commands using the keys, switch to running mode.
(3) Press the key to display the PID dancer position set point. The lowest digit and its decimal point blink on the LED monitor.
(4) To change the PID dancer position set point, press the key again. The set PID command is saved internally as function code J57, and after switching to another PID command setting method, commands are saved even after returning to the PID command with the keypad. Furthermore, you can directly configure the command with function code J57.

Tip

- Even if multistep frequency is selected as a PID command (PID-SS1 or PID-SS2 = ON), it is possible to set a PID command using the keypad.
- When function code J02 is set to any value other than " 0 ," pressing the key displays, on the LED monitor, the PID command currently selected, but does not allow any change.
- On the LED monitor, the decimal point of the lowest digit is used to discriminate the PID related data from the reference command. The decimal point blinks or lights when a PID command or PID feedback amount is displayed, respectively.

Table 3.3-6 PID command manually set with \uparrow key and required settings

PID control (Mode selection) J01	PID control (Remote command SV) J02	LED monitor E43	PID control multistage command PID-SS1, PID-SS2	
	0	Other than 0	ON or OFF	PID command with keypad
	Other than 0		PID command currently selected	

Setting up the primary frequency command with and keys under PID dancer control

When function code F01 is set to " 0 " (keys on keypad) and frequency setting 1 is selected as a main setting (when disabling the frequency setting command via communications link, multistep frequency command, and PID control), switching the LED monitor to the speed monitor in Running mode enables you to modify the main setting with the keys. When the keypad is set to Programming or Alarm mode, changes to the main settings cannot be made with the keys. Switch to Running mode. Table 3.3-7 below lists the combinations of the commands. Table 3.3-7 illustrates how main setting command (1) entered with the keypad is translated to final frequency command (2).
The setting procedure is the same as that for setting of a usual reference frequency.
In the case of conditions other than the above, the following is displayed by pressing the keys.
Table 3.3-7 Main settings (frequency settings) specified with keys and required settings

PID control (Mode selection) J01	$\begin{aligned} & \text { LED } \\ & \text { monitor } \end{aligned}$ E43	Frequency setting 1 F01	Multistep frequency SS2	Multistep frequency SS1	Select link operation LE	Cancel PID control Hz/PID	Pressing keys controls:
3	0	0	OFF	OFF	OFF	ON	Main settings (frequency settings) specified with keypad
		Other than above				(PID disabled)	Primary command (frequency) currently selected
		Not required				OFF (PID enabled)	PID output (as final frequency command)

3.3.7 Jogging operation

This section provides the procedure for jogging the motor.
(1) Make the inverter ready to jog by following the steps below. The LED monitor should display íl

- Set the operation mode to Running mode. (See "3.2 Overview of Operation Modes".)
- Press the soor + keys simultaneously. The LED monitor displays the jogging frequency for approximately one second and then displays $\dot{L} \dot{L}$

Tip - Function codes C20, H54 and H55 specify the jogging frequency and acceleration/deceleration time, respectively. Use these function codes exclusively for the jogging operation with your needs.

- Alternatively, using the input terminal command JOG ("Ready for jogging") switches between the normal operation state and ready-to-jog state.
- Switching between the normal operation state and read-to-jog state with the + possible only when the inverter is stopped.
(2) Jogging the motor.
- Hold down the keypad Run key during which the motor continues jogging. To decelerate to stop the motor, release the Bun key.
(3) Exiting the ready-to-jog state and returning to the normal operation state.

Press the soor + keys simultaneously.
(1) Refer to function codes E01 to E09 in Chapter 5 "5.3.2 E codes (terminal functions)" for details.

3.3.8 Switching between local and remote modes

When performing normal operation, the motor runs in the remote mode with the operation method set at the inverter, and when performing maintenance, it is possible to switch to the local mode used for performing operation with the keypad. In local mode, the inverter is isolated from the system. In this mode, the inverter is run, and the necessary work is carried out by performing all operations from the keypad.

- Remote mode: Run and frequency commands are selected by function codes or source switching signals except LOC ("Select local (keypad) command").
If the run)/(ror) is pressed while in remote mode, "3.3.10 Display when keypad operation disabled (command source display)" is displayed for 2 seconds.
- Local mode: The command source is the keypad, regardless of the settings specified by function codes. The keypad takes precedence over the settings specified by communications link operation signals.

The KEYPAD CONTROL LED blinks once every second while in local mode.
The table below shows the input procedures of run commands from the keypad in the local mode.

F02 data	Input procedures of run commands from keypad
0: Keypad operation (Rotation direction input: Terminal block)	The motor can be run and stopped by pressing the keypad keys. The rotation direction is specified with terminals [FWD] and [REV].
1: External signal	The motor can be run and stopped by pressing the keypad Run)/(roo)
2: Keypad operation (forward rotation)	There is no need to specify the rotation direction. However, the motor cannot be rotated in the reverse direction if only forward rotation is specified.
3: Keypad operation (reverse rotation)	The motor can be run and stopped by pressing the keypad keys. There is no need to specify the rotation direction. However, the motor cannot be rotated in the forward direction if only reverse rotation is specified.

The following two methods can be used to switch between remote mode and local mode.

1. Assign data $=35$ LOC to function code E70, and hold down the \circledast key on the keypad.
2. Assign data $=35$ LOC to any of the function codes E01 to E09, E98, or E99, and turn on the applicable digital input terminal.

Switching from remote to local mode automatically inherits the frequency settings used in remote mode.
If the motor is running at the time of the switching from remote to local, the keypad run command will be automatically turned ON so that all the necessary data settings will be carried over.
If, however, there is a discrepancy between the settings used in remote mode and ones made on the keypad (e.g., switching from the reverse rotation in remote mode to the forward rotation only in local mode), the inverter automatically stops.
Status transition and the operation status differ based on the remote/local status, and the local (keypad) command selection LOC signal combination. Also, refer to above table for details.

Transition between remote and local modes by LOC

3．3．9 Changing the M／Shift key function

When in Running mode，various functions can be assigned to the M／Shift key in the same way as digital input terminals based on the function code E70 setting．The switching between remote and local modes described in the previous section is one of these functions．
The factory default setting is 100 （no functions）．
Refer to the description of function code E70 in Chapter 5 ＂ 5.3 .2 E codes（terminal functions）＂for details．

3．3．10 Display when keypad operation disabled（command source display）

When the Rul／soo key or key is pressed in running mode（monitor item display），the command source is displayed for 2 seconds if these operations are disabled．
However，in such cases as where keypad key information reading is enabled with customizable logic，the command source will not display if the Rum）／soo）key or key is being used for another function．

Table 3．3－8 Display when run／stop operation is disabled with Run／（roop key

Displayed content	Reason for operation being disabled	Displayed content	Reason for operation being disabled
$\square 1$	Terminal block input	ローら	Bus option input
	RS－485 port 2 input	L dir	FRENIC Loader input

Table 3．3－9 Display when frequency change operation disabled with key

Displayed content	Reason for operation being disabled	Displayed content	Reason for operation being disabled
日 170	Voltage input（terminal［12］）	Put SE	Pulse train input
G1i＇	Current input（terminal［C1］）	－5．6ので	RS－485 port 2 input
	Voltage＋current input（terminal ［12］＋［C1］）	ロぃ	Bus option input
91810	Voltage input（terminal［V2］）	L dir	FRENIC Loader input
日1，品	Voltage input（terminal［V3］）	隹しで，	Multistep frequency input
แローが品	UP／DOWN（terminal［X1 X9］）	P101	PID control input
P！゙兄	Pattern operation	nant	No command source
$\square 1$	OPC－DI（option）input		

Displays for 2 seconds

By pressing the key during multistep
 multistep frequency input，displays for 2 seconds．

Display example in which operation is disabled

3.4 Programming Mode

The Programming mode provides you with the following functions--setting and checking function code data, monitoring maintenance information and checking input/output (I/O) signal status. The functions can be easily selected with the menu-driven system. Table 3.4-1 below lists menus available in Programming mode. The leftmost digit (numerals) of each letter string on the LED monitor indicates the corresponding menu number and the remaining digits indicate the menu contents.
When the inverter enters Programming mode from the second time on, the menu selected last in Programming mode will be displayed.

Table 3.4-1 Menus available in programming mode

Menu \#	Menu	LED monitor indication	Main function		Ref.
1	"Data Setting"	1.1F	F codes (Fundamental functions)	Function codes can be displayed and changed.	$\begin{gathered} \text { Section } \\ 3.4 .1 \end{gathered}$
		1.E.	E codes (Extension terminal functions)		
		1.1.-	C codes (Control functions)		
			\sim (Omitted) ~		
		1.0.-	o codes (optional functions)		
		1.1. ${ }^{\prime}$	K codes (multi-function keypad)		
2	"Data Checking"	E. 51	Displays only function codes that have been changed from their factory defaults. The function code data can be referenced and changed.		$\begin{gathered} \text { Section } \\ 3.4 .2 \end{gathered}$
3	Run monitor	37.016	Displays the running information required for maintenance or test runs.		Section 3.4.3
4	I/O check	9.1-8	Displays external interface information.		Section 3.4.4
5	"Maintenance Information"	5165	Displays maintenance information including cumulative run time.		Section 3.4.5
6	Alarm Information	6.97	Alarm codes for the past four alarms can be displayed, and operating information at the time each alarm occurred can be referenced.		$\begin{gathered} \text { Section } \\ 3.4 .6 \end{gathered}$
7	Data copy	7.109	Function code data can be read, written, and verified.		Section 3.4.7
8	Destination setting	B.6ESt	Sets the region (overseas) in which the product is used. This is not used for machines for use in Japan.		-
9	Communication monitor	9.5 - 9.960 9.6948	Codes communicated back and forth between the host device can be monitored, and communication commands can be entered. Refer to the "RS-485 Communication User's Manual" for details.		-
0	Favorites	${ }^{17} 170$	Only function codes selected by users can be referenced or changed.		Section 3.4.8

Tip Enter Programming mode at the keypad to display the menu. Change the menu with the and \odot keys, and select the desired menu item with the (—nme key. Once the entire menu has been cycled through, the display returns to the first menu item.
Press the \because key to proceed to the next menu number.

3.4.1 Setting function codes "Data Setting: I.F _ to I.1"_ "

Menu number 1 "Data Setting" (I.F _ through I. I^{\prime} _) in Programming mode allows you to configure all function codes. The Fig. 3.4-1 shows "Data Setting" menu transition and function code data change procedure.

Programming mode Function code list Function code data

Fig. 3.4-1 "Data Setting" menu transition and function code data change procedure

Basic key operation

Operation (1) Turn the inverter ON. It automatically enters Running mode in which you press the key to switch to Programming mode. The function selection menu appears.
Operation (2) Use the and keys to select the desired function code group from the choices i.f _ to

Press the \otimes key to jump to "2. Data Checking".

Operation (4) Use the and keys to display the desired function code, then press the key.
Data for the relevant function code appears.
Press the key to skip to the function code number +10 . When the end is reached, the display returns to the beginning of the same function code group.
Operation (5) Change the function code data using the and keys.
Press the
与1ilit appears, and the data will be saved in the memory inside the inverter. After that, the display will return to the function code list and then move to the next function code.
Pressing the Rey instead of the key cancels the change made to the data. The data reverts to the previous value, the display returns to the function code list, and the original function code reappears.
Operation (7) Press the key to return to the menu from the function code list.

Tip When changing function code data, pressing the key once blinks the least significant digit. After that, each time the key is pressed, the cursor moves to the next higher digit where data can be changed. This cursor movement allows you to easily move the cursor to the desired digit and change the data in higher digits. This cursor movement allows you to easily move the cursor to the desired digit and change the data in higher digits.
Frequently used function codes can be registered in "Favorites". Refer to section "3.4.8 Setting "Favorites" function code data" for details.

Operation example: Operating procedure when changing C05 (multistep frequency 1) from 0.00 to 25.00
The following screens correspond to previous operations (1) to (6).

3.4.2 Checking changed function codes "Data Checking: J. \mathcal{E} P"

Changed function codes can be checked at "Data Checking: $E^{I \prime}$ " in menu number 2 of Programming mode. Only the function codes whose data has been changed from the factory defaults are displayed on the LED monitor. You can refer to the function code data and change it again if necessary. Changed function code has _ at the beginning.
The menu transition in "Data Checking" is the same as the one in Menu number 1 "Data Setting."

3.4.3 Monitoring the running status "Drive Monitoring: 3.0 PE"

Menu number 3 "Drive Monitoring: 3.01 " is used to monitor the running status during maintenance and test running.
The monitor number and symbol are displayed alternately every 1 second.
Table 3.4-2 "Drive Monitoring" display items

Monitor No.	Symbol	Item	Unit	Description
3.70	Fout ;	Output frequency 1	Hz	Output frequency before slip compensation
3.21	Foute'	Output frequency 2	Hz	Output frequency after slip compensation
3.62	, out	Output current	A	Output current
3.18	tiout	Output voltage	V	Output voltage
3.84	trg	Torque calculated value	\%	Motor output torque in \% (Calculated value)
3.095	fref	Set frequency	Hz	Frequency specified by frequency command
3.60	rot	Rotation direction	N/A	Displays the current rotation direction F : forward, r : reverse, $-\cdots$ - : stop
3.878	5t9t	Running status	N/A	Indicates the running status. Refer to " Displaying running status (${ }^{3}$, in $_{17}^{17}$) and for details.
3.610	5 5inc	Motor rotation speed	r/min	$\text { Display value }=120 \times \frac{(\text { Output frequency Hz) }}{(\text { No. of motor poles })}$
378	6-89,	Load shaft speed	r/min	Display value $=$ $\text { (Output frequency Hz) } \times \frac{\text { Function code E50 }}{\text { Function code E39 }}$
3.10	511	PID process command	N/A	Virtual physical value (e.g., temperature or pressure) of the object to be controlled, which is converted from the PID command value using function code J106 and J107 data (PID display Maximum scale/ minimum scale) Display value = (PID command value (\%)) / 100 * (Max. scale - Min. scale) + Min. scale If PID control is disabled, "----" appears.
3.11	$F i$	PID feedback amount	N/A	Virtual physical value (e.g., temperature or pressure) of the object to be controlled, which is converted from the PID feedback amount using function codeJ106 and J107 data (PID display Maximum scale/ minimum scale) Display value = (PID feedback value (\%)) / 100 * (Max. scale - Min. scale) + Min. scale If PID control is disabled, "--- -" appears.
3.12	6t-9	Torque limit value A	\%	Driving torque limit value A (based on motor rated torque)
3.13	6:-6	Torque limit value B	\%	Braking torque limit value B (based on motor rated torque)

Table 3．4－2＂Drive Monitoring＂display items（cont．）

Monitor No．	Symbol	Item	Unit	Description
3		Ratio setting	\％	When this setting is 100% ，the LED monitor shows 1.00 time of the value to be displayed． If no ratio setting is selected，＂－－－－＂ appears．
－19	L ME	Feed speed	$\mathrm{m} / \mathrm{min}$	（Output frequency Hz）$\times \frac{\text { Function code E50 }}{\text { Function code E39 }}$
7 16	1515	Peripheral speed	$\mathrm{m} / \mathrm{min}$	The constant surface speed control winding speed is displayed．
－17	E	Stop target position	N／A	Refer to Chapter 5 ＂ 5.3 .9 ［ 5 ］Position control．＂
ご16	ρ	Current position	N／A	
7－19	dir	Position deviation	N／A	
$3{ }^{3}$	FaS．17	Position control status monitor	N／A	
30^{31}	17i］	PID output value	\％	Displays the PID output value．（ 100% at maximum frequency） If PID control is disabled，＂－－－－＂appears．
$3 \underbrace{7} 0^{7}$	Fi，ilit	Flux command value	\％	Magnetic flux command value．
－$\underbrace{3}$	5196\％	Running status 2	N／A	Refer to＂ running status $2\left(7^{3}-0^{-3}\right)$＂for details．
$3 \underbrace{3}$	nte	Motor temperature	${ }^{\circ} \mathrm{C}$	Temperature detected with NTC thermistor built in to the motor（VG motor） ＂－－－－＂appears if no NTC thermistor connection has been set．
3.75	5ターロ	Master－follower operation deviation	deg	Displays the current angle deviation．Refer to Chapter 5 ＂5．3．9［ 2 ］Master－follower operation．＂
37	F！－F号	PG feedback value	Hz	Displays the frequency detected by the PG in Hz regardless of the control method．
－7	6， 9	Torque bias command	\％	Displays the selected torque bias command value．
3	dt－6	Load detection monitor		Displays momentary detected loads． Refer to Chapter 5 ＂ 5.3 .9 d codes（Applied functions 2）［ 4 ］Hoist function＂for details．
－ 315	\＆ $1 \pi^{-1}$	Constant surface speed control line speed setting value	$\mathrm{m} / \mathrm{min}$	Displays the［Motor setting speed \times winding diameter ratio］．
－ 36	1 1 ¢	Constant surface speed control line speed output	m／min	Displays the［Motor output speed \times winding diameter ratio］．
－	F－rEF	Command（master）side AB－phase pulse rate	kp／s	Displays the pulse rate input to the PG AB－ phase used as the command（master）side．
－ 51		Command（master）side Z－ phase pulse rate	p／s	Displays the pulse rate input to the PG Z－ phase used as the command（master）side．
ジ5	$r-F 口$	Feedback（follower）side AB－phase pulse rate	kp／s	Displays the pulse rate input to the PG AB－ phase used as the feedback（follower）side．
－¢	$\square^{-1}-F 6$	Feedback（follower）side Z－phase pulse rate	p／s	Displays the pulse rate input to the PG Z－ phase used as the feedback（follower）side．

To display the running status and running status 2 in hexadecimal format, each state has been assigned to bits 0 to 15 as listed in Table 3.4-3 and Table 3.4-4 respectively. Table 3.4-5 shows the relationship between each of the status assignments and the LED monitor display.
Table 3.4-6 shows the conversion table from binary to hexadecimal.

Bit	Symbol	Content	Bit	Symbol	Content
15	BUSY	" 1 " when function code data is being written.	7	VL	"1" under voltage limiting control.
14		Always "0."	6	TL	"1" under torque limiting control.
13	WR	Always "0."	5	NUV	" 1 " when the DC link bus voltage is higher than the under voltage level.
12	RL	" 1 " when communication is enabled (when ready for run and frequency commands via communications link).	4	BRK	"1" during braking.
11	ALM	" 1 " when an alarm has occurred.	3	INT	" 1 " when the inverter output is shut down.
10	DEC	"1" during deceleration.	2	EXT	"1" during DC braking.
9	ACC	"1" during acceleration.	1	REV	" 1 " during running in the reverse direction.
8	IL	"1" under current limiting control.	0	FWD	" 1 " during running in the forward direction.

Bit	Symbol	Content	Bit	Symbol	Content
15	-	Drive motor type 0000: induction motor 1000: synchronous motor	7	-	Speed limiting (under torque control)
14			6	-	(Not used)
13			5 4	-	Motor selection 00: Motor 1 01: Motor 2 10: Motor 3 11: \quad Motor 4
11	-	(Not used)	3	-	Control method 0000: V/f control without slip compensation inactive 0001: Dynamic torque vector control 0010: V/f control with slip compensation active 0011: V/f control with sensor 0100: Dynamic torque vector control with sensor 0101: Sensorless vector control 0110: Vector control for IM with sensor 1010: Torque control (sensorless vector control) 1011: Torque control (vector control with sensor)
10			2		
9			1		
8			0		

Table 3.4-5 Running status display example

	No.	LED 4				LED 3				LED 2				LED 1			
	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Symbol		BUSY	WR	RL		ALM	DEC	ACC	IL	VL	TL	NUV	BRK	INT	EXT	REV	FWD
	Binary	1	0	0	0	0	0	1	1	0	0	1	0	0	0	0	1
		$\begin{array}{cccc} \text { LED5 } & \text { LED4 } & \text { LED3 LED2 LED1 } \\ \text { DD } & 1 & 1 & 1 \end{array}$															

Table 3.4-6 Running status display example
(Synchronous motor assigned to motor 4, motor running under vector control with sensor)

- Hexadecimal expression

A 4-bit binary number can be expressed in hexadecimal format (hexadecimal digit). The Table 3.4-7 below shows the correspondence between the two notations.

Table 3.4-7 Binary and hexadecimal conversion

Binary				Hexadecimal	Binary				Hexadecimal
0	0	0	0	\square	1	0	0	0	\square
0	0	0	1	I	1	0	0	1	G
0	0	1	0	\square	1	0	1	0	\square
0	0	1	1	\square	1	0	1	1	\square
0	1	0	0	\ddots	1	1	0	0	\square
0	1	0	1	5	1	1	0	1	\square
0	1	1	0	G	1	1	1	0	G
0	1	1	1	7	1	1	1	1	F

3.4.4 Checking I/O signal status "I/O Checking: Ч. ו_ ロ"

Using menu number 4 "I/O Checking: Ч. ו. - " displays the I/O status of external signals including digital and analog I/O signals without using a measuring instrument. External signals that can be displayed are digital input/output signals and analog input/output signals.

Table 3.4-8 shows "I/O Checking" items, and Fig. 3.4-2 below shows "I/O Checking" menu transition. The monitor number and symbol are displayed alternately every 1 second.

Fig. 3.4-2 "I/O Checking" menu transition

Basic key operation

Operation (1) Turn the inverter ON. It automatically enters Running mode in which you press the key to switch to Programming mode. The function selection menu appears.
Operation (2) Use the and keys to select "I/O Checking" (\%. ו - ロ). Press the key to skip in menu number units.

Operation (4)

Use the and keys to display the desired I/O checking item, then press the key. Press the key to skip the to the I/O checking item +10 . When the end is reached, the display returns to the beginning of the same function code group.
The corresponding I/O checking data appears. For the item 4. keys switches the display method between the segment display (for external signal information in Table 3.4-9) and hexadecimal display (for I/O signal status in Table 3.4-10).
Operation (5) Press the key to return to the list of I/O checking items. Press the key again to return to the menu.

Table 3．4－8＂／／O Checking＂items

Monitor No．	Symbol	Item	Unit	Description
4.8	－10．6	I／O signals on the control circuit terminals	－	Displays the ON／OFF state of the digital I／O terminals．Refer to＂Displaying control I／O signal terminals＂on the next page for details．
4.81	－10．6	I／O signals on the control circuit terminals under communications control	－	Displays the ON／OFF state of the digital I／O terminals that received a command via RS－485 or field bus option． Refer to＂Displaying control I／O signal terminals＂and＂Displaying control I／O signal terminals under communications control＂from the next page onward for the display content．
4.810	$10^{\prime \prime}$	Input voltage on terminal ［12］	V	Displays the input voltage（with sign）on terminal［12］in volts（V）．（with sign）
	Ei－m	Input current on terminal ［C1］ （C1 function）	mA	Displays the input current on terminal［C1］（C1 function）in milliamperes（mA）．
4.8	Fil 1.10	Terminal［FM1］output voltage	V	Displays the output voltage for terminal［FM1］ in volts（V）．（with sign）
4.75	Fin\％．il	Output voltage on terminal ［FMP］	V	Displays the output voltage for terminal［FMP］ in volts（V）．
4.610	$F 17 \%$	Output frequency on terminal［FMP］	p／s	Displays the output pulse rate per unit of time on terminal［FMP］in（ p / s ）．
4	110－ 11	Input voltage on terminal ［V2］	V	Displays the input voltage（with sign）on terminal［V2］in volts（V）．
4.178	Fil 1.1	Output current on terminal ［FM1］	mA	Displays the output current on terminal［FM1］ in milliamperes（mA）．
4.789	Finc．	Output current on terminal ［FM2］	mA	Displays the output current on terminal［FM2］ in milliamperes（mA）．
4 ¢107	－10．019	Option control circuit terminal (I/O)	－	Displays the ON／OFF state of the digital input／output terminals for the digital interface card（option）． Refer to＂Displaying control I／O signal terminals on optional digital interface cards＂on page 3－ 30 for the display content．
4． 11	Pロ゙心年	Terminal［X6］and［X7］pulse input monitor	－	Displays the number of pulse train signal pulses input to terminals［X6］and［X7］．
サ，浔		PT detected temperature （Ch．1）	${ }^{\circ} \mathrm{C}$	Displays the PT option Ch． 1 temperature in （ ${ }^{\circ} \mathrm{C}$ ）．
4	Ftithor	PT detected temperature （Ch．2）	${ }^{\circ} \mathrm{C}$	Displays the PT option Ch． 2 temperature in （ ${ }^{\circ} \mathrm{C}$ ）．
4.15	P10．19	PG pulse rate （AB－phase signals from the reference PG）	kp／s	Displays the AB－phase pulse rate（kp／s）at the Ch1（XA，XB terminal）side PG．
号海	PG1．1	PG pulse rate （Z－phase signal from the reference PG）	p／s	Displays the Z－phase pulse rate $(\mathrm{p} / \mathrm{s})$ at the Ch1（XZ terminal）side PG．
4.17	P10\％	PG pulse rate （AB－phase signals from the slave PG）	kp／s	Displays the AB－phase pulse rate（kp／s）at the Ch2（YA，YB terminals）side PG．
7．18	P6．10］	PG pulse rate （Z－phase signal from the slave PG）	p／s	Displays the Z－phase pulse rate $(\mathrm{p} / \mathrm{s})$ at the Ch2（ YZ terminal）side PG．

Monitor No.	Symbol	Item	Unit	Description
4.36	313-10	Input voltage on terminal [32]	v	Displays the input voltage on terminal [32] on the analog interface card (AIO option) in volts (V).
4.2	$\mathrm{CL}^{3}-10$	Input current on terminal [C2]	mA	Displays the input current on terminal [C2] on the analog interface card (AIO option) in milliamperes (mA).
$4.6{ }^{3}$	90.ij	Output voltage on terminal [AO]	v	Displays the output voltage on terminal [AO] on the analog interface card (AlO option) in volts (V).
4.83	E5.	Output current on terminal [CS]	mA	Displays the output current on terminal [CS] on the analog interface card (AIO option) in milliamperes (mA).
4.84	[1-6it	Customizable logic timer monitor	-	Monitors the timer or counter value in the customizable logic specified by U91.
4.33	113-17	Terminal [C1] (V3 function) input voltage	v	Displays the input voltage for terminal [C1] (V3 function) in volts (V). (with sign)
4.34	File.i	Terminal [FM2] output voltage	v	Displays the output voltage for terminal [FM2] in volts (V). (with sign)
4.35	[cse ${ }^{\text {c }}$	Option terminal [CS2] output current	mA	Displays the output current (mA) for terminal [CS2] on the analog interface card (option).
4.36	Patc	PTC/NTC terminal input voltage	v	Displays the input voltage for terminal [V2] (PTC/NTC function) in volts (V).

■ Displaying control I/O signal terminals

The status of control I/O signal terminals can be displayed in two ways: with ON/OFF of each LED segment and in hexadecimal.

- Displaying the I/O signal status with ON/OFF of each LED segment

As shown in Table 3.4-9 below and the figure below, each of segments "a" to "dp" on LED1 and LED2 light up when the corresponding digital input terminal circuit ([FWD], [REV], [X1] to [X9], [EN1] and [EN2]) is closed (ON); it goes OFF when it is open (OFF). Segments "a" to "e" on LED3 light up when the circuit between output terminal [Y1] to [Y 4] and terminal [CMY], and between [Y5A] and [Y5C] is closed, respectively; it goes OFF when the circuit is open. Segment "a" on LED4 is for terminals [30A/B/C]. This segment lights up when [30C] is short-circuited with [30A], and goes OFF when the circuit is open.

> Tip If all terminal signals are OFF (open), segment " g " on all segments (LED1 to LED5) will light up ("---").

Table 3.4-9 Display of I/O signal status with ON/OFF of each LED segment

LeD5 LED4 LED3 LED2 LED1	Segment	LED4	LED 3	LED 2	LED 1
	a	[30A/B/C]	[Y1-CMY]	[X7]	[FWD]
	b	-	[Y2-CMY]	[X8]	[REV]
	c	-	[Y3-CMY]	[X 9]	[X1]
	d	-	[Y4-CMY]	[EN1]	[X2]
	e	-	[Y5A-Y5C]	[EN2]	[X3]
	f	-	-	(XF) *	[X4]
	g	-	-	(XR) *	[X5]
	dp	-	-	(RST) *	[X6]

-: No corresponding control circuit terminal exists.

* (XF), (XR), and (RST) are assigned for communications control. Refer to "Displaying control I/O signal terminals under communications control" on the next page.

- Displaying I/O signal status in hexadecimal notation

Each I/O terminal is assigned to 16 -digit binary bit 0 to bit 15 . Unassigned bits are interpreted as " 0 ." Allocated bit data is displayed on the LED monitor as four hexadecimal digits ($\left(\underset{I}{I} /\right.$ to $\left.\digamma^{F}\right)$.
On the FRENIC-MEGA, digital input terminals [FWD] and [REV] are assigned to bits 0 and 1, respectively, and terminals [X1] to [X9] are assigned to bits 2 to 6 . The bit is set to " 1 " when the corresponding input terminal is shortcircuited (ON), and it is set to " 0 " when the terminal is open (OFF). For example, when [FWD] and [X1] are ON (short-circuited) and all the others are OFF (open),
Digital output terminals [Y1] to [Y4] are assigned to bits 0 to 3 . Each bit is set to " 1 " when the circuit between [Y1] to [Y4] and [CMY] is short-circuited (ON), and " 0 " when it is open (OFF). The status of contact output terminals [30A/B/C] and [Y5A/C] is assigned to bits 8 and 9 . It is set to " 1 " when the circuit between [30A] and [30C] is closed, and " 0 " when the circuit between [30A] and [30C] is open. For example, if [Y1] is ON, [Y2] is OFF, and the circuit between [30A] and [30C] is closed, "AT) 10 " in displayed on LED5 to LED1.
The terminals assigned to bits 0 to 15 and Display of I/O signal status in hexadecimal notation (example) are shown in Table 3.4-10.

Table 3.4-10 Display of I/O signal status in hexadecimal notation (example)

	D No.	LED 4				LED 3				LED 2				LED 1			
	Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Input terminal		(RST) *	(XR) *	(XF) *	EN2	EN1	X9	X8	X7	X6	X5	X4	X3	X2	X1	REV	FWD
	utput minal	-	-	-	-	-	-	-	$\begin{aligned} & 30 \mathrm{~A} / \\ & \mathrm{B} / \mathrm{C} \end{aligned}$	-	-	-	$\begin{array}{\|l\|} \hline \text { Y5A } \\ \text { /C } \end{array}$	Y4	Y3	Y2	Y1
	Binary	0	0	0	0	0	0	0	0	0	0	0	0	0	1	0	1
		LED5 LED4 LED3 LED2 LED1															

-: No corresponding control circuit terminal exists.

* (XF), (XR), and (RST) are assigned for communications control. Refer to "Displaying control I/O signal terminals under communications control" given below.

- Displaying control I/O signal terminals under communications control

Under communications control, input commands (function code S06) sent via RS-485 or other optional communications can be displayed in two ways: "with ON/OFF of each LED segment" and "in hexadecimal." The content to be displayed is basically the same as that for the control I/O signal terminal status display; however, (XF), (XR), and (RST) are added as inputs. Note that under communications control, the I/O display is in normal logic (using the original signals not inverted)
(LD) For details about input commands sent through the communications link, refer to the "RS-485 Communication User's Manual" or the instruction manual of communication-related options as well.

- Displaying control I/O signal terminals on optional digital interface cards

The LED monitor can also show the signal status of the terminals on the optional digital interface cards, same as the signal status of the control circuit terminals.
The following table lists the assignment of digital I/O signals to the LED segments.
Table 3.4-11 Display of I/O Signal Status with ON/OFF of each LED segment
(Digital interface cards)

LED5 LED4 LED3 LED2 LED1
E.E.E.E. 픈.

Segment	LED4	LED 3	LED 2	LED 1
a	-	O1	19	11
b	-	O2	110	12
c	-	O3	111	13
d	-	O4	112	14
e	-	O5	113	15
f	-	06	114	16
g	-	07	115	17
dp	-	O8	116	18

LED No.	LED 4				LED 3				LED 2				LED 1			
Bit	15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
Input terminal	116	115	114	113	112	111	110	19	18	17	16	15	14	13	12	11
Output terminal	-	-	-	-	-	-	-	-	O8	O7	06	O5	O4	O3	O2	01

3.4.5 Reading maintenance information "Maintenance Information: S.L HE"

Menu number 5 "Maintenance Information: 5. 1 HE" contains information necessary for performing maintenance on the inverter. The menu transition in "Maintenance Information" is same as that in Menu \#3 "Drive Monitoring." (Refer to Section 3.4.3.)
The monitor number and symbol are displayed alternately every 1 second.

Basic key operation

(1) Turn the inverter ON. It automatically enters Running mode in which you press the to switch to Programming mode. The function selection menu appears.
(2) Use the and keys to display "Maintenance Information" (G, $\mathcal{G} \mathrm{HE}$). Press the \circledast key to skip in menu number units.
(3) Press the (
(4) Use the and keys to display the desired maintenance item, then press the key.

The data of the corresponding maintenance item appears.
Press the key to skip to maintenance information +10 . When the end is reached, the display returns to the first maintenance item.
(5) Press the key to return to the list of maintenance items. Press the key again to return to the menu.

Table 3.4-12 "Maintenance Information" display items

Monitor No.	Symbol	Item	Displayed content
5.106	t, 176	Cumulative run time	Displays the content of the cumulative power-ON time counter of the inverter. Counter range: 0 to 65,535 hours When the count exceeds 65,535 , the counter will be reset to " 0 " and start over again.
5.61	Edr	DC link bus voltage	Displays the DC link bus voltage of the inverter main circuit. Unit: V (volts)
5.610°	t. 17794	Max. temperature inside the inverter	Displays the maximum temperature inside the inverter for every hour. Unit: ${ }^{\circ} \mathrm{C}$ (Temperatures below $20^{\circ} \mathrm{C}$ are displayed as $20^{\circ} \mathrm{C}$.)
5.63	LF. 7196	Max. temperature of heat sink	Displays the maximum temperature of the inverter heat sink for every hour. Unit: ${ }^{\circ} \mathrm{C}$ (Temperatures below $20^{\circ} \mathrm{C}$ are displayed as $20^{\circ} \mathrm{C}$.)
5.84	1.8791	Max. effective output current	Displays the maximum current in RMS for every hour. Unit: A (amperes)
5.05	6919	Capacitance of the DC link bus capacitor	Displays the current capacitance of the DC link bus capacitor (reservoir capacitor) in \%, based on the capacitance when shipping as 100%. Refer to Chapter 7 MAINTENANCE AND INSPECTION for details. Display: \%

Table 3．4－12＂Maintenance Information＂display items（cont．）

Monitor No．	Symbol	Item	Displayed content
5.816		Cumulative run time of electrolytic capacitors on the printed circuit boards	Displays the content of the cumulative run time counter of the electrolytic capacitors on the printed circuit boards，which is calculated by multiplying the cumulative run time count by the coefficient based on the surrounding temperature condition． Counter range： 0 to 99，990 hours Display range： hours，the counter stops and the LED monitor remains at 9 g9 910.
5.817	ヒT7．1月n	Cumulative run time of cooling fan	Displays the content of the cumulative run time counter of the cooling fan． This counter does not work when the cooling fan ON／OFF control（function code H 06 ）is enabled and the fan stops． The display method is the same as for $\xi_{\text {－}}^{5}$ above．
5.818	n0．17 1	Startup count for motor 1	Displays the content of the motor 1 startup counter（i．e．，the number of run commands issued）． Counter range： 0 to 65，535 times Display range：解 to When the count exceeds 65,535 times，the counter will be reset to＂ 0 ＂and start over again．
5	吕保	Input watt－hour	Displays the input watt－hour for the inverter． Display range： 17.1710 it to 999 Input watt－hour $=$ Displayed value $\times 100 \mathrm{kWh}$ To reset the integrated input watt－hour and its data，set function code E51 to＂ 0.000 ．＂When the input watt－hour exceeds $999,900 \mathrm{kWh}$ ，the counter will be reset to＂ 0 ．＂
5.18	P． 1971	Input watt－hour data	Displays the value expressed by＂input watt－hour（1．000＝100 kWh）x E51 The function code E51 setting range is 0.000 to 9，999． Unit：None （Display range： 17.17 if to 9999 ．The count cannot exceed 9999. （Fixed at 9999） Depending on the value of integrated input watt－hour data，the decimal point on the LED monitor shifts to show it within the LED monitors＇resolution． To reset the integrated input watt－hour data，set function code E51 to＂0．000．＂
5.11	－İ．nE	Number of RS－485 communications errors（COM port 1）	Displays the total number of errors that have occurred in RS－ 485 communication（COM port 1，connection to keypad）after the power is turned ON． Once the count exceeds 9999，the counter will be reset to＂0．＂
5． 10	ロイIEr	Content of RS－485 communications error（COM port 1）	Displays the latest error that has occurred in RS－485 communication（COM port 1）in decimal． For error contents，refer to the＂RS－485 Communication User＇s Manual．＂
5．	ロロGME	Number of option A errors	Displays the total number of errors that have occurred in the option installed in the A－Port． Once the count exceeds 9999，the counter will be reset to＂0．＂
5.14	817	Inverter ROM version	Displays the inverter＇s ROM version as a 4－digit code．

Table 3.4-12 "Maintenance Information" display items (cont.)

Monitor No.	Symbol	Item	Displayed content
5.16	HEYPG	Keypad ROM version	Displays the keypad ROM version as a 4-digit code.
5.17	che.ne	Number of RS-485 communications errors (COM port 2)	Displays the total number of errors that have occurred in RS485 communication (COM port 2, connection to terminal block) after the power is turned ON. Once the count exceeds 9999, the counter will be reset to " 0 ."
5.19	chicer	Content of RS-485 communications error (COM port 2)	Displays the latest error that has occurred in RS-485 communication (COM port 2, connection to terminal block) in decimal. For error contents, refer to the "RS-485 Communication User's Manual."
5.19	-F'9	Option ROM version 1	Displays the version of the optional ROM installed in the APort in 4 digits. If the option has no ROM, " - - -" appears on the LED monitor.
5.80	- $\mathrm{P}^{\text {- }}$	Option ROM version 2	Displays the version of the optional ROM installed in the BPort in 4 digits. If the option has no ROM, " - - -" appears on the LED monitor.
5.31	-19 -	Option ROM version 3	Displays the version of the optional ROM installed in the CPort in 4 digits. If the option has no ROM, " - - -" appears on the LED monitor.
5.23	E77.71	Cumulative run time for motor 1	Displays the content of the cumulative power-ON time counter for motor 1. Counter range: 0 to 99,990 hours Display range: $\quad 17$ to 99996 When the count exceeds 99,990 hours, the counter will be reset to " 0 " and start over again.
5.24	$t-m t$	Temperature inside the inverter (real-time value)	Displays the current temperature inside the inverter. Unit: ${ }^{\circ} \mathrm{C}$
5.85	E-Fin	Temperature of heat sink (real-time value)	Displays the current temperature of the inverter heat sink. Unit: ${ }^{\circ} \mathrm{C}$
5.86	671.69	Lifetime of DC link bus capacitor (elapsed hours)	Displays the cumulative time during which a voltage is applied to the DC link bus capacitor. When the main power is shut down, the inverter automatically measures the discharging time of the DC link bus capacitor and corrects the elapsed time. The display method is the same as for 5 - 19 above.
5.37	rt.69r	Service life of DC link bus capacitor (remaining time)	Displays the remaining lifetime of the DC link bus electrolytic capacitor, which is estimated by subtracting the elapsed time from the lifetime (10 years). The display method is the same as for 5 - 15 above.
5.3B	671.712	Cumulative run time for motor 2	Displays the content of the cumulative power-ON time counter of motor 2. The display method is the same as for 5

Table 3．4－12＂Maintenance Information＂display items（cont．）

Monitor No．	Symbol	Item	Displayed content
5.69	－ 17.17	Cumulative run time for motor 3	Displays the content of the cumulative power－ON time counter of motor 3 ． The display method is the same as for 5 －
5	－17．714	Cumulative run time for motor 4	Displays the content of the cumulative power－ON time counter of motor 4. The display method is the same as for 5 －
	－6．87	Remaining hours before the next maintenance 1	Displays the hours remaining before the next maintenance， which is estimated by subtracting the cumulative run time of motor 1 from the maintenance interval specified by H78．（This function applies to motor 1 only．） Display range：if to 9999
5 \％	70．170）	Startup count for motor 2	Displays the content of the motor 2 startup counter（i．e．，the number of run commands issued）． The display method is the same as for 5 ， 10 above．
צ－3コ	170．173	Startup count for motor 3	Displays the content of the motor 3 startup counter（i．e．，the number of run commands issued）． The display method is the same as for
5－コリ	0170.714	Startup count for motor 4	Displays the content of the motor 4 startup counter（i．e．，the number of run commands issued）． The display method is the same as for 5 － 18 above．
589	－ 170.17	Remaining startup times before the next maintenance 1	Displays the number of startups remaining until the next maintenance， which is estimated by subtracting the number of startups from the preset startup count for maintenance specified by H 79 ． （This function applies to motor 1 only．） The display method is the same as for 5 ， 10 above．
5 5 36		Warning factor （Latest）	Displays the factor of the latest warning as an alarm code． For details，refer to Chapter 6 ＂ 6.1 Protective Functions．＂
5		Warning factor （Last）	
5	1时等三	Warning factor（2nd last）	Displays the factor of the last warning as an alarm code． For details，refer to Chapter 6 ＂ 6.1 Protective Functions＂．
5.39	L 8178	Warning factor（3rd last）	
5.410	ロFGET	Option A error content	Displays the content of errors that have occurred in the option installed in the A－Port．
5.41	Qrbat	Number of option B errors	Displays the total number of errors that have occurred in the option installed in the B－Port． Once the count exceeds 9999，the counter will be reset to＂0．＂
55^{4}	ロロ゙E\％	Option B error content	Displays the content of errors that have occurred in the option installed in the B－Port．
5×3	QFiCME	Number of option C errors	Displays the total number of errors that have occurred in the option installed in the C－Port． Once the count exceeds 9999，the counter will be reset to＂ 0 ．＂
5.44	ロTEET	Option C error content	Displays the content of errors that have occurred in the option installed in the C－Port．

Table 3.4-12 "Maintenance Information" display items (cont.)

Monitor No.	Symbol	Item	Displayed content
5.47	-19\% \square°	Option A type	Displays the type of option installed in the A-Port. See Table 3.4-13 for the display content.
5.48	-106 \square°	Option B type	Displays the type of option installed in the B-Port. See Table 3.4-13 for the displayed content.
5.49		Option C type	Displays the type of option installed in the C-Port. See Table 3.4-13 for the displayed content.
5.50	rEEGII	Maximum regenerative load factor value	Displays the maximum value when the ς_{-}§ j inverter power is ON . The value returns to 0 when the inverter power is turned OFF.
$5.5 i$	rEG	Regenerative load factor	Displays the regenerative load factor in 100 s intervals. The value is calculated and updated every 100 s while the inverter power is ON.
5.50	dtan.an.if	Maximum braking resistor operation frequency value	Displays the maximum value when the 5.5 inverter power is ON . The value returns to 0 when the inverter power is turned OFF.
5.53	dtan	Braking resistor operation frequency	Displays the braking resistor operation frequency (time ratio) in 100 s intervals. The value is calculated and updated every 100 s while the inverter power is ON.
5.54	6hr.dit	Breaking resistor thermal overload relay operation value	Displays the thermal overload relay operation value percentage at the current time. AdBH alarm occurs at 100%.
5.55	thr.tr	Inverter thermal overload relay operation value 1	Displays the thermal overload relay operation value percentage at the current time. An OLU alarm occurs at 100%.
5.55	thr.tic	Inverter thermal overload relay operation value 2	Displays the thermal overload relay operation value percentage at the current time. An OLU alarm occurs at 100%.
5.57	6 ¢r. 93	Inverter thermal overload relay operation value 3	Displays the thermal overload relay operation value percentage at the current time. An OLU alarm occurs at 100%.
5.58	wint	IGBT life expectancy	Estimates the IGBT life expectancy from changes in IGBT temperature, and displays the remaining times as a percentage. Can be displayed/output as warning 台允 or IF. A warning occurs if less than 10%. Display range: 0 to 100%

Table 3.4-13 Option type display list

Displayed content	Option type
--- -	Not connected
P1)	OPC-PG
¢10.う	OPC-PG2
	OPC-PMPG2 / OPC-PG22
-1	OPC-DI
-10	OPC-DO
910	OPC-AIO
P6\%	OPC-PDP2
dE:	OPC-DEV
-0\%	OPC-COP2
Cit	OPC-CCL
Li	OPC-TL
51	OPC-SX
Etir	OPC-ETM

3.4.6 Reading alarm information "Alarm Information: 6.171

Menu number 6 "Alarm Information: 6.71 l " shows the causes of the past 4 alarms with an alarm code. Further, it is also possible to display alarm information that indicates the status of the inverter when the alarm occurred. Fig. 3.4-3 lists " "Alarm Information" menu transition". The menu transition in "Table 3.4-14" is shown in "Alarm Information" display content.

Fig. 3.4-3 "Alarm Information" menu transition

Basic key operation

Operation (1) Turn the inverter ON. It automatically enters Running mode in which you press the key to switch to Programming mode. The function selection menu appears.
Operation (2) Use the or key to display "Alarm Information" (6. 17 IL). Press the key to skip in menu number units.

Operation (3) Press the key to proceed to the list of alarm codes (e.g., i. ili i).
In the list of alarm codes, the alarm information for the last 4 alarms is saved as an alarm history.
Operation (4) Each time the or key is pressed, the last 4 alarms are displayed beginning with the most

By pressing the key, the display returns to the latest alarm history.
Operation (5) Press the key with an alarm code being displayed.
The monitor number (e.g. 6 time of the alarm occurrence alternately appear at approx. 1-second intervals. Pressing the keys displays other monitor numbers (e.g., $\bar{\square}$, \bar{i} i) and the status information (e.g., Output current) for that alarm code.
By pressing the (ime key at this time, the display can be switched between the monitor number and symbol.
Operation (6) Press the key to return to the list of alarm codes. Press the key again to return to the menu.

Table 3．4－14＂Alarm Information＂display content

Monitor No．	Symbol	Displayed content	Description
E－ 811	Fロut 1	Output frequency	Output frequency before slip compensation when alarm occurred
E－81	1006	Output current	Output current when alarm occurred． Unit：A（amperes）
E18	Mロハ	Output voltage	Output voltage when alarm occurred Unit：V（volts）
	$6-9$	Calculated motor output torque	Calculated motor output torque when alarm occurred
6， 817	FrEF	Frequency specified by frequency command	Frequency specified by frequency command when alarm occurred
6－85	rot	Rotation direction	Displays the current rotation direction when alarm occurred． F ：forward，r ：reverse，\cdots－－：stop
6． 816	519ti	Running status	Running status in 4－digit hexadecimal format Refer to＂ Monitoring： $\bar{J} \cdot \mathrm{IC} \mathrm{Em}$ on page 3－23 for details．
6． 617	E17E	Cumulative run time	Displays the content of the cumulative power－ON time counter of the inverter when alarm occurred． Counter range： 0 to 65，535 hours Display range：in to 6595 When the count exceeds 65,535 ，the counter will be reset to ＂ 0 ＂and start over again．
6． 818	กロ．51	Number of startups	Displays the content of the motor startup counter（i．e．，the number of run commands issued）when alarm occurred． Counter range： 0 to 65,535 times Display range：保 to 659 When the count exceeds 65,535 ，the counter will be reset to ＂ 0 ＂and start over again．
6． 89	Edt	DC link bus voltage	Displays the DC link bus voltage of the inverter main circuit． Unit：V（volts）
E－18	t－mb	Temperature inside the inverter	Displays the temperature of the inverter heat sink when alarm occurred． Unit：${ }^{\circ} \mathrm{C}$
E． 11	ヒーFin	Max．temperature of heat sink	Displays the temperature of the inverter heat sink when alarm occurred． Unit：${ }^{\circ} \mathrm{C}$

Table 3．4－14＂Alarm Information＂display content（cont．）

Monitor No．	Symbol	Displayed content	Description
L． $12{ }^{2}$	$\square 10$	Terminal I／O signal status（displayed with ON／OFF of LED segments）	Refer to＂Table 3．4－9 Display of I／O signal status with ON／OFF of each LED segment＂and＂Table 3．4－10 Display of I／O signal status in hexadecimal notation（example）＂in＂3．4．4 Checking
6． 13	व1－品	Terminal input signal status （in hexadecimal）	
占． 14	do－品	Terminal output signal status （in hexadecimal）	
6．is	no． 71.	No．of consecutive occurrences	Shows how many times the same alarm has occurred consecutively．
	0．1901	Multiple alarm 1	Simultaneously occurring alarm code（1） （＂－－－＂is displayed if no alarm has occurred．）
6．i^{\prime}	0． $1^{199} 6^{3}$	Multiple alarm 2	Simultaneously occurring alarm code（2） （＂－－－＂is displayed if no alarm has occurred．）
6． 18	d 10.1	Terminal I／O signal status under communications control （displayed with the ON／OFF of LED segments）	Displays the ON／OFF state of the digital I／O terminals under RS－485 communications control when alarm occurred． Refer to＂Displaying control I／O signal terminals under communications control＂in＂3．4．4 Checking I／O signal status ＂／／O Checking：И．I．－＂＂for the display content．
5． 19	－1．i－	Terminal input signal status under communications control （in hexadecimal）	
5． 0^{2}		Terminal output signal status under communications control （in hexadecimal）	
6．${ }^{\text {b }}$	54 b	Error sub code	Secondary error code for an alarm．
L $-c^{7} c^{3}$	5t963	Running status 2	Displays running status 2 in 5 －digit hexadecimal format． assignment＂in＂3．4．3 Monitoring the running status＂Drive Monitoring： $\bar{Z} . \mathrm{ATE}$＂for details．
6.83	SpEEd	Detected value	Displays the detected speed value when alarm occurred．
E． $2^{3} 4$	56963	Running status 3	Displays running status 3 in 5 －digit hexadecimal format． Refer to＂Table 3．4－15 Running Status 3 （ 5 －$e^{\prime 2} H^{\prime}$ ）bit assignment＂below for details．
E． 25	Subai	Multiple alarm sub code	Secondary error code for a multiple alarm

[^3]

Bit	Symbol	Content	Bit	Symbol	Content
15	-	Always "0."	7	FAN	" 1 " when the fan is in operation.
14	ID2	" 1 " when current 2 is detected.	6	KP	1 when keypad operation being performed
13	IDL	" 1 " when low current is detected.	5	OL	" 1 " when a motor overload early warning is issued.
12	ID	" 1 " when current is detected.	4	IPF	"1" during auto-restarting after momentary power failure.
11	OLP	"1" under overload prevention control.	3	SWM2	" 1 " when motor 2 is selected.
10	LIFE	" 1 " when a lifetime early warning is issued.	2	RDY	" 1 " when the inverter is ready to run.
9	OH	" 1 " when a heat sink overheat early warning is issued.	1	FDT	" 1 " when frequency is detected.
8	TRY	"1" during auto-resetting.	0	FAR	" 1 " when a frequency arrival signal is issued.

Data copying is used when reading function code data from the inverter and saving it in the TP-E2 keypad or in the multifunction keypad (TP-A2SW), when writing function code data to another inverter, or when comparing function code data saved to the keypad with function code data set in the inverter.
In addition, using menu number 7 allows you to store the running status information in the keypad, detach the keypad from the inverter, connect it to a PC running FRENIC Loader at an office or off-site place, and check the inverter running status without removing the inverter itself.

To store the inverter running status information in the keypad, use "Read data" (rGa) or "Read inverter running
 status information stored in the keypad, refer to the FRENIC Loader Instruction Manual.
Table 3.4-4 below shows the menu transition in menu number 7 "Data Copying." The TP-E2 keypad can store function code data for a single inverter.

Table 3.4-4 "Data Copying" status transition

Basic key operation

Operation（1）Turn the inverter ON．It automatically enters Running mode in which you press the key to switch to Programming mode．The function selection menu appears．
Operation（2）Use the \uparrow and \odot keys to display＂Data Copying＂（ 7.1 .1
Press the $@$ key to skip in menu number units．
Operation（3）Press the（—n key to proceed to the list of data copying functions（e．g．，＂r－
Operation（4）
Use the and keys to select the desired function，then press the key to execute the selected function．
（e．g．，＂rE日G＂＂will blink．）
Operation（5）When the selected function has been completed，＂En－l＂appears．Press the key to return to the list of data copying functions．Press the key again to return to the menu．

Details on each of the data copy functions using the TP－E2 keypad are shown below．
Table 3．4－16 List of data copying functions

LED indication	Function	Description
rE日口	Read data	Reads the function code data out of the inverter memory and stores it in the keypad memory． Also reads out inverter＇s current running status information which can be checked by FRENIC Loader，such as information of I／O，system，alarm，and running status． Pressing the key during a read operation（when＂r immediately aborts the operation and displays＂Err＂（blinking）． By canceling，all data stored in the keypad memory is cleared．
	Write data	Writes data stored in the keypad memory into the inverter memory． If you press the key during a write operation（when＂E－1＂）is blinking），the write operation that is under way will be forcibly aborted and＂Err＂will appear （blinking）． Inverter function code data prior to forcibly aborting will be incompletely changed．Do not run the inverter in this condition． Instead，perform initialization or rewrite the entire data． If unable to copy，refer to＂Reading maintenance information＂Maintenance Information：G．LHE＂on page 3－31． When copying is finished，the operation will be automatically verified． Displays the function code that was not been copied when copying in case that the voltage and capacity are different．
合E，	Verify data	Verifies（compares）the data stored in the keypad memory with that in the inverter＇s memory． If any mismatch is detected，the verify operation will be aborted，with the function code that differs displayed blinking． Pressing the Pressing the key during a verify operation（when＂ilEr ，＂is blinking） immediately aborts the operation and displays＂Err＂（blinking）． ＂Erー＂appears blinking also when the keypad does not contain any valid data．
ErG5E	Erase data	Clears all data stored in the keypad memory． This does not impact inverter function code data．
CHEL	Read inverter running information	Reads out inverter＇s current running status information that can be checked by FRENIC Loader，such as information of I／O，system，alarm，and running status， excluding function code data． Use this command when the function code data saved in the keypad should not be overwritten and it is necessary to keep the previous data． Pressing the Rey during a read operation（ CHEL Hinking）immediately aborts the operation and displays＂Err＂（blinking）．

Table 3.4-17 List of data copying functions (cont.)

LED indication	Function	Description
Prai	Enable Data protection	Enables the protection of data stored in the keypad memory. Data cannot be read or erased from the keypad. Data writing, verification, and inverter operating information reading are possible. Upon pressing the key the inverter immediately displays "Err".

Tip "If "Err" is blinking, press the key to cancel.
 is not changed.

- Data protection

You can protect data saved in the keypad from unexpected modifications. By enabling the data protect function, " r EG" and "EraE" in the data copy function list change to "Frol", and data reading and keypad data erasure from the inverter are prohibited.

To enable or disable the data protection, follow the next steps.
(1) Select the "Data Copying" (7, if in) on the function selection menu in Programming mode.
(2) When "Data Copying" (${ }^{7} 1.1$ protection status between enabled or disabled.
Note For switching the data protection status, be sure to hold the key down for at least 5 seconds. Once the key is released within 5 seconds, press the key to go back to the ${ }^{7} \mathrm{f}$. f display and perform the keying operation again.

- Enabling the disabled data protection

 seconds and then switches to "Fاrロi", enabling data protection.
- Disabling the enabled data protection

 seconds and then switches to "rG日", disabling data protection.

The following are restrictions and special notes concerning "Data Copying."

- If unable to copy

(1) When the "Err" display is blinking (write error), the following causes are conceivable.

- No data has been saved to the keypad memory. (If data has not been read even once since the product was shipped, or was canceled while data was being read)
- There is a problem with the data saved to the keypad memory.
- The inverter model is different.
- Data was written while the inverter was running.
- Inverter data is protected (function code F00 = 1).
- The permit editing command WE-KP is OFF.
- Data reading was attempted when data protection was enabled.
(2) When the " \square If" display is blinking, the following cause is conceivable.
- If the inverter type is the same:

When writing data from a new ROM version to an inverter with an old ROM version, "ロ",F" appears if there is no data compatibility. (This error does not occur if writing data from an old ROM version to an inverter with a new ROM version.) Copying can be continued by pressing the (imer) key. In this case, data is not copied to added function codes by upgrading, but compatibility is retained and data is copied to existing function codes. - If the inverter type differs for special specification products, etc.

Data with no compatibility will be copied, and therefore data copying should not be performed.

3.4.8 Setting "Favorites" function code data "Favorites: $\underset{\sim}{\boldsymbol{U}} \boldsymbol{F} \boldsymbol{\cap} \mathbf{L}$ "

Menu number 0 "Favorites" in Programming mode allows you to display only those function codes in "Favorites", and make changes to function code data. There is no limit to the number of function code data items that can be registered.

Registering and deleting "Favorites"
By pressing the and keys simultaneously while the number of the function code to be registered in "Favorites" is displayed in menu number 1 "Data Setting", the function code data is registered in "Favorites".
The following example describes the procedure for registering and deleting F01 frequency setting 1 in "Favorites".
 has been registered is displayed on the left of the function code. Performing the same operation again deletes the registered data from "Favorites", and the top bar disappears.

Fig. 3.4-5 Registering and displaying favorites

By copying data with the keypad, function codes registered in favorites can also be copied.
By writing " 13 " for H 03 , all registered function codes can be deleted.

3.5 Alarm Mode

If an abnormal condition arises, the protective function is invoked and issues an alarm, then the inverter automatically enters Alarm mode. At the same time, an alarm code appears on the LED monitor.

3.5.1 Releasing the alarm and switching to running mode

Remove the cause of the alarm and press the key to release the alarm and return to Running mode. The alarm can be removed using the key only when the alarm code is displayed.

3.5.2 Displaying the alarm history

It is possible to display the most recent 3 alarm codes in addition to the one currently displayed. Previous alarm codes can be displayed by pressing the key while the current alarm code is displayed.

3.5.3 Displaying the status of inverter at the time of alarm

When the alarm code is displayed, you may check various running status information when the alarm occurred (output frequency and output current, etc.) by pressing the (running status information will be displayed alternately.
Further, you can view various information items on the running status of the inverter using the key. The information displayed is the same as for menu number 6 "Alarm Information" in Programming mode. Refer to Table 3.4-14 in "3.4.6 Reading alarm information "Alarm Information: 6.91 L ."

Pressing the key while the running status information is displayed returns to the alarm code display.
Note
When the running status information is displayed after removal of the alarm cause, pressing the key twice returns to the alarm code display and releases the inverter from the alarm state. This means that the motor starts running if a run command has been received by this time.

3.5.4 Switching to programming mode

You can also switch to Programming mode by pressing " and modify the function code data.

3.6 USB Port

There is a USB cable connection port (miniB) on the front of the keypad. To connect the USB cable, open the connection port cover and connect the cable as shown below.

Connect the inverter directly to a PC with the USB cable. FRENIC Loader allows the user to edit, check, and manage inverter function codes, and perform remote operations such as monitoring data while the inverter is running, and starting and stopping the inverter. The running status and alarms, etc. can also be monitored.
[D] Refer to the "FRENIC Loader Instruction Manual" for details on how to use FRENIC Loader.
Furthermore, the keypad can be temporarily used as memory media. Write the inverter running status to the keypad, disconnect the keypad, and then connect it to a PC with the USB cable at a location other than the workplace such as an office. Function code data and the inverter running status read can be edited, set, and checked with FRENIC Loader.

Refer to section "3.4.8 Copying data" for details on saving data

This chapter describes basic settings required for making a test run.

Contents

4.1 Test Run Procedure Flowchart 4-1
4.2 Checking Prior to Powering On 4-2
4.3 Powering ON and Checking 4-3
4.4 Destination setting 4-4
4.5 Switching the Applicable Motor Rating (HHD/HND Specifications) 4-6
4.6 Selecting the Motor Control Method 4-7
4.6.1 V/f control without slip compensation (induction motors) 4-7
4.6.2 V/f control with slip compensation (induction motors) 4-7
4.6.3 Dynamic torque vector control (induction motors) 4-8
4.6.4 V/f control with sensor (induction motors) 4-8
4.6.5 Dynamic torque vector control with sensor (induction motors) 4-8
4.6.6 Sensorless vector control (induction motors) 4-8
4.6.7 Vector control with sensor (induction motors) 4-9
4.6.8 Sensorless vector control (synchronous motors) 4-9
4.6.9 Vector control with sensor (synchronous motors) 4-10
4.7 Performance Comparison for Drive Controls (Summary) 4-11
4.8 Configuring Function Codes for Drive Controls 4-13
4.8.1 Induction motor operation 4-15
[1] If running the motor with simple V/f control 4-15
[2] If running the motor with V/f control with sensor 4-16
[3] If running the motor with V/f control with slip compensation, dynamic torque vector control, or sensorless vector control 4-18
[4] If running the motor with dynamic torque vector control with sensor or vector control with sensor 4-20
[5] Induction motor tuning method 4-22
4.8.2 Synchronous motor operation 4-25
[1] If running the motor with sensorless vector control (synchronous motors) 4-25
[2] If driving the motor under vector control with sensor (synchronous motors) 4-28
[3] Synchronous motor tuning method 4-34
4.8.3 Motor temperature protection setting 4-38
[1] Electronic thermal overload relay (for motor 1 protection) 4-38
[2] Motor protection with thermistor 4-38
4.9 Setting function codes when switching from a conventional model 4-39
4.9.1 Switching from FRENIC-MEGA (G1S) 4-39
[1] Copying function codes using the keypad 4-39
[2] Entering function codes directly from the keypad 4-39
[3] Entering function codes from PC Loader 4-40
4.9.2 Switching from FRENIC5000G11S/P11S or FRENIC5000G9S/P9S 4-40
4.10 Operation Check 4-41
4.10.1 Test run procedure 4-41
4.10.2 Check points during a test run 4-41
4.10.3 Adjusting the function code for motor control 4-42
4.11 Selecting a Frequency Command Source -4-44
4.11.1 Setting the frequency from the keypad 4-44
4.11.2 Setting the frequency with an external potentiometer (variable resistor) -4-45
4.11.3 Setting the frequency with multistep frequency selection (1 speed, 2 speed, etc.) 4-46
4.12 Selecting a Run Command Source -4-47
4.12.1 Setting run commands from the keypad 4-47
4.12.2 Setting run commands with external signals (terminal [FWD, [REV]) -4-47

4.1 Test Run Procedure Flowchart

Make a test run of the motor using the flowchart given below.
This chapter describes the test run procedure with motor 1 dedicated function codes that are marked with an asterisk (${ }^{*}$).

Fig. 4.1-1 Test run procedure

4.2 Checking Prior to Powering On

Check the following before powering on the inverter.
(1) Check that the wiring is correct.

Especially check the wiring to the inverter input terminals (L1/R, L2/S, L3/T) and output terminals (U, V, and W). Also check that the grounding wires are connected to the grounding terminals ($\boldsymbol{B}_{\boldsymbol{B}}$) correctly. (See Fig. 4.2-1.)

WARNING』

- Never connect power supply wires to the inverter output terminals U, V, and W. Doing so and turning the power ON breaks the inverter.
- Be sure to connect the grounding wires of the inverter and the motor to the ground electrodes.

Failure to observe this could result in electric shock.
(2) Check the control circuit terminals and main circuit terminals for short circuits or ground faults.
(3) Check for loose terminals, connectors and screws.
(4) Check that the motor is separated from mechanical equipment.
(5) Make sure that all switches of devices connected to the inverter are turned OFF. Powering on the inverter with any of those switches being ON may cause an unexpected motor operation.
(6) Check that safety measures are taken against runaway of the equipment, e.g., a defense to prevent people from access to the equipment.
(7) If using a DC reactor (DCR) (option), is it properly connected to DC reactor terminals P 1 and $\mathrm{P}(+)$?

Fig. 4.2-1 Connection of main circuit terminals (three-phase power supply)

4.3 Powering ON and Checking

\triangle WARNING \wedge

- Be sure to attach the surface cover before turning the power on. Do not remove the cover while the power is ON.
- Do not operate the unit with wet hands.

Failure to observe this could result in electric shock.

Turn the power ON and check the following items. The following is a case when no function code data is changed from the factory defaults.
(1) Is it in (reference frequency 0 Hz) blinking on the LED monitor? (See Fig. 4.3-1.) If a value of other than in in in in in in in
(2) If the inverter cooling fan rotating?
(FRN0008G2S-2G/FRN0004G2 \square-4G or below are not equipped with a cooling fan.)

Fig. 4.3-1 Display of the LED monitor after Power-on

[^4]
4．4 Destination setting

For inverter type FRN ${ }^{* * * *}$ G2■－\square G（Global Model），the destination must be set first after the initial power supply． Without setting the destination，the function code cannot be changed．The inverter cannot be operated either．By setting the destination，basic function codes such as rated voltage，rated frequency，etc．are initialized to general values in each region（Table 4．4－1）．If the destination value setting is changed after the initial destination setting，it
 B．GES，all function codes are initialized to the factory defaults．If the destination is set by if in it，only the function codes in Table 4．4－1 are initialized to the values in Table 4．4－1．The destination can be selected from the regions of Japan，Asia，China，Europe，Americas and Korea．
 or the FRENIC loader，manual destination setting is not required．
Set the initial destination as shown below．
（1）With Brat displayed，press key first．

（3）After selecting the destination， 5 佰itio is displayed by pressing key and the destination setting is completed．Then， 17.171017 is displayed．
Table 4．4－1 Initial value for each destination

Destination	Asia	China	Europe	Americas	East Asia	Japan
LED display	95	－－Hn	E_{\square}	ロッ゙ロ\％	E56\％	ルげリ
H101：Destination	2	3	4	5	6	1
F02：Operation method	2	2	2	0	2	2
F03／A01／b01／r01：Maximum output frequency 1 to 4	60.0 Hz					60.0 Hz
F04／A02／b02／r02：Base frequency 1 to 4		50.0 Hz	50.0 Hz	60.0 Hz	60.0 Hz	50.0 Hz
F05／A03／b03／r03：Rated voltage at base frequency 1 to 4 F06／A04／b04／r04：Maximum output voltage 1 to 4	220／415V	380 V	400V	230／460V	200／400V	200／400V
F09／A05／b05／r05：Torque boost 1 to 4	Fuji IE3 motor Standard value				Fuji IE3 motor Standard value	
F11／A07／b07／r07：Electronic thermal 1 to 4（Overload detection level）				motors		
F14：Restart mode after momentary power failure（Mode selection）	1	1	0	0	1	1
F80：Switching between HND and HHD drive modes	HHD	HHD	HND	HND	HHD	HHD
E31／E36／E54：Frequency detection 1 to 3（Level）	$\begin{aligned} & 60.0 \mathrm{~Hz} \\ & (200 \mathrm{~V}) \\ & 50.0 \mathrm{~Hz} \\ & (400 \mathrm{~V}) \end{aligned}$	50.0 Hz	50.0 Hz	60.0 Hz	60.0 Hz	60.0 Hz
E34／E37／E55：Overload early warning／Current detection 1 to 3	Fuji IE3 motor Standard value			HP rating motors	Fuji IE3 motor Standard value	
P02／A16／b16／r16：Motor 1 to 4（Rated capacity）	kW	kW	kW	HP	kW	kW
P03／A17／b17／r17：Motor 1 to 4（Rated current）	Fuji IE3 motor Standard value			HP rating motors	Fuji IE3 motor Standard value	
P06／A20／b20／r20：Motor 1 to 4（No－load current）						
P07／A21／b21／r21：Motor 1 to 4（\％R1）						
P08／A22／b22／r22：Motor 1 to 4（\％X）						
P12／A26／b26／r26：Motor 1 to 4（Rated slip frequency）						
P55／A55／b55／r55：Motor 1 to 4（Torque current under vector control）						
P99／A39／b39／r39：Motor 1 to 4 selection	5	5	5	1	5	5
H96：STOP key priority／Start check function	0	0	0	3	0	0
K01：Multifunction keypad TP－A2SW（Language selection）	1	6	1	1	1	0

Figure 4.4-1 Destination setting status transition chart

4.5 Switching the Applicable Motor Rating (HHD/HND Specifications)

By switching from the factory default HHD specification to the HND specification on three-phase 200V series and three-phase 400 V series inverters, they can be used with a motor reference rated current of one to two ranks higher. However, the overload capability will drop.
Double key operation (soor key + keys) is required to change function code F80 data.
Table 4.5-1

F80 data	Specification type	Application	Continuous current rating level	Overload capability
0	HHD specification	Heavy load	Capable of driving a motor whose capacity is the same as the inverter capacity.	150% for 1 min, 200% for 3 s
1	HND specification	Standard load	Capable of driving a motor with capacity one to two ranks higher than the inverter capacity.	120% for 1 min

LD Some models are incompatible with the HND specification depending on the inverter rated voltage and capacity. Please refer to Chapter 12 "SPECIFICATIONS".

HHD/HND specification inverters are subject to restrictions on the function code data setting range and internal processing as listed below.

Table 4.5-2

Function code	Name	HHD specification	HND specification	Remarks
FI!*	DC braking 1 (Braking level)	Setting range: 0 to 100\%	Setting range: 0 to 80 \%	
5	Motor sound (Carrier frequency)	Setting range 0.75 to 16 kHz (FRN0003G2S-2G to FRN0288G2S-2G) (FRN0002G2■-4G to FRN0150G2■-4G) 0.75 to 10 kHz (FRN0346G2S-2G to FRN0432G2S-2G) (FRN0180G2■-4G to FRN1386G2■-4G)	Setting range 0.75 to 16 kHz (FRN0032G2S-2G to FRN0088G2S-2G) (FRN0018G2■-4G to FRN0045G2■-4G) 0.75 to 10 kHz (FRN0115G2S-2G to FRN0288G2S-2G) (FRN0060G2■-4G to FRN0150G2■-4G) 0.75 to 6 kHz (FRN0346G2S-2G to FRN0432G2S-2G) (FRN0180G2■-4G to FRN1386G2■-4G)	With the HND specification, a value out of the range, if specified, automatically changes to the maximum value allowable for the HND specification.
54	Current limiter (Level)	Initial value: 180\% (FRN0075G2S-2G/FRN0038 G2■-4G or below) Initial value: 160\% (FRN0088G2S-2G/FRN0045 G2■-4G or above)	Initial value: 130\%	When changing F80, the value is rewritten with the value on the left.
-	Current indication and output	Based on the rated current level for HHD specification	Based on the rated current level for HND specification	

Switching between the drive modes does not automatically change the motor rated capacity ($\mathrm{P} 02^{*}$) to the one suitable for the rank-changed motor, so configure the $\mathrm{P} 02^{*}$ data to match the applied motor rating as required.

4.6 Selecting the Motor Control Method

FRENIC-MEGA supports the following motor control methods.
Refer to "4.7 Performance Comparison for Drive Controls (Summary)" for details on the features of each control method.

Table 4.6-1

$\begin{aligned} & \text { F42* } \\ & \text { data } \end{aligned}$	Drive control	Drive control	Applicable motor type	Speed feedback	Speed control	Ref.
0	V/f control with slip compensation inactive	V/f control	Induction motor	No	Frequency control	4.8.1 [1]
1	Dynamic torque vector control				Frequency control	
2	V/f control with slip compensation active				with slip compensation	4.8.1 [2]
3	V/f control with sensor			Yes	Frequency control with ASR (Auto speed regulator)	4.8.1 [3]
4	Dynamic torque vector control with sensor					4.8.1 [3]
5	Sensorless vector control	Vector control		No (estimated speed)	Speed control with automatic speed regulator (ASR)	4.8.1 [3]
6	Vector control with sensor			Yes		4.8.1 [4]
15	Sensorless vector control		Synchronous motor	No (estimated speed)		4.8.2 [1]
16	Vector control with sensor			Yes		4.8.2 [2]

4.6.1 V/f control without slip compensation (induction motors)

Under this control, the inverter controls a motor with the voltage and frequency according to the V/f pattern specified by function codes. This control disables all automatically controlled features such as the slip compensation, so no unpredictable output fluctuation occurs, enabling stable operation with constant output frequency.

4.6.2 V/f control with slip compensation (induction motors)

Applying any load to an induction motor causes a rotational slip due to the motor characteristics, decreasing the motor rotation. The inverter's slip compensation function first presumes the slip value of the motor based on the motor torque generated and raises the output frequency to compensate for the decrease in motor rotation. This prevents the motor from decreasing the rotation due to the slip. That is, this function is effective for improving the motor speed control accuracy.
The compensation value is specified by combination of function codes P12* (Rated slip frequency), P09* (Slip compensation gain for driving) and P11* (Slip compensation gain for braking).

Function code H68* enables or disables the slip compensation function according to the motor driving conditions.
Table 4.6-2

H68* data	Motor driving condition		Motor driving frequency zone	
	Accel / decel	During constant speed	Base frequency or below	Above the base frequency
0	Enable	Enable	Enable	Enable
1	Disable	Enable	Enable	Enable
2	Enable	Enable	Enable	Disable
3	Disable	Enable	Enable	Disable

4.6.3 Dynamic torque vector control (induction motors)

To get the maximal torque out of a motor, this control calculates the motor torque matched to the load applied and uses it to optimize the voltage and current vector output. When the vector control without speed sensor (dynamic torque vector) is selected, automatically auto torque boost and slip compensation become enabled.

This control is effective for improving the system response to external disturbances such as load fluctuations, and the motor speed control accuracy. However, this control is open loop V/f control, and like vector control, current control is not performed. Consequently, there are times when the inverter is unable to respond to sudden load disturbances, but this control also has beneficial characteristic such as a greater maximum torque than with vector control.

4.6.4 V/f control with sensor (induction motors)

Applying any load to an induction motor causes a rotational slip due to the motor characteristics, decreasing the motor rotation.
Under V/f control with speed sensor, the inverter detects the motor rotation using the encoder mounted on the motor shaft and compensates for the decrease in slip frequency by the PI control to match the motor rotation with the reference speed. This improves the motor speed control accuracy.

4.6.5 Dynamic torque vector control with sensor (induction motors)

The difference from "V/f control with speed sensor" stated above is to calculate the motor torque that matches to the load applied, and use it to optimize the voltage and current vector output for getting the maximal torque from the motor. This is effective for improving the system response to external disturbances such as load fluctuations, and the motor speed control accuracy.

4.6.6 Sensorless vector control (induction motors)

This control estimates the motor speed based on the inverter's output voltage and current, and uses the estimated speed for speed control. It also decomposes the motor drive current into the exciting and torque current components, and controls each of those components as vectors. A PG interface card (option) is not required. It is possible to obtain the desired response by adjusting the control constants (PI constants) using the speed regulator (PI controller).

With vector control, a difference (voltage margin) is required between the voltage that the inverter is capable of outputting and the motor induced voltage to a certain extent in order to control the motor current. Generally speaking, general-purpose motors are designed for use with commercial power supplies, but due to the need for this voltage margin, it is necessary to control the current by suppressing the motor terminal voltage. By doing so, it is not possible to deliver rated torque even when the original motor rated current is flowing. To ensure that the rated torque is delivered, it is necessary to increase the rated current (the same applies with vector control with speed sensor).

4.6.7 Vector control with sensor (induction motors)

With this control, a PG interface card (option) must be installed. The inverter detects the motor's rotational position and speed based on PG feedback signals from the motor PG, and uses them to control speed. It also breaks down the motor current into its exciting current and torque current components, and controls each of the components as vectors. It is possible to obtain the desired response by adjusting the control constants (PI constants) using the speed regulator (PI controller). This control enables the speed control with higher accuracy and quicker response than the vector control without speed sensor.

Slip compensation, dynamic torque vector control, sensorless vector control, and vector control with sensor used motor constants. the following conditions should be satisfied; otherwise, full control performance may not be obtained.

- A single motor should be controlled per inverter.
- Motor parameters P02*, P03*, and P06* to P13* should be properly configured or auto-tuning (P04*) should be performed.
- If the capacity of the motor being controlled is smaller than the inverter rated capacity, the current detection resolution will deteriorate, and control performance will drop. In such cases, a motor and inverter combination up to one rank lower is recommended.
- The wiring distance between the inverter and motor should be $50 \mathrm{~m}(164 \mathrm{ft})$ or less. If it is longer, the inverter may not control the motor due to leakage current flowing through stray capacitance to the ground or between wires. Especially, small capacity inverters whose rated current is also small may be unable to control the motor correctly even if the wiring is less than 50 m (164 ft). In that case, make the wiring length as short as possible or use a wire with small stray capacitance (e.g., loosely-bundled cable) to minimize the stray capacitance.

4.6.8 Sensorless vector control (synchronous motors)

This control estimates the motor speed based on the inverter's output voltage and current, and uses the estimated speed for speed control. It also decomposes the motor drive current into the exciting and torque current components, and controls each of those components as vectors. A PG interface card is not required. It is possible to obtain the desired response by adjusting the control constants (PI constants) using the speed regulator (PI controller).

4.6.9 Vector control with sensor (synchronous motors)

With this control, a PG interface card must be installed. The inverter detects the motor speed and pole position based on PG feedback signals from the motor speed/pole position sensors, and uses them to control speed. It also breaks down the motor current into its exciting current and torque current components, and controls each of the components as vectors. It is possible to obtain the desired response by adjusting the control constants (PI constants) using the speed regulator (PI controller).

Sensorless vector control offers a wide speed control range, and highly-responsive speed control.
(Use of the inverter in combination with a Fuji Electric standard synchronous motor with sensor is recommended.)

Motor constants are used with sensorless vector control and vector control with sensor (synchronous motors). Consequently, the following conditions should be satisfied; otherwise, full control performance may not be obtained.

- A single motor should be controlled per inverter.
- Motor parameters P02*, P03*, P30*, and P60* to P63* should be properly configured or auto-tuning should be performed.
- If the capacity of the motor being controlled is smaller than the inverter rated capacity, the current detection resolution will deteriorate, and control performance will drop. In such cases, a motor and inverter combination up to one rank below is recommended.
- The wiring distance between the inverter and motor should be $100 \mathrm{~m}(328.084 \mathrm{ft})$ or less. If it is longer, the inverter may not control the motor due to leakage current flowing through stray capacitance to the ground or between wires. Especially, small capacity inverters whose rated current is also small may be unable to control the motor correctly even if the wiring is less than 100 m (164 ft). In that case, make the wiring length as short as possible or use a wire with small stray capacitance (e.g., loosely-bundled cable) to minimize the stray capacitance.
- To use the inverter with the output frequency exceeding 120 Hz , it is recommended that the carrier frequency (F26) be set to 5 kHz or higher.

4.7 Performance Comparison for Drive Controls (Summary)

Each drive control has advantages and disadvantages. Table 4.71 compares the different drive controls, showing their relative performance in each characteristic. Select the one that shows high performance in the characteristics that are important in your machine. In rare cases, the performance shown below may not be obtained due to various conditions including motor characteristics or mechanical rigidity. The final performance should be determined by adjusting the speed control system or other elements with the inverter being connected to the machine (load).
If you have any questions, contact your Fuji Electric representative.
Table 4.7-1

F42* data	0	1	2	3	4	5	6	15	16
Control method	V/f control without slip compensation	Dynamic torque vector control	V/f control with slip compensation active	V/f control with sensor	Dynamic torque vector control with sensor	Sensorless vector control	Vector control with sensor	Sensorless vector control	Vector control with sensor
Applicable motor	Induction motor							Synchronous motor	
PG (pulse generator, encoder)	Not required	Not required	Not required	Required	Required	Not required	Required	Not required	Required
Motor parameters (tuning, data sheets)	Not required	Required	Required (slip frequency)	Not required	Required	Required	Required	Required	Required
Speed control (speed regulator)	No	No	No	Yes	Yes	Yes	Yes	Yes	Yes
Current control (current regulator)	No	No	No	No	No	Yes	Yes	Yes	Yes
Output frequency accuracy	A	C	C	C	C	C	C	C	C
Speed control accuracy	D	C	D	A	A	Y	A	A	A
Speed responsiveness	D	C	C	Y	Y	Y	A	Y	A
Zero speed control	-	-	-	-	-	C	A	C (motor dependent)	A
Torque accuracy	D	Y	D	D	Y	A	A	Y	A
$\begin{gathered} \text { Torque } \\ \text { responsiveness } \\ \hline \end{gathered}$	D	C	D	D	C	Y	A	Y	A
Starting torque	D	Y	D	D	Y	Y	A	C	A
Maximum torque	A	A	A	A	A	Y (Control based on output voltage \approx power supply voltage)	Y (Control based on output voltage \approx power supply voltage)	Y (Control based on output voltage \approx power supply voltage)	Y (Control based on output voltage \approx power supply voltage)
Torque control	Not possible	Not possible	Not possible	Not possible	Not possible	Possible	Possible	Not possible	Possible
Operation with multiple motors	Possible	Not possible	Not possible	Not possible	Not possible	Not possible	Not possible	Not possible	Not possible
Main applications	Variable speed applications for which responsiveness, speed/torque accuracy are unnecessary	Variable speed applications for which starting torque, torque accuracy are necessary, but for which speed accuracy is not	Variable speed applications for which speed accuracy is necessary to some extent, but for which a level of responsiveness and torque accuracy requiring the use of an encoder is not	Variable speed applications for which speed accuracy is necessary, but for which responsiveness and torque accuracy are not	Variable speed applications for which starting torque and speed accuracy are necessary	Variable speed applications for which starting torque, speed/torque responsiveness, and accuracy are necessary to some extent, but not at a level that requires the use of an encoder	Variable speed applications for which starting torque, speed/torque responsiveness, and high-accuracy control are necessary	Variable speed applications for which responsiveness and speed accuracy are necessary to some extent, but for which a level of starting torque that requires the use of an encoder is not	Variable speed applications for which starting torque, speed/torque responsiveness, and high-accuracy control are necessary

4.8 Configuring Function Codes for Drive Controls

The relation of the motor control method, motor selection and motor parameter setting is shown in Figure 4.81 . It is necessary to change the motor parameter setting depending on the driven motor.

Fig.4.8-1

The factory default is set to induction motor with V/f control ($\mathrm{F} 42^{*}=0$). Accordingly, it will not be possible to run the motor properly if a synchronous motor is connected.
If running a synchronous motor, it is necessary to change the F42* setting to 15 or 16, and set the motor constants correctly beforehand.
[D] Refer to "4.6.8 Sensorless vector control (synchronous motors)" for basic settings.
If F42* is changed to synchronous motor (15 or 16), or if synchronous motor is changed to induction motor, it will be necessary to change other motor parameters such as F04*, F05*, and P01*.Refer to Chapter 5 "5.3.4 P codes (Motor 1 parameters)" for details.
It is recommended to change to torque control ($\mathrm{H} 18=2$ or 3) after checking that the operation is normal in the test run.
The test run seems to be better to be executed under speed control $(\mathrm{H} 18=0)$ temporarily even if torque control is required.

4.8.1 Induction motor operation

[1] If running the motor with simple V/f control

Configuring the function codes of motor parameters

If using V / f control $\left(\mathrm{F}_{2} 2^{*}=0\right)$, configure the function codes listed below according to the motor ratings and design values of the machine. For the motor ratings, check the ratings printed on the motor's nameplate. For design values of the machine, ask system integrators or machine manufacturers about them.

For details on how to modify the function code data, see Chapter 3 "3.4.1 Setting up function codes "Data Setting"'.

Table 4.8-1

Function code	Name	Function code data	Factory default
F -174*	Base frequency 1		
F 85 *	Rated voltage at base frequency 1	(printed on the nameplate of the motor)	
F99*	Motor 1 selection	0: Fuji standard motors, 8-series 2: Fuji dedicated motors for vector control 3: Non-standard motors, motors of other companies 5: Fuji premium efficiency motors	Please refer to Table 4.4-1 Initial value for each destination
	Motor 1 (Rated capacity)	Applicable motor capacity	Standard applicable motor capacity
F 173	Maximum frequency 1	Machine design values	Please refer to Table 4.4-1 Initial value for each destination
F 1717	Acceleration time 1 (Note)	increase values so that they are longer than your machine design values.	FRN0115G2S-2G/FRN0060G2 -4G or below: 6.00 (s)
F 178	Deceleration time 1 (Note)	If the specified time is short, the inverter may not run the motor properly.	FRN0146G2S-2G/FRN0075G2 -4G or above: 20.00 (s)

Changing P02* will automatically change P03*, P06* to P13*, P16* to P20*, P53*, P55*, P56*, and H46, and therefore caution is advised.

If using control functions such as auto torque boost, torque calculation value monitoring, auto energy saving, torque limiting, anti-regenerative control, auto search, slip compensation, torque vectors, droop control, and overload stop function, it is necessary to set the appropriate motor constants.
In any of the following cases, the full control performance may not be obtained from the inverter because the motor parameters differ from the factory defaults, so perform auto-tuning.

- The driven motor is a non-Fuji or a Fuji non-standard one.
- The wiring distance between the inverter and the motor is too long (generally 20 m or more).
- A reactor is installed between the inverter and the motor
[D] Refer to "4.8.1 [5] Induction motor tuning method" if performing tuning.

[2] If running the motor with V/f control with sensor

Configuring the function codes concerning a PG (pulse generator) and PG signals

If using "V/f control with sensor (F42* = 3)", "Dynamic torque vector control with sensor (F42* $=4$)", or "Vector control with sensor ($F 42^{*}=6$)", it is necessary to set function codes corresponding to the encoder specification.

Refer to "Chapter 3 "3.4.1 Setting up function codes "Data Setting""" for details on how to change function code data.

Table 4.8-2

Function code	Name	Function code data	Factory default
-14	Feedback input (Pulse input format)	2: A, B phase 90° phase difference (B phase lead) 3: A, B phase 90° phase difference (A phase lead)	2: A, B phase (B phase lead)
-19	Feedback encoder pulse count	Set "Pulse number of the target motor encoder" in hexadecimal notation.(Displayed in decimal notation on the multi-function keypad) 0400 HEX/1024 P/R	0400 HEX
-16	Feedback input (Pulse scaling factor 1)	Reduction ratio between the motor and the encoder Setting is unnecessary if the encoder is directly linked to the motor (factory default = 1). Motor speed $=$ Encoder speed x (d17) / (d16)	1
-17	Feedback input (Pulse scaling factor 2)		1

If the rotation direction/speed detection signal from the encoder does not match with the motor rotation direction, excessive current is applied. In the case of the vector control with speed sensor ($F 42^{*}=6$), the motor does not reach the set frequency but rotates slowly at the speed equivalent to the slip frequency. In this case, check that the phase order of motor wires is correct and the encoder wires are correctly connected and are not broken.

Tip In $4 _17$ to $4 _18$ of I/O check, the number of feedback pulses per second of $A B$ phase and Z phase can be checked. $\ln \overline{3} _29$ of the drive monitor, the frequency $[\mathrm{Hz}]$ calculated from the speed detection signal from the encoder can be checked. These are displayed regardless of the control method if the PG interface card is mounted and the encoder is wired.

Fuji regards the CCW as the forward rotation direction viewed from the motor output shaft as shown in Figure 4.82. During rotation in the forward direction, the PG output pulse forms a forward rotation signal (B phase leads by 90 degrees) as shown in Figure 4.7 2, and during rotation in the reverse direction, a reverse rotation signal (A phase lead s by 90 degrees).

Fig.4.8-2

In the case of using motors which comply with IEC standard, their rotation directions are opposite to that in Figure 4.72.

Configuring the function codes of motor parameters

If using "V/f control with sensor ($\mathrm{F} 42^{*}=3$)", it is necessary to set the basic function codes below.
Configure the function codes listed below according to the motor ratings and design values of the machine. For the motor ratings, check the ratings printed on the motor's nameplate. For design values of the machine, ask system integrators or machine manufacturers about them.

For details on how to modify the function code data, see Chapter 3 "3.4.1 Setting up function codes "Data Setting"".
(1) Setting motor basic constants

Table 4.8-3

Function code	Name	Function code data	Factory default
F 174	Base frequency 1	Motor rating (printed on the nameplate of the motor)	Please refer to Table 4.4-1 Initial value for each destination
F [15*	Rated voltage at base frequency 1		
「99*	Motor 1 selection	0: Fuji standard motors, 8-series 2: Fuji dedicated motors for vector control 3: Non-standard motors, motors of other companies 5: Fuji premium efficiency motors	
	Motor 1 (Rated capacity)	Applicable motor capacity	Standard applicable motor capacity
	Maximum frequency 1	Machine design values (Note) For the test run of the motor, increase values so that they are longer than your machine design values. If the specified time is short, the inverter may not run the motor properly.	Please refer to Table 4.4-1 Initial value for each destination
F 87	Acceleration time 1 (Note)		FRN0115G2S-2G/FRN0060G2 -4G or below: 6.00 (s)
$F 8$	Deceleration time 1 (Note)		FRN0146G2S-2G/FRN0075G2 -4G or above: 20.00 (s)

(2) Initializing motor constants

After setting the basic motor constants, initialize $(\mathrm{H} 03=2)$ motor 1 with function code H 03 .
Necessary motor constant related function codes are automatically set. Refer to Chapter 5"5.3.5 H codes (High performance functions)" for details.

Changing P02* will automatically change $\mathrm{P} 03^{*}, \mathrm{P} 06^{*}$ to $\mathrm{P} 13^{*}, \mathrm{P} 16^{*}$ to $\mathrm{P} 20^{*}, \mathrm{P} 53^{*}, \mathrm{P} 55^{*}, \mathrm{P} 56^{*}$, and H 46 , and therefore caution is advised.
If using control functions such as auto torque boost, torque calculation value monitoring, auto energy saving, torque limiting, anti-regenerative control, auto search, slip compensation, torque vectors, droop control, and overload stop function, it is necessary to set the appropriate motor constants.
In any of the following cases, the full control performance may not be obtained from the inverter because the motor parameters differ from the factory defaults, so perform auto-tuning.

- The driven motor is a non-Fuji or a Fuji non-standard one.
- The wiring distance between the inverter and the motor is too long (generally 20 m (65.6 ft) or more).
- A reactor is installed between the inverter and the motor.
[D] Refer to "4.8.1 [5] Induction motor tuning method" if performing tuning.

[3] If running the motor with V/f control with slip compensation, dynamic torque vector control, or sensorless vector control

Configuring the function codes of motor parameters

If using " V / f control with slip compensation ($\mathrm{F} 42^{*}=2$)", "Dynamic torque vector control ($\mathrm{F} 42^{*}=1$ ", or "Sensorless vector control ($\mathrm{F} 42^{*}=5$)", it is necessary to set the basic function codes below.

Configure the function codes listed below according to the motor ratings and design values of the machine. For the motor ratings, check the ratings printed on the motor's nameplate. For design values of the machine, ask system integrators or machine manufacturers about them.

For details on how to modify the function code data, see Chapter 3 "3.4.1 Setting up function codes "Data Setting"".

Fuji standard motors

(1) Setting motor basic constants

Table 4.8-4

Function code	Name	Function code data	Factory default
F [17\%	Base frequency 1	Motor rating (printed on the nameplate of the motor)	Please refer to Table 4.4-1 Initial value for each destination
F $\square_{15} 5$	Rated voltage at base frequency 1		
「99*	Motor 1 selection	0: Fuji standard motors, 8-series 2: Fuji dedicated motors for vector control 5: Fuji premium efficiency motor	
F10)*	Motor 1 (Rated capacity)	Applicable motor capacity	Standard applicable motor capacity
	Maximum frequency 1	Machine design values (Note) For the test run of the motor, increase values so that they are longer than your machine design values. If the specified time is short, the inverter may not run the motor properly.	Please refer to Table 4.4-1 Initial value for each destination
F 817	Acceleration time 1 (Note)		FRN0115G2S-2G/FRN0060G2 -4G or below: 6.00 (s)
$F 8$	Deceleration time 1 (Note)		FRN0146G2S-2G/FRN0075G2 -4G or above: 20.00 (s)

(2) Initializing motor constants

After setting the basic motor constants, initialize $(\mathrm{H} 03=2)$ motor 1 with the function code H 03.
Necessary motor constant related function codes are automatically set. Refer to Chapter 5 " 5.3 .5 H codes (High performance functions)" for details.

Note Changing P02* will automatically change P03*, P06* to P13*, P16* to P20*, P53*, P55*, P56*, and H46, and therefore caution is advised.
Even for Fuji standard motors, perform tuning in such cases as when the length of wiring between the inverter and motor is long (generally 20 m (65.6 ft) or more), or if connecting a reactor between the inverter and motor.

(3) Performing tuning

Even for Fuji standard motors, be sure to perform tuning if using sensorless vector control.
Perform tuning in accordance with the "4.8.1 [5] Induction motor tuning method".

Fuji non-standard motors, motors of other companies

(1) Setting the motor basic constants

Table 4.8-5

Function code	Name	Function code data	Factory default
F99*	Motor 1 selection	4: Other motors	Please refer to Table 4.4-1 Initial value for each destination
F84*	Base frequency 1	Motor rated value (printed on motor rating nameplate) If the motor synchronous rotation speed (min-1) is identified, calculate F04* by the following formula and set it. $\frac{\text { Synchronous speed }}{120} \times$ No. of poles	
F-15*	Rated voltage at base frequency 1		
	Motor 1 (Rated capacity)		Standard applicable motor capacity
F-7)*	Motor 1 (Rated current)		
F-6*	Motor 1 (No-load current)	Setting is not necessary if rotation tuning is possible. In case of difficult to execute rotation tuning: Set the value in the motor test report or the value calculated by the following formula. $\sqrt{(10 \square J)^{2}-(15 G)}$	Please refer to Table 4.4-1 Initial value for each destination
F 517	Maximum frequency 1	Machine design values	
5817	Acceleration time 1 (Note)	(Note) For the test run of the motor, increase values so that they are longer than your machine design values.	FRN0115G2S-2G/FRN0060G2 -4G or below: 6.00 (s)
58	Deceleration time 1 (Note)	If the specified time is short, the inverter may not run the motor properly.	FRN0146G2S-2G/FRN0075G2■ -4G or above: 20.00 (s)

[^5]
(2) Performing tuning

Perform tuning in accordance with the "4.8.1 [5] Induction motor tuning method".

[4] If running the motor with dynamic torque vector control with sensor or vector control with sensor

Configuring the function codes concerning a PG (pulse generator) and PG signals

If running the motor with "Dynamic torque vector control with sensor ($\mathrm{F} 42^{*}=4$)" or "Vector control with sensor ($F 42^{*}=6$)", it is necessary to set function codes corresponding to the PG (encoder) specification.

Set function codes in accordance with "4.8.1 [2] If running the motor with V/f control with sensor Configuring the function codes concerning a PG (pulse generator) and PG signals".

Configuring the function codes of motor parameters

If using "Dynamic torque vector control with sensor (F42* $=4$)" or "Vector control with sensor (F42* $=6$)", it is necessary to set the basic function codes below.

Configure the function codes listed below according to the motor ratings and design values of the machine. For the motor ratings, check the ratings printed on the motor's nameplate. For design values of the machine, ask system integrators or machine manufacturers about them.
(1)d For details on how to modify the function code data, see Chapter 3"3.4.1 Setting up function codes "Data Setting"".

Fuji standard motors

(1) Setting the motor basic constants

Table 4.8-6

Function code	Name	Function code data	Factory default
F $1.14 *$	Base frequency 1	Motor rating (printed on the nameplate of the motor)	Please refer to Table 4.4-1 Initial value for each destination
F 185	Rated voltage at base frequency 1		
$999 *$	Motor 1 selection	0: Fuji standard motors, 8-series 2: Fuji dedicated motors for vector control 5: Fuji premium efficiency motors	
F171*	Motor 1 (No. of poles)	No. of applicable motor poles	4 (poles)
F101*	Motor 1 (Rated capacity)	Applicable motor capacity	Standard applicable motor capacity
F咢等*	Maximum frequency 1	Machine design values (Note) For the test run of the motor, increase values so that they are longer than your machine design values. If the specified time is short, the inverter may not run the motor properly.	Please refer to Table 4.4-1 Initial value for each destination
F	Acceleration time 1 (Note)		FRN0115G2S-2G/FRN0060G2 -4G or below: 6.00 (s) FRN0146G2S-2G/FRN0075G2 -4G or above: 20.00 (s)
F 19	Deceleration time 1 (Note)		

(2) Initializing motor constants

After setting the basic motor constants, initialize ($\mathrm{H} 03=2$) motor 1 with the function code H 03 .
Necessary motor constant related function codes are automatically set. Refer to Chapter 5 " 5.3 .5 H codes (High performance functions)" for details.

Changing P02* will automatically change P03*, P06* to P13*, P16* to P20*, P53*, P55*, P56*, and H46, and therefore caution is advised.
Even for Fuji standard motors, perform tuning in such cases as when the length of wiring between the inverter and motor is long (generally 20 m (65.6 ft) or more), or if connecting a reactor between the inverter and motor.

Fuji non－standard motors，motors of other companies
（1）Setting the motor basic constants
Table 4．8－7

Function code	Name	Function code data	Factory default
ロ99＊	Motor 1 selection	4：Other motors	Please refer to Table 4．4－1 Initial value for each destination
F 175	Base frequency 1	Motor rated value（printed on motor rating nameplate） If the motor synchronous rotation speed（min－1）is identified，calculate F04＊by the following formula and set it． Synchronous speed 120	
F－15\％	Rated voltage at base frequency 1		
口品1＊	Motor 1 （No．of poles）		4 （poles）
$\square^{1} 100^{-1}$	Motor 1 （Rated capacity）		Standard applicable motor capacity
口咢少＊	Motor 1 （Rated current）		
Prib＊	Motor 1 （No－load current）	Setting is not necessary if rotation tuning is possible． In case of difficult to execute rotation tuning： Set the value in the motor test report or the value calculated by the following formula． $\sqrt{(0 \square G)^{2}-(195)}$	Please refer to Table 4．4－1 Initial value for each destination
F－73＊	Maximum frequency 1	Machine design values	
$\mathrm{F}_{1017}^{7 \%}$	Acceleration time 1 （Note）	（Note）For the test run of the motor， increase values so that they are	FRN0115G2S－2G／FRN0060G2■
F	Deceleration time 1 （Note）	If the specified time is short，the inverter may not run the motor properly．	FRN0146G2S－2G／FRN0075G2 －4G or above： 20.00 （s）

[^6]（2）Performing tuning
Perform tuning in accordance with the＂4．8．1［5］Induction motor tuning method＂．

[5] Induction motor tuning method

If performing tuning, do so using the following procedure after specifying settings based on the control method indicated previously (4.7.1 [1] to [4].)

Selecting the tuning method

Check the situation of the machine and select "Tuning with the motor stopped ($\mathrm{P} 04^{*}=1$)" or "Tuning with the motor running ($\mathrm{P} 04^{*}=2$)." For the latter tuning, adjust the acceleration and deceleration times (F07 and F08) and specify the rotation direction that matches the actual rotation direction of the machine.

When selecting rotation tuning" (P04* $=2$), the motor will rotate at a speed 50% of the base frequency, allowing tuning to be performed safely.

Table 4.8-8

$\begin{aligned} & \text { P04* } \\ & \text { data } \end{aligned}$	Tuning type	Motor parameters subjected to tuning	Tuning	Select under the following conditions
1	Tune while the motor stops.	Primary resistance (\%R1) (P07*) Leakage reactance (\%X) (P08*) Rated slip frequency (P12*) \%X correction factor 1, 2 (P53*, P54*)	Tuning with the motor stopped	Cannot rotate the motor.
2	Tune while the motor is rotating	No-load current (P06*) Primary resistance (\%R1) (P07*) Leakage reactance (\%X) (P08*) Rated slip frequency (P12*) Magnetic saturation factor 1 to 5 , a, b, c (P16* to P23*) \%X correction factor 1, 2 (P53*, P54*)	Tuning the \%R1 and \%X, with the motor stopped. Tuning the no-load current and magnetic saturation factor, with the motor running at 50% of the base frequency. Tuning again the rated slip frequency, with the motor stopped.	Can rotate the motor, provided that it is safe. Note that little load should be applied during tuning. Tuning with load applied decreases the tuning accuracy.
5	Tune while the motor stops.	Primary resistance (\%R1) (P07*) Leakage reactance (\%X) (P08*) \%X correction factor 1, 2 (P53*, P54*)	Tuning with the motor stopped	Cannot rotate the motor. The tuning results of motor parameters will be automatically stored into their respective function codes. If tuning by P04* is performed, the tuning results will be stored into P^{*} codes (Motor 1* parameters).

The tuning results of motor parameters will be automatically stored into their respective function codes.
If tuning by $\mathrm{P} 04^{*}$ is performed, the tuning results will be stored into P^{*} codes (Motor 1^{*} parameters). In the case of tuning by $A 18^{*}$, the tuning data is set to the function code (A^{*} code) of motor 2^{*}.

Mechanical system preparation

In preparation for tuning, remove the motor coupling with the load and deactivate the safety devices before rotation tuning.

- Tuning procedure

1) Set function code P04* to " 1 ", " 2 ", or " 5 ", and press the

2) Enter a run command.
(The factory default is forward rotation with the keypad Bun key.)
To switch to reverse rotation or to select the terminal signal FWD or REV as a run command using the keypad, change the data of function code F02.
3) By entering a run command, tuning is started, and the progress status is displayed as a percentage (\%).
4) In the case of function code $\mathrm{P} 04^{*}=2$ (rotation tuning), after the tuning in 3) above is complete, the motor is accelerated to approximately 50% of the base frequency and then tuning starts. After measurement, the motor decelerates to stop.
5) If the terminal signal $F W D$ or $R E V$ is selected as a run command ($F 02=1$), "En" appears upon completion of measurement. Turning the run command OFF completes the tuning.
If the run command has been given through the keypad or the communications link, it automatically turns OFF upon completion of the measurements, which completes the tuning.
6) Upon completion of the tuning, the subsequent function code appears on the keypad.

The initial setting for the speed regulator (ASR) is rather low to prevent hunting. However, hunting may occur during tuning due to mechanical conditions. If so, a tuning error (may occur. When $E r^{-7}$ occurs, lower the speed control gain, and when $E-E$ occurs, cancel the speed mismatch detection ($\mathrm{d} 23=0$), and then perform tuning again.

Tuning errors (induction motors)

If the tuning result is incorrect, in the worst case scenario, control performance will be adversely affected, possibly resulting in hunting or accuracy issues. Consequently, if the inverter determines that there is an abnormality in the tuning sequence or tuning results, "E[$\boldsymbol{r}^{\Gamma_{l}^{\prime}}$ " appears, and the tuning data is destroyed.

Listed below are possible causes that trigger tuning errors and measures.
Table 4.8-9

Possible tuning error causes	Er7 error subcode	Details and measures
Sequence error	9 0 9	Before completion of tuning, a run command has been turned OFF. Or during tuning, terminal command STOP ("Force to stop") or BX ("Coast to a stop") has been entered. Do not stop the inverter running until completion of tuning.
Overcurrent error	$\stackrel{E}{6}$	During tuning, an excessively large current has flown. \rightarrow Release a mechanical brake or take any other measure to remove the cause resulting in overcurrent.
Error in tuning results	$\begin{aligned} & \hline 1 \\ & 2 \\ & 3 \\ & 4 \\ & 4 \end{aligned}$	An interphase voltage unbalance or output phase loss has been detected. Tuning has resulted in an abnormally high or low value of a parameter due to the output circuit opened. Check the wiring.
Tuning frequency error (only when P04=2)	13	The maximum frequency or the frequency limiter (high) has limited the output frequency. Increase the F03 and F15 settings to values greater than 50% of the base frequency 1 (F04).
Occurrence of alarm	15	During tuning, any alarm has occurred. Check the contents of the multiple alarm and remove the error cause. "TROUBLESHOOTING."
Acceleration time timeout (only when P04=2)	16	The output frequency has not reached 50% of the base frequency within the specified acceleration time "F07×300\%". Increase the F07 setting.

DD For error subcodes, refer to Chapter 3 "3.4.6 Reading alarm information".
If any of these errors occurs, remove the error cause and perform tuning again, or consult your Fuji Electric representative.

[^7]
4.8.2 Synchronous motor operation

[1] If running the motor with sensorless vector control (synchronous motors)

Configuring the function codes of motor parameters

If using "Sensorless vector control ($F 42^{*}=15$)", it is necessary to set the basic function codes below.
Configure the function codes listed below according to the motor ratings and design values of the machine. For the motor ratings, check the ratings printed on the motor's nameplate. For design values of the machine, ask system integrators or machine manufacturers about them.
(1) For details on how to modify the function code data, see Chapter 3"3.4.1 Setting up function codes "Data Setting"'.

Fuji standard synchronous motor (GNB2, GNP1 series)

(1) Setting the motor basic constants

Table 4.8-10

Function code	Name	Function code data	Factory default
58	Motor sound (carrier frequency)	2 kHz or more	2 kHz
F413*	Drive control selection 1	15: Sensorless vector control (synchronous motors)	0: V/f control without slip compensation
999*	Motor 1 selection	21: Fuji synchronous motor (GNB2 series) 23: Fuji synchronous motor (GNP1 series) If 15 is not set for $\mathrm{F} 42^{*}, 21$ or 23 cannot be set for P99.	Please refer to Table 4.4-1 Initial value for each destination
	Motor 1 (Rated capacity)	Applicable motor capacity	Standard applicable motor capacity
$\square^{9} 3710$	Synchronous motor 1 (magnetic pole position detection method)	Motor type and starting method 1: IPM	1: IPM
F-73*	Maximum frequency 1	Machine design values (Note) For the test run of the motor, increase values so that they are longer than your machine design values. If the specified time is short, the inverter may not run the motor properly.	Please refer to Table 4.4-1 Initial value for each destination
F Fig	Frequency limiter (upper limit)		70.0 (Hz)
F 17	Acceleration time 1 (Note)		FRN0115G2S-2G/ FRN0060G2■-4G or below: 6.00 (s)
58	Deceleration time 1 (Note)		FRN0146G2S-2G/ FRN0075G2■-4G or above: 20.00 (s)

(2) Initializing motor constants

After setting the basic motor constants, motor constants are automatic set for each function code by initializing the motor constants with $\mathrm{H} 03=2$.

* If H03 is changed, double key operation with the "soop key + keys" is necessary.
* After initialization, the data of function code H 03 automatically returns to "0" (Factory default value).
(LD) For details on how to make changes to function code data, refer to Chapter 3 "3.4.1 Setting up function codes "Data Setting: I.F _ to I.I' _ "".

Fuji non－standard motors，motors of other companies

（1）Selection of PMSM type and pole position detection method

Synchronous motors are categorized into the following types based on the structure of the rotor．
a）Surface magnet assembling magnet on rotor surface（SPM：Surface Permanent Magnet）
b）Buried magnet assembling magnet into rotor iron core（IPM：Interior permanent magnet）
The starting magnetic pole position detection method depends on the motor type．In most cases，the IPMs are generally used，but the SPMs are sometimes used．Check the specifications with the motor manufacturer before using synchronous motors．
Set the Initial magnetic position detection mode to the function code P30＊．For details，refer to Chapter 5 ＂ 5.3 .4 P codes（Motor 1 parameters）＂．
If the motor type is unknown，set $\mathrm{P} 30^{*}=0$ ．

（2）Setting the motor basic constants

To drive other manufacturer＇s synchronous motor，set the motor parameters shown in Table 4.82 and execute offline tuning．Check the motor parameters on the motor rating nameplate or consult with the motor manufacturer before setting them．

Note
Depending on the order，there may be cases where motor constants for synchronous motors are set individually when the product is shipped．Please note that by initializing data using with H03，motor constant data will be lost．Record the motor constants prior to initialization．

Set motor constants after selecting sensorless vector control with F42＊$=15$ ．
Set the motor constants shown in the following table．The setting values are determined by the values on the motor nameplate and machine specifications．Check the nameplate values and machine specifications beforehand．

Table 4．8－11

Function code	Name	Function code data	Factory default
56	Motor sound（carrier frequency）	Check the motor specifications and set．	2 kHz
$F 40^{7}$	Drive control selection 1	15：Sensorless vector control	0：V／f control without slip compensation
P99＊	Motor 1 selection	20：Other motors （synchronous motors） If 15 is not set for F42＊， 20 cannot be set for P99＊．	Please refer to Table 4．4－1 Initial value for each destination
F 17	Base frequency 1	Motor ratings（printed on the nameplate of the motor） If the motor synchronous speed is known，calculate F04＊by the following formula and set it． Synchronous speed 120 \times No．of poles	
F 515	Rated voltage at base frequency 1		
P昌1＊	Motor 1 （No．of poles）		4 （poles）
	Motor 1 （Rated capacity）		Standard applicable motor capacity
¢咢）＊	Motor 1 （Rated current）		Please refer to Table 4．4－1 Initial value for each destination
$\bigcirc 317$	Synchronous motor 1 （magnetic pole position detection method）	Motor type and starting method If 0 ：Rotor structure（magnet layout）is unknown： 1：IPM 2：SPM 3：IPM（current draw method） 4：High－frequency superimposing method	1：IPM
「白3＊	Synchronous motor 1 （induced voltage）	Value described in motor test report If the value is unknown，execute rotation tuning．	Fuji standard synchronous motor （GNB2 series）constant

Table 4.8-11 Cont.

Function code	Name	Function code data	Factory default
F64*	Synchronous motor 1 (iron loss factor)	Set "the iron loss described in motor test report divided by Motor rated capacity: $\square^{\square-1 / 2}$ *". Set 0\%, if the iron loss is unknown.	Fuji standard synchronous motor (GNB2 series) constant
$\square 910$	Synchronous motor 1 (overcurrent protection level)	Set the demagnetization limit current. Set to prevent demagnetizing the motor. If it is unknown, set approx. 200\% of motor rated current.	Fuji standard synchronous motor (GNB2 series) constant
F琞寻*	Maximum frequency 1	Machine design values (Note) For the test run of the motor, increase values so that they are longer than your machine design values. If the specified time is short, the inverter may not run the motor properly.	Please refer to Table 4.4-1 Initial value for each destination
$F 15$	Frequency limiter (upper limit)		70.0 (Hz)
5817	Acceleration time 1 (Note)		FRN0115G2S-2G/FRN0060G2 -4G or below: 6.00 (s)
$F 18$	Deceleration time 1 (Note)		FRN0146G2S-2G/FRN0075G2 -4G or above: 20.00 (s)

(3) Performing tuning (synchronous motors)

Perform tuning in accordance with the "4.8.2 [3] Synchronous motor tuning method".

If a filter other than the Fuji optional output filter (OFL-םםם-םA) is connected to the inverter's output (secondary) circuit, the tuning result cannot be assured. When replacing the inverter connected with such a filter, make a note of the old inverter's settings for the primary resistance \%R1, leakage reactance \%X, no-load current, and rated slip frequency, and specify those values to the new inverter's function codes.
Vibration that may occur when the motor's coupling is elastic can be regarded as normal vibration due to the output voltage pattern applied in tuning. The tuning does not always result in an error; however, run the motor and check its running state.

[2] If driving the motor under vector control with sensor (synchronous motors)

Configuring the function codes concerning a PG (pulse generator) and PG signals

If using "Vector control with sensor (F42* $=16)^{\prime}$ ", it is necessary to set the following function codes in order to receive receipt speed feedback value from the encoder.

For details on how to modify the function code data, see Chapter 3 "3.4.1 Setting up function codes "Data Setting"".

Table 4.8-12

Function code	Name	Function code data	Factory default
-19	Feedback encoder (Pulse input format)	2: A, B phase 90° phase difference (B phase lead) + Z-phase 3: A, B phase 90° phase difference (A phase lead) + Z-phase 4: A, B phase $+\mathrm{U}, \mathrm{V}, \mathrm{W}$ phase magnetic pole position detection method If using a Fuji standard synchronous motor (GNF2 series), set to 4 .	2: A, B phase (B phase lead)
-15	Feedback input (Encoder pulse resolution)	Set "Pulse number of the target motor encoder" in hexadecimal notation.(Displayed in decimal notation on the multi-function keypad) $0400 \text { HEX/1024 P/R }$	0400 HEX

If the rotation direction/speed detection signal from the encoder does not match with the motor rotation direction, excessive current is applied. In the case of the vector control with sensor (F42*=6), the motor does not reach the set frequency but rotates slowly at the speed equivalent to the slip frequency. In this case, check that the phase order of motor wires is correct and the encoder wires are correctly connected and are not broken.

In 4_17 to $4 _18$ of I/O check, the number of feedback pulses per second of $A B$ phase and Z phase can be checked. In $3 _29$ of the drive monitor, the frequency $[\mathrm{Hz}]$ calculated from the speed detection signal from the encoder can be checked. These are displayed regardless of the control method if the PG option card is mounted and the encoder is wired.

Fuji regards the CCW as the forward rotation direction viewed from the motor output shaft as shown in Figure 4.82. During rotation in the forward direction, the PG output pulse forms a forward rotation signal (B phase leads by 90 degrees) as shown in Figure 4.8 2, and during rotation in the reverse direction, a reverse rotation signal (A phase lead s by 90 degrees).

Fig.4.8-3

Note
In the case of using motors which comply with IEC standard, their rotation directions are opposite to that in Figure 4.82.

The motor rotation directions are as shown on the right when using the A, B phase $+\mathrm{U}, \mathrm{V}, \mathrm{W}$ phase magnetic pole position detection method.

Configuring the function codes of motor parameters

If using "Vector control with sensor ($F 42^{*}=16$)", it is necessary to set the basic function codes below.
Configure the function codes listed below according to the motor ratings and design values of the machine. For the motor ratings, check the ratings printed on the motor's nameplate. For design values of the machine, ask system integrators or machine manufacturers about them.

For details on how to modify the function code data, see Chapter 3 "3.4.1 Setting up function codes "Data Setting"'".

Fuji standard synchronous motor (GNF2 series)

(1) Setting the motor basic constants

Table 4.8-13

Function code	Name	Function code data	Factory default
56	Motor sound (carrier frequency)	2 kHz or more	2 kHz
$\leqslant 412 *$	Drive control selection 1	16: Vector control with speed sensor	0: V/f control without slip compensation
F99*	Motor 1 selection	22: Fuji synchronous motor (GNF2 series) If 16 is not set for F42*, 22 cannot be set for P99*.	Please refer to Table 4.4-1 Initial value for each destination
F^{10712}	Motor 1 (Rated capacity)	Applicable motor capacity	Standard applicable motor capacity
$\square 37{ }^{17}$	Synchronous motor 1 (magnetic pole position detection method)	Motor type and starting method 1: IPM	1: IPM
F胢3*	Maximum frequency 1	Machine design values (Note) For the test run of the motor, increase values so that they are longer than your machine design values. If the specified time is short, the inverter may not run the motor properly.	Please refer to Table 4.4-1 Initial value for each destination
$F 15$	Frequency limiter (upper limit)		70.0 (Hz)
F 817	Acceleration time 1 (Note)		FRN0115G2S-2G/FRN0060G2 ■-4G or below: 6.00 (s)
$F 19$	Deceleration time 1 (Note)		FRN0146G2S-2G/FRN0075G2 -4G or above: 20.00 (s)

(2) Initializing motor constants

After setting the basic motor constants, motor constants are automatic set for each function code by initializing the motor constants with $\mathrm{H} 03=2$.

* To change the data of function code H03, double key operation "srof) key + key" is necessary.
* After initialization, the data of function code H03 automatically returns to "0" (Factory default value).

For details on how to make changes to function code data, refer to Chapter 3 "3.4.1 Setting up function codes "Data Setting"".

(3) Adjusting the magnetic pole position sensor offset

If using a Fuji standard synchronous motor (GNF2 series), a label indicating the "magnetic pole position" data is affixed to the motor. Set this data for function code P95* (magnetic pole position sensor offset).

If the magnetic pole position is unknown, set $\mathrm{P} 04^{*}=4$ with the tuning selection in "4.8.2 [3] Synchronous motor tuning method", and adjust the magnetic pole position sensor offset.

Fuji non-standard motors, motors of other companies:

(1) Selection of PMSM type and pole position detection method

Synchronous motors are categorized into the following types based on the structure of the rotor.
a) Surface magnet assembling magnet on rotor surface (SPM: Surface Permanent Magnet)
b) Buried magnet assembling magnet into rotor iron core (IPM: Interior permanent magnet)

The starting magnetic pole position detection method depends on the motor type. In most cases, the IPMs are generally used, but the SPMs are sometimes used. Check the specifications with the motor manufacturer before using synchronous motors.
Set the Initial magnetic position detection mode to the function code P30*. (For details, refer to Chapter 5 "5.3.4 P codes (Motor 1 parameters)."

If the motor type is unknown, set $\mathrm{P} 30^{*}=0$.

（2）Setting the motor basic constants

To drive other manufacturer＇s synchronous motor，set the motor parameters shown in Table 4.82 and execute offline tuning．Check the motor parameters on the motor rating nameplate or consult with the motor manufacturer before setting them．

Note Depending on the order，there may be cases where motor constants for synchronous motors are set individually when the product is shipped．Please note that by initializing data using with H 03 ，motor constant data will be lost．Record the motor constants prior to initialization．

Set motor constants after selecting vector control with sensor with F42＊$=16$ ．
Set the motor constants shown in the following table．The setting values are determined by the values on the motor nameplate and machine specifications．Check the nameplate values and machine specifications beforehand．

Table 4．8－14

Function code	Name	Function code data	Factory default
$5{ }^{56}$	Motor sound（carrier frequency）	Check the motor specifications and set．	2 kHz
F46＊	Drive control selection 1	16：Vector control with speed sensor for PM	0：V／f control without slip compensation
999＊	Motor 1 selection	20：Other motors （synchronous motors） If 15 is not set for F42＊， 20 cannot be set for P99．	Please refer to Table 4．4－1 Initial value for each destination
F R14＊	Base frequency 1	Motor ratings（printed on the nameplate of the motor） If the motor synchronous speed is known，calculate F04＊by the following formula and set it． Synchronous motor 120 \times No．of poles	
F 65＊	Rated voltage at base frequency 1		
Fig	Motor 1 （No．of poles）		4 （poles）
	Motor 1 （Rated capacity）		Standard applicable motor capacity
［9］3＊	Motor 1 （Rated current）		Please refer to Table 4．4－1 Initial value for each destination
	Synchronous motor 1 （magnetic pole position detection method）	Motor type and starting method If 0：Rotor structure（magnet layout）is unknown： 1：IPM 2：SPM 3：IPM（current draw method） 4：High－frequency superimposing method	1：IPM
口処年＊	Synchronous motor 1 （induced voltage）	Value described in motor test report If the value is unknown，execute rotation tuning．	Fuji standard synchronous motor （GNB2 series）constant
P64＊	Synchronous motor 1 （iron loss factor）	Set＂the iron loss described in motor test report divided by Set 0\％，if the iron loss is unknown．	Fuji standard synchronous motor （GNB2 series）constant
9817 ＊	Synchronous motor 1 （overcurrent protection level）	Set the demagnetization limit current．Set to prevent demagnetizing the motor．If it is unknown，set approx．200\％of motor rated current．	Fuji standard synchronous motor （GNB2 series）constant

Table 4.8-14 Cont.

Function code	Name	Function code data	Factory default
F-73*	Maximum frequency 1	Machine design values (Note) For the test run of the motor, increase values so that they are longer than your machine design values. If the specified time is short, the inverter may not run the motor properly.	Please refer to Table 4.4-1 Initial value for each destination
$F 15$	Frequency limiter (upper limit)		70.0 (Hz)
517	Acceleration time 1 (Note)		FRN0115G2S-2G/FRN0060G2 -4G or below: 6.00 (s)
58	Deceleration time 1 (Note)		FRN0146G2S-2G/FRN0075G2 -4G or above: 20.00 (s)

(3) Performing tuning (synchronous motors)

Perform tuning in accordance with the "4.8.2 [3] Synchronous motor tuning method".

[3] Synchronous motor tuning method

If performing tuning, do so using the following procedure after specifying settings based on the control method indicated in 4.7.1 [1] to [2].

Selection of tuning type

Check the situation of the machine and select either "Tuning with the motor stopped ($\mathrm{P} 04^{*}=1$)" or "Tuning with the motor running (P04* = 2)."
Furthermore, if only adjusting the magnetic pole position sensor offset, select rotation tuning ($\mathrm{P} 04^{*}=4$).
For the latter tuning, adjust the acceleration and deceleration times (F07 and F08) and specify the rotation direction that matches the actual rotation direction of the machine.

It is not possible to perform stop tuning $(\mathrm{P} 04=1)$ with $\mathrm{P} 30^{*}$ set to 0 or 3 . In this case the alarm I^{7} 年 with subcode 21 occurs.
When performing magnetic pole position sensor offset tuning, the motor rotates in both the forward and reverse directions. If not wishing to rotate the motor in the reverse direction due to machine restrictions, set the rotation direction control function (H 08) to 1 (reverse rotation prevention).
Magnetic pole position sensor offset tuning does not work for A, B, or Z-phase type PG sensors.

Table 4.8-15

P04* data		Motor parameters subjected to tuning	Tuning	Select under the following conditions
1	Tune while the motor stops.	Armature resistance (P60*) d-axis inductance (P61*) q-axis inductance (P62*) Reserved (P84*, P88*)	Tuning with the motor stopped.	- Impossible to rotate the motor e.g., when a mechanical load has already been applied to the motor). - P30* is set to "1" or "2 (see note above).
2	Tune while the motor is rotating	Armature resistance (P60*) d-axis inductance (P61*) q-axis inductance (P62*) Induced voltage (P63*) Reserved (P84*, P88*)	Tuning the armature resistance, d-axis inductance, q-axis inductance, and parameter values (P84* and P88*) with the motor stopped. Tuning the induced voltage with the motor running at 50% of the base frequency.	- Possible to rotate the motor, provided that it is safe.
		Magnetic pole position sensor offset (P95*)	Tuning the magnetic pole position sensor offset with motor rotating (speed set with d80)	Perform only if using vector control with sensor (synchronous motor) ($\mathrm{F} 42^{*}=16$) using an A, B phase $+\mathrm{U}, \mathrm{V}$, W phase magnetic pole position detection method (d14 = 4) encoder.
4	Rotation tuning	Magnetic pole position sensor offset (P95*)	Tuning the magnetic pole position sensor offset with motor rotating (speed set with d80)	Perform if tuning the magnetic pole position sensor only. Select PM vector control with sensor (P42* = 16).

The tuning results of motor parameters will be automatically saved into their respective function codes.

- Preparation of machine

In preparation for tuning, remove the motor coupling with the load and deactivate the safety devices before rotation tuning.

Tuning procedure

1) Set function code P04* to " 1 ", " 2 ", or " 4 ", and press the (The $\dot{\prime}$ and ξ^{3}, or 4 indicator will blink slowly.)
2) Enter a run command.
(The factory default is forward rotation with the keypad Run) key.)
(To switch to reverse rotation or to select the terminal signal FWD or REV as a run command using the keypad, change the data of function code F02.)
3) By entering a run command, tuning is started, and the progress status is displayed as a percentage (\%).
4) If function code $\mathrm{P} 04^{*}=2$ (rotation tuning), tuning is performed by rotating the motor to 50% of the base frequency, and if function code P04 $=4$ (magnetic pole position sensor offset tuning), tuning is performed by rotating the motor at 1 Hz (factory default).
After measurement, the motor decelerates to stop.
5) If the terminal signal $F W D$ or $R E V$ is selected as a run command ($F 02=1$), " $E n$ n" appears upon completion of measurement. Turning the run command OFF completes the tuning. If the run command has been given through the keypad or the communications link, it automatically turns OFF upon completion of the measurements, which completes the tuning.
6) Upon completion of tuning, the next function code appears on the keypad.

The initial setting for the speed regulator (ASR) is rather low to prevent hunting. However, hunting may occur during tuning due to mechanical conditions. If so, a tuning error ($E-\frac{F}{I}$) or speed mismatch ($E-E$) may occur. When $E-r^{7}$ occurs, lower the speed control gain, and when $E r E$ occurs, cancel the speed mismatch detection $(\mathrm{d} 23=0)$, and then perform tuning again.

Tuning errors (induction motors)

Improper tuning would negatively affect the operation performance and, in the worst case, could even cause hunting or deteriorate precision. Therefore, if the inverter finds any abnormality in the tuning results or any error in the tuning process, it displays $\left[\Gamma^{7}\right]$ and discards the tuning data.

When the tuning error $\left(E^{-17}\right)$ appears, check that:

- The inverter's output (secondary) circuit is not opened.
- The mechanical brake is released.
- The terminal command $\boldsymbol{B X}$ ("Coast to a stop") is ON.
- Any function code is wrongly configured.

Listed below are possible causes that trigger tuning errors and measures.
Table 4.8-16

Possible tuning error causes	Er'7 error subcode	Details and measures
Sequence error	7 \square 9 9	Before completion of tuning, a run command has been turned OFF. Or during tuning, terminal command STOP ("Force to stop") or BX ("Coast to a stop") has been entered. Do not stop the inverter running until completion of tuning.
Overcurrent error	$\underset{i}{6}$	During tuning, an excessively large current has flown. \rightarrow Release a mechanical brake or take any other measure to remove the cause resulting in overcurrent.
Tuning frequency error (only when P04* ${ }^{*}$)	13	The maximum frequency or the frequency limiter (high) has limited the output frequency. Increase the F03 and F15 settings to values greater than 50% of the base frequency 1 (F04).
Occurrence of alarm	15	During tuning, any alarm has occurred. \rightarrow Check the contents of the multiple alarm and remove the error cause. "TROUBLESHOOTING."
Acceleration time timeout (only when P04*=2)	18	The output frequency has not reached 50% of the base frequency within the specified acceleration time "F07×300\%". \rightarrow Increase the F07 setting.
Control method error	こ'	When P30* is set to 0 or 3 , it is necessary to rotate the motor in order to perform magnetic pole position tuning, but if P04 $=1$ (stop tuning) is performed with this setting, or If P04 = 5 (stop tuning) is performed with $\mathrm{F} 42^{*}=15$: Set to the correct combination.
Parameter setting error	51073	The rated impedance or rated inductance is out of the effective range. \rightarrow Check the F04*, F05* and P03* settings.
Magnetic pole position calculation failure	5005	When $\mathrm{P} 30^{*}=1$ or 3 : The saliency ratio of the motor inductance is low. When $\mathrm{P} 30^{*}=2$: The motor has no magnetic saturation characteristic. \rightarrow If this error occurs when $\mathrm{P} 30^{*}=1$, decrease the $\mathrm{P} 87^{*}$ setting. Note that it may fail to tune the motor that does not easily cause magnetic saturation. \rightarrow If this error occurs when P30* $=2$ or 3 , change the $\mathrm{P} 30^{*}$ setting to " 0 " and adjust the F24* setting (Starting Frequency 1, Holding time) by gradually increasing it in increments of 0.5 to 5.0 s until rotational tuning succeeds.
Lack of magnetic saturation	5056	The magnetic saturation characteristic of the motor is low so that the inverter has failed to discriminate the magnetic pole position. \rightarrow Gradually increase the P87* setting up a maximum of 120%. If it produces no effect, change the P30* setting to " 0 " or " 3 ," and the F24* setting to 0.5 to 5.0 s .
Excessive magnetic saturation	5095	If there is a risk of danger because the magnetic saturation characteristic of the motor is high so that an excessively large current could flow at the discrimination time of the magnetic pole position: Decrease the P87* setting.

Possible tuning error causes	$E-7$ error subcode	Details and measures
Error in tuning	to	
results		

(1) Refer to Chapter 3 "3.4.6 Reading alarm information" for details on how to check error subcodes.
[D] If an error other than $E \Gamma^{\circ} 7$ I occurs, refer to "Chapter 6 TROUBLESHOOTING" and eliminate the cause. If any of these errors occurs, remove the error cause and perform tuning again, or consult your Fuji Electric representative.

4.8.3 Motor temperature protection setting

[1] Electronic thermal overload relay (for motor 1 protection)

The inverter is equipped with an electronic thermal overload relay protective function which is activates (OL1). Output current inside the inverter is monitored, and if the motor is run at greater current value than that for which a long time is set, the protective function (OL1) is triggered. This function is used to protect the motor from overheating due to excessive motor loads.

Set based on the characteristics of the motor being used.
Function code F10*: Select motor characteristics (1: autocooling fan (factory default), 2: separately excited fan (inverter motor, etc.)),
F11*: Operation level (set motor rated current x 1.0 to 1.1, factory default is Fuji standard motor rated current value),
F12*: Thermal time constant (time that motor runs at 150% of operation level)Refer to Chapter 5 "5.3.1 F codes (Basic functions)" for details. For motors 2 to 4 , set with function codes A, b, and r. It is not possible to provide protection for individual motors when multiple motors are connected to a single inverter. Individual protection should therefore be provided using thermal overload relays.

[2] Motor protection with thermistor

If the motor is equipped with a built-in PTC NTC type thermistor for temperature detection, the motor temperature is detected directly, offering temperature protection by inputting the signals from these devices to control terminals [V2] and [11].

Connection method

When using the terminal [V2] for PTC/NTC thermistor input, also set SW5 on the control printed circuit board to the PTC/NTC side.

Function code $\mathrm{H} 26^{*}$: 0 : No operation
1: PTC thermistor (protection stopped with OH 4)
2: PTC thermistor (warning output)
3: NTC thermistor (protection stopped with OH4)
H27*: Operation level
Set the operating voltage Vv 2 obtained with the following calculation for $\mathrm{H} 27^{*}$.
$\mathrm{V}_{\mathrm{V} 2}=\frac{\mathrm{Rp}}{27000+\mathrm{Rp}} \times 10.5(\mathrm{~V}) \quad \mathrm{V} 2$: Operating voltage, Rp: Thermistor operating resistance
[1] Refer to Chapter 5 " 5.3 .5 H codes (High performance functions)" for details.

4.9 Setting function codes when switching from a conventional model

Use the following procedure to set function codes when switching from a Fuji general-purpose inverter (FRENIC-MEGA (G1S), FRENIC5000G11S/P11S, FRENIC5000G9S/P9S) to FRENIC-MEGA (G2S).

4.9.1 Switching from FRENIC-MEGA (G1S)

The keypad copy function can be used to set function codes easily by reading function codes from conventional models FRENIC-MEGA (G1S) and copying them to the FRENIC-MEGA (G2S).

If function codes are copied with the keypad function codes that are partially different are automatically read and copied. If performing function code operations using RS-485 or any form of bus communication, function code y96 (G1 compatibility mode) should also be set.

[1] Copying function codes using the keypad

(1) Preparation for copying function codes to MEGA (G2S)
(2) Read G1S data with the keypad on the existing MEGA (G1S).

```
Press the key.
    \downarrow
```



```
    \downarrow
```



```
    \downarrow
```



```
when reading is complete.
```

(3) Install the G1S keypad on the new FRENIC-MEGA (G2) and write data.

Functions codes can also be copied in the same way using the FRENIC-MEGA (G2S) keypad.
Refer to Chapter 3 "3.4.7 Copying data" for details on how to copy data.
G2S function codes that do not exist in the G1S cannot be rewritten. If the G2S settings for the copy destination are unknown, it is recommended that settings be copied after first returning settings to the factory default status.
There are function codes that cannot be copied when terminals [FWD] and [REV] are ON.
Turn OFF terminals [FWD] and [REV] for the MEGA (G2) to which function codes are copied.

[2] Entering function codes directly from the keypad

FRENIC-MEGA (G2S) function codes are generally compatible with FRENIC-MEGA (G1S) function codes, and the FRENIC-MEGA (G2S) can be used by setting the existing G1S setting values for the same function codes on the G2S. Furthermore, additional function codes are compatible with the G1S by default, and therefore there is no need to change settings.Some function codes are incompatible. If using these, it will be necessary to change the settings.

[3] Entering function codes from PC Loader

The MEGA series keypad is equipped with a USB port, allowing it to be easily connected to a PC. This allows data to be read and copied using the PC Loader software.PC Loader can be downloaded free of charge from the Fuji Electric website. Refer to the PC Loader software instruction manual for details on how to use it.

4.9.2 Switching from FRENIC5000G11S/P11S or FRENIC5000G9S/P9S

Function codes and data for the FRENIC-MEGA (G2S) differ from the models above. Set function codes from the keypad.

4.10 Operation Check

After completion of preparations for a test run as described above, start running the inverter for motor operation check using the following procedure.
\triangle WARNING
If the user configures the function codes wrongly without completely understanding this User's Manual, the motor may rotate with a torque or at a speed not permitted for the machine.
Failure to observe this could result in an accident or injury.

4.10.1 Test run procedure

If set at "4.9 Setting function codes when switching from a conventional model", operation may start at the predetermined high frequency when the power is turned ON, and therefore it is recommended that the initial test run be performed at a low frequency.
The method used to set the factory default frequency from the keypad, and the test run method with run command entered is shown below.
(1) Turn the power ON and check that the reference frequency in blinking on the LED monitor.
(2) Set a low reference frequency such as 5 Hz , using keys. (Check that the frequency is blinking on the LED monitor.)
(3) Press the RuN key to start running the motor in the forward direction. (Check that the reference frequency is lit on the LED monitor.)
(4) To stop the motor, press the (soo) key.

4.10.2 Check points during a test run

(1) Check that the motor is running in the forward direction.
(2) Check for smooth rotation without motor humming or excessive vibration.
(3) Check for smooth acceleration and deceleration.

When no abnormality is found, press the key again to start driving the motor, then increase the reference frequency using keys. Check the above points again.

Tip Depending on the settings of function codes, the motor speed may rise to an unexpectedly high and dangerous level, particularly, under vector control with sensor. To avoid such an event, the speed limiting function is provided.
If the user is unfamiliar with the function code settings (e.g., when the user starts up the inverter for the first time), it is recommended that the "F15: Frequency limiter (Upper limit)" and the torque control "d32: Speed limit 1" and "d33: Speed limit 2" are used. At the startup of the inverter, to ensure safer operation, specify small values to those function codes at first and gradually increase them while checking the actual operation.
The speed limiting function serves as an overspeed level barrier, or as a speed limiter under torque control.

Dd For details on the speed limiting function, refer to Chapter 5 "FUNCTION CODES".
Tip
If performing sensorless vector control (synchronous motors) and P30* is set to other than " 0 ", noise that may occur from the motor at the start of running can be regarded as normal.

4.10.3 Adjusting the function code for motor control

Adjusting the current function code data sometimes resolve issues such as insufficient torque or overcurrent. Table 4.91 lists the major function codes to be accessed.

Refer to Chapter 5 "FUNCTION CODES" and Chapter 6 "TROUBLESHOOTING" for details.
Table 4.10-1

Function code	Name	How to adjust	Control method	
			Induction motor	Synchronous motor
517	Acceleration time 1	If the current limiter is activated due to a short acceleration time and large drive current, prolong the acceleration time.	$\begin{gathered} \text { V/f } \\ \text { vector } \end{gathered}$	With sensor Sensorless
1818	Deceleration time 1	If an overvoltage trip occurs due to a short deceleration time, prolong the deceleration time.	$\begin{gathered} \text { V/f } \\ \text { vector } \end{gathered}$	With sensor Sensorless
F 19 \%	Torque boost 1	If the starting motor torque is deficient under V/f control mode, increase the torque boost. If the motor with no load is overexcited (current increasing), decrease the torque boost.	V/f	-
$F 44$	Current limiter (Level)	If the stall prevention function is activated by the current limiter during acceleration or deceleration, increase the operation level.	V/f	-
19717\%	Motor 1 (\%R1)	If the starting motor torque is insufficient under automatic torque boost and torque vector control, increase \%R1. If the motor with no load is over-excited (current increasing), decrease \%R1.	$\begin{gathered} \text { V/f } \\ \text { vector } \end{gathered}$	-
P199*	Motor 1 (Slip compensation gain for driving)	For excessive slip compensation during driving, decrease the gain; for insufficient one, increase the gain.	V/f (sensorless) (sensorless vector)	-
F1i*	Motor 1 (Slip compensation gain for braking)	For excessive slip compensation during braking, decrease the gain; for insufficient one, increase the gain.		
H17\%	Curve acceleration/deceleration	If overshoot to the change in speed command is large, make curve acceleration/deceleration speed effective.	$\begin{gathered} \text { V/f } \\ \text { vector } \end{gathered}$	With sensor Sensorless
1199	Anti-regenerative control	If an overvoltage alarm occurs without a braking resistor, enable the anti-regenerative control function.	V/f vector	-
H817*	Output current fluctuation damping gain for motor 1	If motor current vibration occurs, adjust in the direction that increases the damping gain.	V/f	-

If there is no improvement by adjusting the above function codes when performing V/f control with sensor, with sensor/sensorless vector control, with sensor/sensorless vector control for synchronous motors, adjust the following function codes also. In the above control methods, PI regulator is used for speed control. The desired response can be obtained by adjusting the control constants (PI constants) to match the load inertia. The major function codes to adjust are shown below.

Table 4.10-2

Function code	Name	How to adjust
dit i *	Speed control 1 (Speed command filter)	If an excessive overshoot or undershoot occurs for a speed command change, increase the filter constant. If motor response is slow for a speed command change, decrease the filter constant.
dibl ${ }^{\text {* }}$	Speed control 1 (Speed detection filter)	If ripples are superimposed on the speed detection signal so that the speed control gain cannot be increased, increase the filter constant to obtain a larger gain. It is not necessary to change the factory default normally.
	Speed control 1 P (Gain)	If hunting is caused in the motor speed control, decrease the gain. If speed mismatch or excessive speed deviation ($E r E$) occurs because the motor response is slow, increase gain.
di $34 *$	Speed control 1 I (Integral time)	If speed mismatch or excessive speed deviation ($E-E$) occurs because the motor response is slower, decrease the integration time. If the load inertia is large, increase the integration time.

4.11 Selecting a Frequency Command Source

Factory default run commands are set from the keypad. A setting example for frequency command input methods other than this is shown below.

4.11.1 Setting the frequency from the keypad

Follow the procedure given below.
(1) Configure the function codes as listed below.

Table 4.11-1

Function code	Name	Function code data	Factory default
$F i i_{i}$	Frequency setting 1	0: Keypad operation (\odot) keys $)$	0

Note

- When the keypad is set to Programming or Alarm mode, the keys are disabled to modify the reference frequency. You need to switch to Running mode to enable frequency setting with the \bigcirc keys.
- If any of higher priority frequency command sources (multistep frequency commands and frequency commands via communications link) is specified, the inverter may run at an unexpected frequency.
(2) Press the key to display the current frequency command on the LED monitor. The least significant digit blinks.
(3) To change the frequency command, press the key again.

If the frequency command is set with the keys, the least significant digit displayed flashes and the data is changed from the least significant digit and the changing digit gradually shifts to the upper digit.

Tip

- In order to specify settings such as the reference frequency, press the key once, and when the rightmost digit flashes, press the key. The flashing digit will then move, making it easy to change large values.
(4) To save the new setting into the inverter's memory, press the \qquad key.For details on how to modify the function code data, see Chapter 3 "3.4.1 Setting up function codes "Data Setting"'".

4.11.2 Setting the frequency with an external potentiometer (variable resistor)

Follow the procedure given below. Specify the same settings if entering the voltage for analog voltage from another source.
(1) Configure the function codes as listed below.

Table 4.11-2

Function code	Name	Function code data	Factory default
$F G \prime$	Frequency setting 1	1: Analog voltage input to terminal [12] $(0$ to $\pm 10 \mathrm{~V})$	0

If terminals [FWD] and [REV] are ON (short-circuited), the F01 setting cannot be changed. First turn terminals [FWD] and [REV] OFF, and then change the setting.
(2) Connect an external potentiometer to terminals [11] through [13] of the inverter.

If inputting analog voltage, input DC voltage (0 to 10 V) to terminals [11] and [12].
(3) Rotate the external potentiometer to apply voltage to terminal [12] for a frequency command input.For precautions in wiring, refer to Chapter 2 "INSTALLATION AND WIRING".For details on how to modify the function code data, see Chapter 3 "3.4.1 Setting up function codes "Data Setting"".

4.11.3 Setting the frequency with multistep frequency selection (1 speed, 2 speed, etc.)

Follow the procedure given below.
(1) Configure the function codes as listed below.

Table 4.11-3

Function code	Name	Function code data	Factory default
$E G i$ to $E 17$	[X1] to [X9] function selection	$0,1,2,3$: Multistep frequency selection (1 to 15 steps) [0: SS1, 1: SS2, 2: SS4, 3: SS8]	0
[19 to	Multistep Frequency 1 to 15	0.00 to 599.0 Hz	0.00

It is possible to change to a predetermined frequency with function codes C 05 to C 19 (multistep frequency) by switching digital input signals from an external source. By setting data 0 to 3 for the digital input terminals to be assigned, the frequency to be selected is determined with a combination of these input signals.
Table 4.11-4

Combination of set data input signals				Selected frequency	
$\begin{gathered} 3 \\ \text { "SS8" } \end{gathered}$	$\begin{gathered} 2 \\ \text { "SS4" } \end{gathered}$	$\begin{gathered} 1 \\ \text { "SS2" } \end{gathered}$	$\begin{gathered} 0 \\ \text { "SS1" } \end{gathered}$		
OFF	OFF	OFF	ON	C05 (Multistep frequency 1)	Related function codes C05 to C19 Data setting range: $0.00 \text { to } 599.0$
OFF	OFF	ON	OFF	C06 (Multistep frequency 2)	
OFF	OFF	ON	ON	C07 (Multistep frequency 3)	
OFF	ON	OFF	OFF	C08 (Multistep frequency 4)	
OFF	ON	OFF	ON	C09 (Multistep frequency 5)	
OFF	ON	ON	OFF	C10 (Multistep frequency 6)	
OFF	ON	ON	ON	C11 (Multistep frequency 7)	
ON	OFF	OFF	OFF	C12 (Multistep frequency 8)	
ON	OFF	OFF	ON	C13 (Multistep frequency 9)	
ON	OFF	ON	OFF	C14 (Multistep frequency 10)	
ON	OFF	ON	ON	C15 (Multistep frequency 11)	
ON	ON	OFF	OFF	C16 (Multistep frequency 12)	
ON	ON	OFF	ON	C17 (Multistep frequency 13)	
ON	ON	ON	OFF	C18 (Multistep frequency 14)	
ON	ON	ON	ON	C19 (Multistep frequency 15)	

(2) Connect a multistep frequency setting switch between the X terminals and [CM].
(3) Multistep frequency is selected with a combination that turns ON (shorts) the multistep frequency setting switch.

For precautions in wiring, refer to Chapter 2 "INSTALLATION AND WIRING".

(1])
For details on how to modify the function code data, see Chapter 3 "3.4.1 Setting up function codes "Data Setting"".

If multistep frequency settings are enabled with the multistep frequency setting switch (between X terminals and [CM] ON (shorted), the frequency setting set at "F01: Frequency setting 1 " is disabled.

4.12 Selecting a Run Command Source

A run command source is the keypad (®un) and seor) keys) by factory default.

4.12.1 Setting run commands from the keypad

Follow the procedure given below.
(1) Configure the function codes as listed below.

Table 4.12-1

Function code	Name	Function code data	Factory default
F6\%	Operation method	0: Keypad operation (Rotation direction input: terminal block) 2: Keypad operation (forward rotation) 3: Keypad operation (reverse rotation)	Please refer to Table 4.4-1 Initial value for each destination

(2) When F02 $=0$: Press the key on the keypad to run the motor. Press the key to stop the motor.

The rotation direction is specified with terminals [FWD] and [REV]. Connect the run forward switch between terminals [FWD] and [CM] and the run reverse switch between [REV] and [CM].
(3) When F02 = 2: Press the key on the keypad to run the motor in the forward direction. Press the key to stop the motor.
(4) When F02 = 3: Press the kun key on the keypad to run the motor in the reverse direction. Press the key to stop it.
(1) For details on how to modify the function code data, see Chapter 3"3.4.1 Setting up function codes "Data Setting"'.

4.12.2 Setting run commands with external signals (terminal [FWD, [REV])

Follow the procedure given below.
(1) Configure the function codes as listed below.

Table 4.12-2

Function code	Name	Function code data	Factory default
$F_{1 i-} Z^{-1}$	Operation method	1: External digital input signal	Please refer to Table 4.4-1 Initial value for each destination

If terminals [FWD] and [REV] are ON (short-circuited), the F02 setting cannot be changed. First turn terminals [FWD] and [REV] OFF, and then change the setting.
(2) Connect the forward rotation command switch between terminals [FWD] and [CM], and connect the reverse rotation command switch between terminals [REV] and [CM].
(3) By turning ON (short circuiting) the run command switches, operation is started.
(LD) For precautions in wiring, refer to Chapter 2 "INSTALLATION AND WIRING".
[D] For details on how to modify function code data, refer to Chapter 3 "3.4.1 Setting up function codes "Data Setting"".

Chapter 5

FUNCTION CODES

This chapter explains the table of function codes used in FRENIC-MEGA, index per purpose, and the detail of each function code.

Contents

5.1 Function Codes Overview 5-1
5.2 Function Code Tables 5-2
5.2.1 Supplementary note 5-2
5.2.2 Function code tables 5-4
[1] F codes: Fundamental functions 5-4
[2] E codes: Extension Terminal Functions (terminal functions) 5-8
[3] C codes: Control Functions of Frequency (Control function) 5-16
[4] P codes: Motor 1 Parameters (Motor 1 parameters) 5-18
[5] H codes: High Performance Functions (High level functions) 5-20
[6] A codes: Motor 2 Parameters (Motor 2 parameters) 5-26
[7] b codes: Motor 3 Parameters (Motor 3 parameters) 5-29
[8] r codes: Motor 4 Parameters (Motor 4 parameters) 5-31
[9] J codes: Application Functions 1 (Application function 1) 5-33
[10] d codes: Application Functions 2 (Application functions 2) 5-36
[11] U codes: Application Functions 3 (Customizable logic) 5-43
[12] y codes: LINK Functions (Link functions) 5-48
[13] o codes: Option Functions (Option functions) 5-50
[14] K codes: Keypad functions (Keypad functions) 5-53
5.3 Description of Function Codes 5-66
5.3.1 F codes (Fundamental functions) 5-66
[1] Setting the frequency with the keypad (F01 = 0 (factory default) or 8) 5-68
[2] Setting the frequency with analog input (F01 = 1 to 3,5,6) 5-69
[3] Frequency setting by digital input signal "UP"/"DOWN" (F01=7) 5-76
[4] Frequency setting using digital input (option DIO interface card) (F01 = 11) 5-77
[5] Frequency setting using pulse train input (F01 = 12) 5-78
5.3.2 E codes (Extension terminal functions) 5-136
5.3.3 C codes (Control functions) 5-190
5.3.4 P codes (Motor 1 parameters) 5-201
5.3.5 H codes (High performance functions) 5-212
[1] Measuring the capacitance of DC link bus capacitor in comparison with initial one at shipment 5-233
[2] Measuring the capacitance of DC link bus capacitor under ordinary operating conditions at power shutdown 5-234
5.3.6 A, b, r codes (Motor 2 to 4 parameters) 5-261
5.3.7 b, r codes (Speed control 3 and 4 parameters) 5-266
5.3.8 J codes (Applied functions) 5-267
[1] PID command with keypad ($\mathrm{J} 02=0$, factory default) 5-268
[2] PID command by analog inputs ($\mathrm{J} 02=1$) 5-269
[3] PID command with UP/DOWN control (JO2 = 3) 5-270
[4] PID command via communications link $(\mathrm{JO2}=4)$ 5-271
[5] Overload stop function 5-285
[6] Brake control signal 5-287
5.3.9 d codes (Applied functions 2) 5-296
[1] Speed control 5-296
[2] Line speed control 5-306
[3] Master-follower operation 5-309
[4] Hoist function 5-343
[5] Position control 5-350
[6] Setting example for conveyor performing sizing by position control 5-367
5.3.10 U codes (Customizable logic operation) 5-377
5.3.11 U1 codes (Customizable logic operation) 5-409
5.3.12 y codes (Link functions) 5-414
5.3.13 K codes (Keypad functions) 5-421

5.1 Function Codes Overview

Function codes are used for selecting various functions of FRENIC-MEGA.
Function codes comprise 3 digits or 4 digits of alphanumeric character.
The first digit categorizes the group of function code alphabetically and the subsequent 2 or 3 digits identify each code within the group by number.
Function code comprises 14 groups:
Fundamental functions (F codes),
Terminal functions (E codes),
Control codes (C codes),
Motor 1 parameters (P codes),
High-level functions (H codes),
Motor 2 parameters (A codes),
Motor 3 parameters (b codes),
Motor 4 parameters (r codes),
Application function 1 (J codes),
Application function 2 (d codes),
Customizable logic (U codes),
Link functions (y codes),
Option function (o codes),
and Keypad functions (K codes).
The function of each function code is determined according to the data to be set. The following descriptions are for supplementary explanation of function code table. Refer to instruction manual of each option to find the details of the option function (o code).

5.2 Function Code Tables

5.2.1 Supplementary note

- Change, reflect, and save function code data during operation

Function codes are categorized into those which data change is enabled during operation of the inverter and those which such change is disabled. The meaning of the code in the "Change during operation" column of the function code table is described in the following table.

Symbol	Change during operation	Reflect and save data
Y^{*}	Allowed	At the point when data is changed by \sim keys, the changed data is immediately reflected on the operation of inverter. However, at this stage, the changed value is not saved to the inverter. In order to save it to the inverter, press (Bin key. Without saving by bey and leaving the state of when the change was made by the key, the data before the change is reflected on the operation of inverter.
Y	Allowed	Even if data is changed by the key, the changed data will not be reflected on the operation of the inverter as is; by pressing the Bey, the changed value is reflected on the operation of the inverter and is also saved to the inverter.
N	Not possible	-

Copying data

Function code data can be copied all at once (programming mode menu number 7 "Data Copy") with the provided keypad (TP-E2) or multi-function keypad (TP-A2SW). By using this function, it is possible to read out all function code data and write the same data to a different inverter.

However, if the specification of inverter at the copy source and copy destination is not identical, some function codes may not be copied due to security reason. According to necessity, configure the settings individually for the function codes that are not copied. The behavior of the function codes regarding data copy is indicated in the "data copy" column in the function code table in the next page and following.
Y : Data is copied.
Y1: When inverter capacity is different, copying will not be performed.
Y2: When voltage group is different, copying will not be performed.
N : Data is not copied.

Negative logic setting of data

Digital input terminal and transistor/contact output terminal can become a signal for which negative logic is specified by function code data setting. Negative logic is a function to reverse ON and OFF state of input or output, and switch Active ON (function enabled with ON: positive logic) and Active OFF (function enabled with OFF: negative logic). However, negative logic may not be enabled depending on the function of the signal.
Negative logic signal can be switched by setting the data with 1000 added to the function code data of the function to be set. For example, the following example shows when coast to a stop command " BX " is selected by function code E01.

Function code data	Enable
7	" BX " is ON and coast to a stop (Active ON)
1007	"BX" is OFF and coast to a stop (Active OFF)

Drive control

The FRENIC-MEGA runs under any of the following control methods. Some function codes apply exclusively to the specific control method.

The enable or disable status is indicated with an icon for each control method within the permissible setting range field in the function code list table.

Icon example: Under V/f control Enable: V/f Disable: V/f

Function code table permissible setting range field	Control target (H18)	Control method (F42)
V/f	Speed (H18 = 0)	V/f control Dynamic torque vector control (F42 = 1) V/f control with slip compensation (F42=2)
PGV/f		V/f control with speed sensor (F42=3) Dynamic torque vector control with speed sensor (F42 = 4)
SLV		Sensorless vector control (F42 = 5)
PGV		Vector control with speed sensor (F42 = 6)
PMSLV		Sensorless vector control (synchronous motors) (F42 = 15)
PMPGV		Vector control with sensor (synchronous motors) (F42 = 16)
TRQ	Torque (H18 = 2, 3)	Vector control (F42=5, 6, 16)

For details on the control method, refer to "Function code F42".
Note The FRENIC-MEGA is a general-purpose inverter whose operation is customized by frequency-basis function codes, like conventional inverters. Under the speed-basis drive control, however, the control target is a motor speed, not a frequency, so convert the frequency to the motor speed according to the following expression.

Conversion formula Motor speed $(r / m i n)=120 x$ frequency $(\mathrm{Hz}) /$ number of poles

Tip Control method icon group display

The function code list table contains locations where control method icons are displayed in groups as shown below.

Display example: Electronic thermal overload relay (F10 to F12) control icon display

F10	Electronic thermal overload protection for motor 1 (Select motor characteristics)	Enable (for a general-purpose motor with self-cooling fan) Enable (for an inverter-driven motor with separately powered cooling fan)	Y
F11	(Operation level)	0.00 A (disable), current value of 1 to 135% of inverter rated current set with A unit (Inverter rated current dependent on F80)	Y
F12	(Thermal time constant)	0.5 to 75.0 min	Y

 methods as F10 is valid.
 TRO) for U codes, y codes, o codes, and K codes are valid, and therefore the control icons have been omitted from the table.

5.2.2 Function code tables

The table of function codes to be used in FRENIC-MEGA is shown below.

[1] F codes: Fundamental functions

Function code	Name	Control method and Data setting range			Factory default	
F00	Data protection	0: No data protection, no digital setting protection 1: With data protection, no digital setting protection 2: No data protection, with digital setting protection 3: With data protection, with digital setting protection	Y	Y	0	5-66
F01	Frequency setting 1		N	Y	0	5-67
F02	Operation method	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Keypad operation (Rotation direction input: terminal block) 1: External signal (digital input) 2: Keypad operation (forward rotation) 3: Keypad operation (reverse rotation)	N	Y	2	5-80
F03	Maximum output frequency 1	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 5.0 to 599.0 Hz	N	Y	60.0	5-82
F04	Base frequency 1	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 5.0 to 599.0 Hz	N	Y	50.0	5-83
F05	Rated voltage at base frequency 1	V/f PGV/f SLV PGV PMSIV PMPGV TRQ $0: \quad$ AVR disable (output voltage proportional to power voltage) 80 to $240 \mathrm{~V}: \quad$ AVR operation (200 V series) 160 to 500 V : AVR operation (400 V series)	N	Y2	200/400	
F06	Maximum output voltage 1	V/f PGV/f PLV 80 to $240 \mathrm{~V}:$ AVR operation (200V series) 160 to 500 V : AVR operation (400 V series)	N	Y2		
F07	Acceleration time 1	V/f PGV/f PGV SSLV PMSIV PMPGV TRQ	Y	Y	*10	5-85
F08	Deceleration time 1	0.00 to 6000 s 0.00 is for acceleration and deceleration time cancel (when performing soft-start and stop externally)	Y	Y	*10	
F09	Torque boost 1	V/f PGV/f 0.0 to 20.0\% (\% value against base frequency voltage 1)	Y	Y	*2	5-88
F10	Electronic thermal overload protection for motor 1 (Select motor characteristics)	V/f PGV/f SLV PGV PMSVI PMPGV TRO 1: Enable (for a general-purpose motor with self-cooling fan) 2: \quad Enable (for an inverter-driven motor with separately powered cooling fan)	Y	Y	1	5-88
F11	(Operation level)	0.00 A (disable), current value of 1 to 135% of inverter rated current set with A unit (Inverter rated current dependent on F80)	Y	$\begin{array}{\|l\|} \hline \text { Y1 } \\ \text { Y2 } \end{array}$	*3	
F12	(Thermal time constant)	0.5 to 75.0 min	Y	Y	*11	
F14	Restart mode after momentary power failure (operation selection)	0: Trip immediately 1: Trip after a recovery from power failure 2: Trip after momentary deceleration is stopped 3: Continue to run (for heavy inertia load or general load) 4: Restart from frequency at power failure (for general load) 5: Restart from starting frequency	Y	Y	1	5-92
F15	Frequency limiter (upper limit)	V/f PPGV/f SLV PGV PMSVV PMPGV URO	Y	Y	70.0	5-101
F16	(Lower limit)	0.0 to 599.0 Hz	Y	Y	0.0	
F18	Bias (for frequency setting 1)	V/f PGV/f SLV PGV PMSIV PMPGV IRRa -100.00 to 100.00%	Y^{*}	Y	0.00	5-102
F20	DC braking 1 (starting frequency)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV } \\ & 0.0 \text { to } 60.0 \mathrm{~Hz} \end{aligned}$	Y	Y	0.0	5-102
F21	(Operation level)	0 to 100% (HHD specification), 0 to 80\% (HND specification),	Y	Y	0	
F22	(Braking time)	0.00 (disable): 0.01 to 30.00 s	Y	Y	0.00	

Function code	Name	Control method and Data setting range							Factory default	
F23	Starting frequency 1	$\begin{aligned} & \text { V/f } \mathrm{PGV/f} \mathrm{~s} \\ & 0.0 \text { to } 60.0 \mathrm{~Hz} \\ & \text { If } \mathrm{F} 42=5 \text { or } 15 \end{aligned}$	SLV PGV PMSIV $5,1.0 \mathrm{~Hz}$ is auto	V PMPGV omatically set.			Y	Y	0.5	5-105
F24	(Holding time)	0.00 to 10.00 s					Y	Y	0.00	
F25	Stop frequency	V/f PGV/f SLV PGV PMSIV PMPGV TRRC0.0 to 60.0 Hz					Y	Y	0.2	
F26	Motor sound (Carrier frequency) (Tone)	V/f PGV/f SLV PGV PMSVV PMPGV TRQ					Y	Y	2	5-109
			HHD spec	cification	HND spe	cification				
			FRN*** ${ }^{* S-2 G}$	FRN*** ${ }^{* *}$-4G	FRN*** 2 2S-2G	FRN*** ${ }^{*}$ *-4G				
		0.75 to 16 kHz	0003 to 0288	0002 to 0150	0032 to 0075	0018 to 0038				
		0.75 to 10 kHz	0346 to 0432	0180 to 1386	0082 to 0215	0045 to 0150				
		0.75 to 6 kHz	-	-	0288 to 0432	0180 to 1386				
F27		Level 0 (disable) Level 1 Level 2 3: Level 3					Y	Y	0	

*2: Factory defaults are depended on motor capacity. Refer to Table 5.2-1 Factory default settings by inverter capacity.
*3: The motor rated current is automatically set. Refer to Table 5.2-2 Motor constants (function code P03).

Function code	Name	Control method and Data setting range			Factory default	
F29	Terminal [FM1] (Operation selection) (Output gain) (Function selection)		Y	Y	0	5-110
F30		0 to 300\%	Y^{*}	Y	100	
F31		```Output frequency 1 (before slip compensation) Output frequency 2 (after slip compensation) Output current Output voltage Output torque Load factor Power consumption PID feedback value Actual speed/estimated speed DC link bus voltage Universal AO Analog output test (-) Motor output Calibration (+) PID command (SV) PID output (MV) Master-follower angle deviation Inverter cooling fin temperature PG feedback value Torque current command PID deviation Line speed command Winding diameter calculation value Setting frequency (before acceleration/deceleration calculation) 111 to 124: Customizable logic output signal 1 to 14```	Y	Y	0	
F32	Terminal [FM2] (Operation selection)	*Same as F29	Y	Y	0	5-110
F33	Terminal [FMP] (Pulse rate) (Output gain) (Function selection)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 25 to $6000 \mathrm{p} / \mathrm{s}$ (number of pulse at 100\%)	Y^{*}	Y	1440	5-115
F34		0,1 to 300\% 0 : Pulse output 1 to 300%	Y^{*}	Y	0	
F35		*Same as F31	Y	Y	0	
F37	Load selection/ Auto torque boost/ Auto energy-saving operation 1	V/f PGV/f SLV PGV o: Quadratic-torque load 1: Constant torque load 2: Auto torque boost 3: Auto energy-saving operation (quadratic-torque load) 4: Auto energy-saving operation (constant torque load) 5: Auto energy-saving operation with auto torque boost	N	Y	1	5-116
F38	Stop frequency (detection mode) (Holding time)		N	Y	0	5-118
F39	(Holding time)	V/f PGV/f SLV PGV PMSIV PMPGV TRO 0.00 to 10.00 s	Y	Y	0.00	
F40	Torque limiter 1-1 Torque limiter 1-2	V/f PGV/f SLV PGV PMSIV PMPGV TRQ-300 to 0 to 300%; 999 (Disable)	Y	Y	999	5-119
F41			Y	Y	999	
F42	Drive control selection 1	C/ff PGV/f SSLV PGV PMSIV PMPGV TRO O: V/f control without slip compensation 1: Dynamic torque vector control 2: V/f control with slip compensation 3: V/f control with speed sensor 4: Dynamic torque vector control with sensor 5: Sensorless vector control 6: Vector control with speed sensor 15: Sensorless vector control (synchronous motors) 16: Vector control with sensor (synchronous motors)	N	Y	0	5-126
F43	Current limiter(mode selection) (Operation level)	\square Disable Enable at constant speed (disable during ACC/DEC) Enable during ACC/constant speed operation (disable during DEC)	Y	Y	2	5-131
F44	(Operation level)	20 to 200\% (rated current of the inverter for 100\%) (Inverter rated current is dependent on F80.)	Y	Y	*12	
F50	Electronic thermal overload (for braking resistor protection) (discharging capacity) (Permissible average loss) (Braking resistance value)	0 (If using built-in breaking resistor) 1 to 9000 kWs OFF (cancel)	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*13	5-133
F51		0.001 to 99.99 kW	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	0.001	
F52		0.01 to 999Ω	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	0.01	
F58	Terminal [FM1] (Filter) (Bias)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.00 \text { to } 5.00 \mathrm{~s} \\ & \hline \end{aligned}$	Y	Y	0.00	5-110
F59		-100.0 to 100.0\%	Y^{*}	Y	0.0	

Function code	Name	Control method and Data setting range			Factory default	
F60	Terminal [FM2] (Output gain)	V/f [PGV/f SLV PGV PMSVV PMPGV TRQ 0 to 300%	Y^{*}	Y	100	
F61	(Function selection)	*Same as F31	Y	Y	2	
F62	(Filter)	0.00 to 5.00 s	Y	Y	0.00	
F63	(Bias)	-100.0 to 100.0\%	Y^{*}	Y	0.0	
F64	Terminal [FMP] (Filter)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.00 \text { to } 5.00 \mathrm{~s} \end{aligned}$	Y	Y	0.00	5-115
F80	HHD/HND switching	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: HHD specification 1: HND specification	N	Y	0	5-135

*10: 6.00 s for FRN0115G2S-2G/FRN0060G2口-4G or lower inverters, 20.00 s for FRN0146G2S-2G/FRN0075G2■-4G or higher inverters
*11: 5.0 min for FRN0115G2S-2G/FRN0060G2■-4G or lower inverters, 10.0 min for FRN0146G2S-2G/FRN0075G2■-4G or higher inverters *12: 180\% for FRN0075G2S-2G/FRN0038G2口-4G or lower inverters, 160\% for FRN0088G2S-2G/FRN0045G2■-4G or higher inverters
*13: 0 for FRN0046G2S-2G/FRN0023G2■-4G or lower inverters, OFF for FRN0059G2S-2G/FRN0031G2■-4G or higher inverters

[2] E codes: Extension Terminal Functions (terminal functions)

Function code	Name	Control method and Data setting range			Factory default	
E01	Terminal [X1] (Function selection)	See E01 to E09 in "Table 5.2.2 Control input terminal setting list table".	N	Y	0	5-136
E02	Terminal [X2]		N	Y	1	
E03	Terminal [X3]		N	Y	2	
E04	Terminal [X4]		N	Y	3	
E05	Terminal [X 5]		N	Y	4	
E06	Terminal [X6]		N	Y	5	
E07	Terminal [X7]		N	Y	6	
E08	Terminal [X8]		N	Y	7	
E09	Terminal [X9]		N	Y	8	

Table 5.2.2 Control input terminal setting list table

Function code and name				Control method and Data setting range	
E01 to E09	E70	E98, E99	0101 to 0116		
$\begin{array}{\|c\|} \hline \text { Terminal }[\mathrm{X} 1] \\ \text { to }[\mathrm{X}] \\ \hline \end{array}$	Keypad M/Shift key	$\begin{gathered} \text { Terminal } \\ {[F W D],[R E V]} \end{gathered}$	$\begin{array}{\|c} \hline \text { Terminal [11] } \\ \text { to [116] } \end{array}$		
N	N	Y	N	V/f PGV/f SLV PGV PMSIV PMPGV TRQ	
				98: \quad Run forward / stop command	"FWD"
				99: Run reverse / stop command	"REV"
Y	Y	Y	Y	V/f PGVIf SLV PGV PMSV PMPGV TRO 100: No assignment	"NONE"
Y	Y	Y	Y	105 (1105): Light load automatic double speed judgment permission "LAC-ENB"	
Y	Y	Y	Y	110 (1110): Servo lock gain selection	"LSG2"
Y	N	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 111 (1111): Forced stop (terminal block only) (111 = Active OFF/1111 = Active ON)	"STOP-T"
Y	Y	Y	Y		"AVR-CCL"
Y	Y	Y	Y	$119 \text { (1119): Speed regulator } P \text { selection }$	"P-SEL"
Y	Y	Y	Y		
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV 134 (1134): Forced operation command	"FMS"
Y	Y	Y	Y	135 (1135): Travel/absolute position switching	"INC/ABS"
Y	Y	Y	Y	136 (1136): Orientation command	"ORT"
Y	Y	Y	Y	137 (1137): Position control/speed control switching	"POS/Hz"
				138 (1138): Homing command	"ORG"
Y	N	Y	Y	139 (1139): + direction overtravel	"+OT"
				140 (1140): - direction overtravel	"-OT"
Y	Y	Y	Y	141 (1141): Position clear command	"P-CLR"
				142 (1142): Position preset command	"P-PRESET"
				143 (1143): Teaching command	"TEACH"
				144 (1144): Positioning data change command	"POS-SET"
				145 (1145): Positioning data selection 1	"POS-SEL1"
				146 (1146): Positioning data selection 2	"POS-SEL2"
				147 (1147): Positioning data selection 4	"POS-SEL4"
Y	N	Y	Y	169 (1169): Initial diameter set command	"D-SET"
				170 (1170): Winding diameter calculation hold command	"D-HLD"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRO 171 (1171): PID control multistage command 1	"PID-SS1"
				172 (1172): PID control multistage command 2	"PID-SS2"
				* Inside the () is the negative logic signal (OFF at shor	-ircuit).

Function code	Name	Control method and Data setting range			Factory default	
E10	Acceleration time 2	```V/f to PVV/f s 0 . 0 0 \text { is for acceleration and deceleration time cancel (when} performing soft-start and stop externally)```	Y	Y	*1	5-159
E11	Deceleration time 2		Y	Y	*1	
E12	Acceleration time 3		Y	Y	*1	
E13	Deceleration time 3		Y	Y	*1	
E14	Acceleration time 4		Y	Y	*1	
E15	Deceleration time 4		Y	Y	*1	
E16	Torque limiter 2-1	V/f PGV/f SLV PGV PMSVV PMPGV TRQ -300 to 0 to 300\%; 999 (Disable)	Y	Y	999	5-159
E17	Torque limiter 2-2	-300 to 0 to 300\%; 999 (Disable)	Y	Y	999	
E20	Terminal [Y1] (Function selection)	See E20 to E27 in "Table 5.2.3 Control output terminal setting list table".	N	Y	0	5-159
E21	Terminal [Y2]		N	Y	1	
E22	Terminal [Y3]		N	Y	2	
E23	Terminal [Y4]		N	Y	7	
E24	Terminal [Y5A/C] ${ }_{\text {(Ry output) }}$		N	Y	15	
E27	Terminal [30A/B/C] function (Relay output)		N	Y	99	

Table 5.2.3 Control output terminal setting list table

Function code and name				Control method and Data setting range	
E20 to E27	E71	o23 to o26	0121 to 0128		
$\begin{gathered} \text { Terminal [Y1] } \\ \text { to [Y4], } \\ {[\mathrm{Y} 5 \mathrm{~A} / \mathrm{C}],} \\ {[30 \mathrm{~A} / \mathrm{B} / \mathrm{C}]} \\ \hline \end{gathered}$	Keypad MLED indicator	$\begin{aligned} & \text { Terminal } \\ & {[Y 1 \mathrm{~A} / \mathrm{B} / \mathrm{C}] \text { to }} \\ & {[\mathrm{Y} 4 / B / C]} \end{aligned}$	$\begin{array}{\|c} \text { Terminal [01] } \\ \text { to [08] } \end{array}$		
Y	Y	Y	Y	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSVV PMPGV TRQ } \\ & 0 \text { (1000): Inverter running } \end{aligned}$	
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV $1 \text { (1001): Frequency (speed) arrival }$	"FAR"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 2 (1002): Frequency (speed) detected	"FDT"
Y	Y	Y	Y	3 (1003): Under voltage detected (inverter stopped)	"LU"
Y	Y	Y	Y	4 (1004): Detected torque polarity	"B/D"
Y	Y	Y	Y	5 (1005): Inverter output limiting	"IOL"
Y	Y	Y	Y	6 (1006): Auto-restarting after momentary power failure	"IPF"
Y	Y	Y	Y	7 (1007): Motor overload early warning	"OL"
Y	Y	Y	Y	8 (1008): Keypad operation	"KP"
Y	Y	Y	Y	10 (1010): Inverter ready to run	"RDY"
Y	N	Y	Y	11: Commercial/inverter power supply switching	"SW88"
				12: Commercial/inverter power supply switching	"SW52-2"
				13: Commercial/inverter power supply switching	"SW52-1"
Y	N	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRO 15 (1015): Switch MC on the input power lines	"AX"
Y	Y	Y	Y	$\begin{aligned} & \text { V/f PPV/f SLV PGV PMSIV PMPGV } \\ & 16 \text { (1016): Pattern operation stage transition } \end{aligned}$	"TU"
				17 (1017): Pattern operation cycle completed	"TO"
				18 (1018): Pattern operation stage 1	"STG1"
				19 (1019): Pattern operation stage 2	"STG2"
				20 (1020): Pattern operation stage 4	"STG4"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSLV PMPGV 21 (1021): Frequency (speed) arrival 2	"FAR2"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSVI PMPGV TRQ 22 (1022): Inverter output limiting with delay	"IOL2"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 25 (1025): Cooling fan in operation	"FAN"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 26 (1026): Auto-resetting	"TRY"
Y	N	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 27 (1027): Universal DO	"U-DO"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 28 (1028): Heat sink overheat early warning	"OH"
Y	Y	Y	Y	29 (1029): Master-follower operation complete	"SY"

Function code and name				Control method and Data setting range
E20 to E27	E71	o23 to o26	0121 to 0128	
$\begin{gathered} \hline \text { Terminal [Y1] } \\ \text { to }[\mathrm{Y} 4], \\ {[\mathrm{YA} / \mathrm{C}],} \\ {[30 \mathrm{~A} / \mathrm{B} / \mathrm{C}]} \\ \hline \end{gathered}$	Keypad MLED indicator	Terminal [$\mathrm{Y} 1 \mathrm{~A} / \mathrm{B} / \mathrm{C}]$ to [$\mathrm{Y} 4 \mathrm{~A} / \mathrm{B} / \mathrm{C}$]	$\begin{array}{\|c} \text { Terminal [O1] } \\ \text { to [08] } \end{array}$	
Y	Y	Y	Y	V/f (PGV/f ©SLV PGV PPMSV PMPGV TRQ 30 (1030): Lifetime alarm "LIFE"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 31 (1031): Frequency (speed) detected 2
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV 33 (1033): Reference loss detected
Y	Y	Y	Y	
Y	Y	Y	Y	VI PGVI SLV PGV PMSLV PMPGO 36 (1036): Overload prevention controlling
				V/f PGV/f SLV PGV PMSIV PMPGV TRQ 37 (1037): Current detected
Y	Y	Y	Y	38 (1038): Current detected 2 --10]
				39 (1039): Current detected $3----------------------------$
				41 (1041): Low current detected --1D"
Y	Y	Y		
Y	Y	Y	Y	43 (1043): Under PID control
				44 (1044): Under sleep mode of PID control ---------------------------------
				V/f PGV/f SLV PGV PMSIV PMPGV TRO 45 (1045): Low torque detected "U-TL"
Y	Y	Y	Y	46 (1046): Torque detected 1 --1"
				V/f PGV/f SLV PGV PMSV PMPG TRO 48 (1048): Motor 1 selected "SWM1"
Y	Y	Y	Y	49 (1049): Motor 2 selected --3M2"
				51 (1051): Motor 4 selected -----------------------------------3M4"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRO 52 (1052): Forward rotation "FRUN"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSV PMPGV TRO 54 (1054): Under remote mode "RMT"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 56 (1056): Motor overheat detected by thermistor "THM"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 57 (1057): Mechanical brake control
Y	Y	Y	Y	58 (1058): Frequency (speed) detected 3 "FDT3"
Y	Y	Y	Y	59 (1059): Current input wire break detection (terminal [C1] and [C2]) "C1OFF"
Y	Y	Y	Y	
Y	Y	Y	Y	71 (1071): Speed agreement PMPGV "DRO
Y	Y	Y	Y	V/f PGVIf SLV PGV PMSV PMPGV 72 (1072): Frequency (speed) arrival 3
Y	Y	Y	Y	76 (1076): Speed mismatch "PG-ERR"
Y	Y	Y	Y	V/f (PGV/f ©SLV PGV PMSIV PMPGV TRQ 77 (1077): Low DC link bus voltage detection
Y	Y	Y	Y	79 (1079): During decelerating at momentary power failure "IPF2"
Y	Y	Y	Y	82 (1082): Positioning complete ${ }^{\text {PGVV/ }}$ "PSET"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRO 84 (1084): Maintenance timer counted up "MNT"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSV PMPGV TRQ 87 (1087): Frequency arrival and detected "FARFDT"
Y	Y	Y	Y	89 (1089): Magnetic pole position detection complete signal "PTD"

Function code and name				Control method and Data setting range
E20 to E27	E71	o23 to o26	0121 to 0128	
$\begin{aligned} & \text { Terminal [Y1] } \\ & \text { to }[\mathrm{Y} 4], \\ & {[\mathrm{Y} 5 \mathrm{~A}],} \\ & {[30 \mathrm{~A} / \mathrm{B} / \mathrm{C}]} \\ & \hline \end{aligned}$	Keypad MLED indicator	Terminal [Y1A/B/C] to [Y4A/B/C]	$\begin{gathered} \text { Terminal [O1] } \\ \text { to }[\mathrm{OB}] \end{gathered}$	
Y	N	Y	Y	V/f PGV/f ©SLV PGV PMSIV PMPGV TRQ 90 (1090): Alarm content 1
				91 (1091): Alarm content 2
				92 (1092): Alarm content 4 ---3L4"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSLV PMPGV TRO "FMRUN" 95 (1095): Forced operation
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 98 (1098): Warning
				99 (1099): Alarm output "ALM"
N	Y	N	N	V/f 100 PGV/f SLV PGV PMSIV PMPGV TRO : No assignment
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRO 101 (1101): EN circuit failure detected "DECF"
				102 (1102): EN terminal input OFF
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSV PMPGV TRQ 105 (1105): Braking transistor broken "DBAL"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSV PMPGV TRQ 111 (1111) to 124(1124): Customizable logic output signal 1 to 14 "CLO1" to "CLO14"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRO 125 (1125): Integral power pulse output "POUT"
Y	Y	Y	Y	131 (1131): Speed limit level "S-LIM"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 132 (1132): Torque limit level "T-LIM"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSV PMPGV TRQ 133 (1133): Low current detection
Y	Y	Y	Y	
				137 (1137): Dancer position limit warning signal "D-FL"
Y	Y	Y	Y	151 (1151): Overtravel detection
				153 (1153): Pass point detection 1 "PPAS1"
Y	Y	Y	Y	158 (1158): Overload detected "LLIM"
				159 (1159): Performing light load automatic double speed operation "LAC"
Y	Y	Y	Y	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 251(1251): M/Shift key ON/OFF status "MTGL"
				* Inside the () is the negative logic signal (OFF at short-circuit).

Function code	Name	Control method and Data setting range		을 $\stackrel{7}{0}$ 0 0 $\stackrel{\pi}{0}$ 0	Factory default	
E29	Frequency arrival delay timer (FAR2)	V/f PGV/f SLV PGV PMSVV PMPGV TRO 0.01 to 10.00 s	Y	Y	0.10	5-172
E30	Frequency arrival detection width (Detection width)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV } \\ & 0.0 \text { to } 10.0 \mathrm{~Hz} \end{aligned}$	Y	Y	2.5	
E31	$\begin{array}{r} \hline \text { Frequency detection } 1 \\ \text { (operation level) } \\ \text { (Hysteresis width) } \end{array}$	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.0 \text { to } 599.0 \mathrm{~Hz} \end{aligned}$	Y	Y	60.0	5-174
E32		$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.0 \text { to } 599.0 \mathrm{~Hz} \end{aligned}$	Y	Y	1.0	
E34	Overload early warning/Current detection (Level) (Timer)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0.00 (Disable), 1 to 200% of inverter rated current (Inverter rated current dependent on F80)	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	*3	5-175
E35		0.01 to 600.00 s	Y	Y	10.00	
E36	Frequency detection 2 (Level)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.0 \text { to } 599.0(\mathrm{~Hz}) \end{aligned}$	Y	Y	60.0	5-176
E37	Current detection 2/Low current detection (Level) (Timer)	*Same as E34	Y	$\begin{aligned} & \mathrm{Y} 1 \\ & \mathrm{Y} 2 \\ & \hline \end{aligned}$	*3	5-176
E38		*Same as E35	Y	Y	10.00	
E39	Constant rate of feeding coefficient 1/ Speed display auxiliary coefficient 1	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.000 \text { to } 9.999 \end{aligned}$	Y	Y	1.000	5-176
E42	LED display filter	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.0 \text { to } 5.0 \mathrm{~s} \end{aligned}$	Y	Y	0.5	5-177
E43	LED monitor (display selection)		Y	Y	0	5-177
E44	(Display when stopped)	0: Specified value 1: Output value	Y	Y	0	5-179
E48	LED monitor details (Speed monitor selection)	0: Output frequency 1 (before slip compensation) 1: Output frequency 2 (after slip compensation) 2: Reference frequency 3: Motor rotation speed 4: Load rotation speed 5: Feed speed 6: Transport time for specified length 7: Speed (\%) 8: Line speed set value 9: Line speed output value	Y	Y	0	5-179
E49	Torque Command Monitor (Polarity selection)	V/f PGV/f SLV PGV PMSIV PMPGV TRO 0: Torque polarity 1: Plus for driving, Minus for braking	Y	Y	1	5-180
E50	Display coefficient for speed monitor	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0.01 to 600.00	Y	Y	30.00	5-182
E51	Display coefficient for "Input watt-hour data"	V/f PGV/f SLV PGV PMSVV (PMPGV TRQ 0.000 (Cancel/Reset), 0.001 to 9999	Y	Y	0.010	5-182

*3: The motor rated current is automatically set. Refer to Table 5.2-2 Motor constants (function code P03).

Function code	Name	Control method and Data setting range			Factory default	
E52	Keypad menu selection	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Function code data setting mode (Menu 0, Menu 1, and Menu 7) 1: Function code data check mode (Menu 2 and Menu 7) 2: Full-menu mode	Y	Y	2	5-183
E54	Frequency detection 3 (Level)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.0 \text { to } 599.0 \mathrm{~Hz} \end{aligned}$	Y	Y	60.0	5-183
E55	Current detection 3 (Level) (Timer)	*Same as E34	Y	Y1 Y 2	*3	5-183
E56		*Same as E35	Y	Y	10.00	
E57	Integral power pulse output unit	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Pulse output every 0.1 kWh 1: Pulse output every 1 kWh 2: Pulse output every 10 kWh 3: Pulse output every 100 kWh 4: Pulse output every 1000 kWh	Y	Y	1	5-184
E61	Terminal [12] extended function	0: No extension function assignment 1: Auxiliary frequency setting 1 2: Auxiliary frequency setting 2 3: PID command 1 5: PID feedback value 6: Ratio setting 7: Analog torque limit value A 8: Analog torque limit value B 9: Torque bias 10: Torque command 11: Torque current command 12: Acceleration/deceleration time ratio setting 13: Upper limit frequency 14: Lower limit frequency 15: Auxiliary frequency setting 3 16: Auxiliary frequency setting 4 17: Speed limit for forward rotation (FWD) 18: Speed limit for reverse rotation (REV) 20: Analog signal input monitor	N	Y	0	5-184
E62	Terminal [C1] (C1 function) (Extension function selection)		N	Y	0	
E63	Terminal [V2]		N	Y	0	
E64	Saving of digital reference frequency		Y	Y	0	5-186
E65	Reference loss detection (Continuous running frequency)	V/f PGV/f SLV PGV PMSIV PMPGV TIRa 0: Stop deceleration 20 to 120\%, 999: Cancel	Y	Y	999	5-187
E66		*Same as E61	N	Y	0	
E70	M/Shift key (Function selection)	See E70 in "Table 5.2.2 Control input terminal setting list table".	N	Y	100	5-188
E71	M-LED indicator (Function selection)	See E71 in "Table 5.2.3 Control output terminal setting list table".	N	Y	100	
E76	DC link bus low-voltage detection level	(V/f PGGIf (SLV) PGV] PMSIV [PMPGV TRO 200 to 400 V (200V series) 400 to 800 V (400 V series)	Y	Y2	$\begin{aligned} & 235 \\ & 470 \end{aligned}$	5-188
E78	Torque detection 1 (Level) (Timer)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0 to 300%	Y	Y	100	5-189
E79		V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0.01 to 600.00 s	Y	Y	10.00	
E80	Torque detection $2 /$ low torque detection (Level) (Timer)	Same as E78	Y	Y	20	
E81		*Same as E79	Y	Y	20.00	
E98	Terminal [FWD] function	See E98, E99 in "Table 5.2.2 Control input terminal setting list table".	N	Y	98	5-189
E99	Terminal [REV] function		N	Y	99	

[3] C codes: Control Functions of Frequency (Control function)

Function code	Name	Control method and Data setting range			Factory default	
C01	Jump frequency 1 2 3 (Skip width)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ0.0 to 599.0 Hz	Y	Y	0.0	5-190
C02			Y	Y	0.0	
C03			Y	Y	0.0	
C04		0.0 to 30.0 Hz	Y	Y	3.0	
C05	Multistep frequency 1	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSVV PMPGV } \\ & 0.00 \text { to } 599.00(\mathrm{~Hz}) \end{aligned}$	Y	Y	0.00	5-191
C06			Y	Y	0.00	
C07			Y	Y	0.00	
C08			Y	Y	0.00	
C09			Y	Y	0.00	
C10			Y	Y	0.00	
C11			Y	Y	0.00	
C12			Y	Y	0.00	
C13			Y	Y	0.00	
C14			Y	Y	0.00	
C15			Y	Y	0.00	
C16			Y	Y	0.00	
C17			Y	Y	0.00	
C18			Y	Y	0.00	
C19			Y	Y	0.00	
C20	Jogging frequency	V/f PGV/f SLV PGV PMSIV PMPGV TRO 0.00 to 599.00 Hz	Y	Y	0.00	5-192
C21	Pattern operation / timed operation (Operation selection)	V/f PGV/ SSLV PGV PMSIV PMPGV 0: 1 cycle operation 1: Repetition operation 2: Constant speed operation after 1 cycle operation 3: Timed operation	N	Y	0	5-193
C22	(Stage 1) (Stage 2) (Stage 3) (Stage 4) (Stage 5) (Stage 6) (Stage 7)	Special setting: Press the key 3 times. 1st: Set run time 0.0 to 6000 s and press the key. 2nd: Set rotational direction F (forward) or r (reverse) and press the key. 3rd: Set acceleration/deceleration time 1 to 4 and press the key.	Y	Y	1st: 0.002nd: F 3rd: 1	
C23			Y	Y		
C24			Y	Y		
C25			Y	Y		
C26			Y	Y		
C27			Y	Y		
C28			Y	Y		
C30	Frequency setting 2	Same as F01	N	Y	2	5-196
C31	Analog input adjustment (Terminal [12]) (Offset) (Gain) (Filter) (Gain base point) (polarity selection)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 5.0 to 5.0 \%	Y^{*}	Y	0.0	5-196
C32		V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0.00 to 400.00%	Y^{*}	Y	100.00	
C33		$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.00 \text { to } 5.00 \mathrm{~s} \end{aligned}$	Y	Y	0.05	
C34		$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.00 \text { to } 100.00 \% \end{aligned}$	Y^{*}	Y	100.00	
C35		V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Bipolar 1: Unipolar	N	Y	1	
C36	Analog input adjustment (Terminal [1C1]) (C1 function) (Offset) (Gain) (Filter)	Same as C31	Y^{*}	Y	0.0	
C37		Same as C32	Y^{*}	Y	100.00	
C38		Same as C33	Y	Y	0.05	
C39		Same as C34	Y^{*}	Y	100.00	
C40			N	Y	0	

Function code	Name	Control method and Data setting range			Factory default	
C41	Analog input adjustment (Terminal [V2])	Same as C31	Y^{*}	Y	0.0	
C42	Gain)	Same as C32	Y^{*}	Y	100.00	
C43	(Filter) (Gain base point) (polarity selection)	Same as C33	Y	Y	0.05	
C44		Same as C34	Y^{*}	Y	100.00	
C45		Same as C35	N	Y	1	
C50	Bias (for frequency setting 1) (Bias base point)	V/f PGV/f SLV PGV PMSVV PMPGV TRO 0.00 to 100.00%	Y^{*}	Y	0.00	5-199
C51	Bias (PID command 1) (bias value) (Bias base point)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV } \\ & -100.0 \text { to } 0.00 \text { to } 100.00 \% \\ & \hline \end{aligned}$	Y^{*}	Y	0.00	
C52		0.00 to 100.00 \%	Y^{*}	Y	0.00	
C53	Selection of normal/inverse operation (Frequency setting 1) (Frequency setting 2)		Y	Y		5-199
C54			Y	Y	0	
C55	Analog input adjustment (Terminal [12]) (Bias) (Bias base point) (Display unit) (maximum scale) (minimum scale)	V/f PGV/f SLV [PGV PMSIV PMPGV TRQ -200.0 to 0.00 to 200.00%	Y^{*}	Y	0.00	5-196
C56		0.00 to 100.00 \%	Y^{*}	Y	0.00	
C58		Same as J105 (0 cannot be set.)	Y	Y	2	5-199
C59		-999.0 to 0.00 to 9990.0	N	Y	100.00	5-200
C60		-999.0 to 0.00 to 9990.0	N	Y	0.00	
C61	Analog input adjustment(Terminal [C1] (C1 function))(Bias)(Bias base point)(Display unit)(maximum scale)(minimum scale)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ -200.0 to 0.00 to 200.00 \%	Y^{*}	Y	0.00	5-196
C62		0.00 to 100.00%	Y^{*}	Y	0.00	
C64		Same as J105 (0 cannot be set.)	Y	Y	2	5-199
C65		-999.0 to 0.00 to 9990.0	N	Y	100.00	5-200
C66		-999.0 to 0.00 to 9990.0	N	Y	0.00	
C67	Analog input adjustment (Terminal [V2]) (Bias) (Bias base point) (Display unit) (maximum scale) (minimum scale)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ -200.0 to 0.00 to 200.00 \%	Y^{*}	Y	0.00	5-196
C68		0.00 to 100.00%	Y^{*}	Y	0.00	
C70		Same as J105 (0 cannot be set.)	Y	Y	2	5-199
C71		-999.0 to 0.00 to 9990.0	N	Y	100.00	5-200
C72		-999.0 to 0.00 to 9990.0	N	Y	0.00	
C74	Analog input adjustment (Terminal [C1]) (V3 function) (Offset) (Gain) (Filter) (Operation referection) (Bias) (Bias reference point) (Display unit) (Maximum scale) (Minimum scale)		Y^{*}	Y	0.0	5-196
C75		0.00 to 400.00%	Y^{*}	Y	100.00	
C76		0.00 to 5.00 s	Y	Y	0.05	
C77		0.00 to 100.00%	Y^{*}	Y	100.00	
C78		0 : Bipolar 1: Unipolar	N	Y	1	
C82		-200.0 to 0.00 to 200.00%	Y^{*}	Y	0.00	5-196
C83		0.00 to 100.00 \%	Y^{*}	Y	0.00	
C84		Same as J 105 (0 cannot be set.)	Y	Y	2	5-199
C85		The analog input monitor terminal [C1] (C1 and V2 functions) display in the 999.0 to 0.00 to 9990.0 range can be converted into easily recognizable physical quantities. This function can also be used for PID feedback and PID command values.	N	Y	100.00	5-200
C86		The analog input monitor terminal [C1] (C1 function) display in the -999.0 to 0.00 to 9990.0 range can be converted into easily recognizable physical quantities. This function can also be used for PID feedback and PID command values.	N	Y	0.00	
C89	Frequency compensation 1 via communication (Numerator)	```V/f PGV/f SLV (Keypad display is 8000 to 7FFF (in hexadecimal)) (Interpreted as 1 when the value is set to 0)```	Y	Y	1	5-200
C90	Frequency compensation 2 via communication (Denominator)		Y	Y	1	
C94	Jump frequency 456	V/f PGV/f SLV PGV PMSIV PMPGV TROC0.0 to 599.0 Hz	Y	Y	0.0	5-190
C95			Y	Y	0.0	
C96			Y	Y	0.0	
C99	Digital setting frequency	V/f PGV/f SLV PGV PMSIV PMPGV TRO 0.00 to 599.00 Hz	Y^{*}	Y	0.00	5-200

[4] P codes: Motor 1 Parameters (Motor 1 parameters)

Function code	Name	Control method and Data setting range		$\begin{aligned} & \text { 을 } \\ & \text { 응 } \\ & 0 \\ & \frac{\pi}{0} \\ & 0 \end{aligned}$	Factory default	
P60	(For Synchronous motor) (Armature resistance)	0.000 to 50.000Ω (phase)	N	Y1Y2	*7	5-208
P61	(d-axis inductance)	0.00 to 500.00 mH (phase)	N	Y1Y2	*7	
P62	(q-axis inductance)	0.00 to 500.00 mH (phase)	N	Y1Y2	*7	
P63	(Induced voltage)	80 to 240 V (200V class); 160 to 500 V (400 V class)	N	Y1Y2	*7	
P64	(Iron loss)	0.0 to 20.0% (100% = Iron loss for motor rated current, base speed)	Y	Y1Y2	*7	
P65	(q-axis inductance magnetic saturation correction)	0.0 to $100.0 \%(100 \%=$ No magnetic saturation) ; 999 (factory adjustment value)	Y	Y1Y2	999	5-208
P74	(Current command value when starting)	10 to 200\% (100\%= motor rated current)	Y^{*}	Y1Y2	80 * 7	5-208
P83	(For adjustment by manufacturer) *9	0.0 to 50.0; 999	Y	Y1Y2	999	5-209
P84	(For adjustment by manufacturer) *9	0.0 to 100.0; 999	N	Y1Y2	999	
P85	(Flux limitation value)	50.0 to 150.0; 999	Y	Y1Y2	999	5-208
P86	(For adjustment by manufacturer) *9	0.0 to 100.0	N	N	0.0	5-209
P87	(NS discrimination current command value)	0 to 200% (100\% = Motor rated current)	N	Y1Y2	60	5-209
P88	(For adjustment by manufacturer) *9	0 to 100; 999	N	Y1Y2	999	5-209
P89	(Control switching level)	$0 ; 1$ to 100	N	Y1Y2	0	
P90	(Overcurrent protection level)	0.00 (cancel); 0.01 to 4000 A	N	Y1Y2	*7	5-209
P95	(Magnetic pole position sensor offset)	0.0 to 359.9 degree; 999 (offset not set)	Y	Y	999	5-209
P99	Motor 1 selection		N	Y1Y2	5	5-210

*6: Factory defaults are depended on motor capacity.
*7: The constant for Fuji standard synchronous motor GNB series is set as the factory default.
*9: This is a function code for adjustment by the manufacturer. Do not access these function codes.

[5] H codes: High Performance Functions (High level functions)

Function code	Name	Control method and Data setting range			Factory default	
H00	Simulated operation mode	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Normal operation 1: Simulated operation mode	N	Y	0	5-212
H02	Data initialization (Method)		Y	Y	0	5-213
H03	Data initialization	Manual setting value Initialization (based on H02 setting) Motor 1 constant initialization Motor 2 constant initialization Motor 3 constant initialization Motor 4 constant initialization Limited initialization (initialization excluding communication function codes) 12: Limited initialization (initialization of customizable logic U codes) 13: Limited initialization (clearing of favorites)	N	N	0	
H04	Auto-reset (Times)	V/f PGV/f SLV PGV PMSIV PMPGV TRO 0 : Disable, 1 to 20: Number of retries	Y	Y	0	5-217
H05	(Interval)	0.5 to 20.0 s	Y	Y	5.0	
H06	Cooling fan ON/OFF control	V/f PGV/f SLV PGV PMSIV PMPGV TRO 0: Disable (Always Fan ON) 1: Enable (ON/OFF control effective)	Y	Y	0	5-218
H07	Curve acceleration/deceleration		Y	Y	0	5-218
H08	Rotation direction restriction	C/f PGVIf SLV PGV PMSIV PMPGV O: Disable 1: 2: 2nable (Reverse rotation inhibited) Enable (Forward rotation inhibited)	N	Y	0	5-218
H09	Starting mode (Auto search)	V/f $\mathrm{PGV/f}$ $0:$ Disable 1: Enable (Only at restart after momentary power failure) 2: Enable (At normal start and at restart after momentary power failure)	N	Y	0	5-219
H11	Deceleration mode	V/f PGV/f SLV PGV PMSIV PMPGV 0 : Normal deceleration, 1: Coast to stop	Y	Y	0	5-221
H12	Instantaneous overcurrent limiting (Mode selection)		Y	Y	1	5-221
H13	Restart mode after momentary power failure (Restart timer)	V/f PGV/f SLV PGV PMSIV PMV TRO 0.1 to 20.0 s	Y	Y1Y2	*2	5-221
H14	(Frequency fall rate)		Y	Y	999	
H15	(Continuous running level)	V/f PGV/f SLV PGV PMSIV PMPGV 200 to 300 V: (200 V series) 400 to 600 V : (400 V series)	Y	Y2	$\begin{aligned} & 235 \\ & 470 \end{aligned}$	
H16	(Permissible momentary power failure time)	0.0 to 30.0 s, 999 (Depend on inverter judgment)	Y	Y	999	
H18	Torque control (Mode selection)		N	Y	0	5-222
H26	Motor 1 (Thermistor operation selection)	C/f PPGVI SLV PGV PMSV PMPGV TRQ 0: Disable 1: PTC: 2: PTC: Output motor overheat detected "THM" and continue to run 3: NTC: int trip and stop the inverter	Y	Y	0	5-225
H27	(Operation level)	0.00 to 5.00 V	Y	Y	0.35	
H28	Droop control	V/f PGV/f SLV PGV PMSIV PMPGV TRQa -60.0 to 0.0 Hz	Y	Y	0.0	5-227

| | | |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- |

*2: Factory defaults are depended on motor capacity. Refer to Table 5.2-1 Factory default settings by inverter capacity.
*6: Factory defaults are depended on motor capacity.
*10: 6.00 s for FRN0115G2S-2G/FRN0060G2口-4G or lower inverters, 20.00 s for FRN0146G2S-2G/FRN0075G2■-4G or higher inverters
*11: If F37 $=0,5.0 \mathrm{~Hz}$ is automatically set for FRN0146G2S-2G/FRN0075G2ם-4G or higher inverters.
*12: If F37 $=0,20 \mathrm{~V}$ is automatically set for FRN0146G2S-2G/FRN0075G2■-4G or higher 200V series inverters, and 40 V is set for 400 V series inverters.

Function code	Name	Control method and Data setting range			Factory default	
H56	Deceleration time for forced stop	V/f PGV/f SLV PGV PMSIV PMPGV TRO 0.00 to 6000 s	Y	Y	*10	5-236
H57	1st S-curve acceleration range \quad (At starting)	V/f PGV/f SLV PGV PMSIV PMPGV TRO	Y	Y	10	
H58	2nd S-curve acceleration range		Y	Y	10	
H59	1st S-curve deceleration range (At starting)		Y	Y	10	
H60	2nd S-curve deceleration range (At arrival)		Y	Y	10	
H61	UP/DOWN control (Initial frequency setting)	V/f PGV/f SLV PGV PMSIV PMPGV 0: Initial value is 0.00 Hz (G1S compatible operation) 1: 2: Inst UP/DOWN command value on releasing the run command. 3:	N	Y	3	5-236
H62	UP/DOWN control extension function selection	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: None 1: Auxiliary frequency setting 1 2: Auxiliary frequency setting 2 3: PID command 1 6: Ratio setting 7: Analog torque limiter A 8: Analog torque limiter B 9: Torque bias 10: Torque command 11: Torque current command 12: Acceleration/deceleration time ratio setting 13: Upper limit frequency 14: Lower limit frequency 15: Auxiliary frequency setting 3 16: Auxiliary frequency setting 4 17: Speed limit for forward rotation (FWD) 18: Speed limit for reverse rotation (REV) 20: Analog signal input monitor	N	Y	0	
H63	Low limiter (Operation selection)	V/f PGV/f 0: Limit by F16 (Frequency limiter: Low) and continue to run 1:If the output frequency lowers below the one limited by F16 (Frequency limiter: Low), decelerate to stop the motor.	Y	Y	0	5-236
H64	(Minimum frequency when performing limiting operation)	V/f PGV/f SIV PGV PMSIV PMPGV IRQa 0.0: (Lower limiting frequency) 0.1 to $599.0(\mathrm{~Hz}) * 15$	Y	Y	1.6	5-236
H65	Non-linear V/f 3 (Frequency)	V/f PGV/f sivi PeV mingl amed tire 0.0 (Cancel), 0.1 to 599.0 Hz	N	Y	0.0	5-236
H66	(Voltage)	0 to 240 V : AVR operation (200 V series) 0 to 500 V : AVR operation 400 V series $)$	N	Y2	0	
H67	Auto energy-saving operation (Mode selection)	V/f PGV/f (SLV PGV 0: Enable only during constant speed 1: Enable for all modes	Y	Y	0	5-236
H68	Slip compensation 1 (Operating conditions selection)	V/f \square Enable during acceleration/deceleration, enable at base frequency or higher Disable during acceleration/deceleration, enable at base frequency or higher Enable during acceleration/deceleration, disable at base frequency or higher 3: Disable during acceleration/deceleration, disable at base frequency or higher	N	Y	0	5-236
H69	Anti-regenerative control (Operation selection)		Y	Y	0	5-237
H70	Overload prevention control	V/f PGV/f SLV PGV PMSIV PMPGV 0.00: Follow the deceleration time selected 0.01 to $100.00 \mathrm{~Hz} / \mathrm{s}, 999$ (Cancel)	Y	Y	999	5-238
H71	Deceleration characteristic	V/f PGV/f PGV 0: Disable, 1: Enable 2: Enable (AVR cancel)	Y	Y	0	5-238
H72	Main power shutdown detection (Mode selection)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Disable,	Y	Y	1	5-239
H73	Torque limiter (Operating conditions selection)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Enable during acceleration/deceleration, enable during constant speed Disable during acceleration/deceleration, enable during constant speed 2: Enable during acceleration/deceleration, disable during constant speed	N	Y	0	5-239
H74	Torque limiter(Control target)	Torque limit control Torque current limit Power limit	N	Y	1	
H75	(Applicable quadrant)	0: Drive/braking 1: 4 identical quadrants 2: Upper limit/lower limit 3: 4 independent quadrants	N	Y	0	

Function code	Name	Control method and Data setting range			Factory default	
H76	Torque limiter (Braking) (Frequency rising limiter for braking)		Y	Y	5.0	5-239
H77	Service life of DC link bus capacitor	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0 to 87600 hours (updated in 10 hour units)	Y	N	87600	5-239
H78	Maintenance interval (M1)	0 (Disable), 1 to 99990 hours (updated in 10 hour units)	Y	N	87600	5-240
H79	Preset startup count for maintenance (M1)	0 (Disable), 1 to 65535 times	Y	N	0	5-241
H80	Output current fluctuation damping gain for motor 1		Y	Y	0.20	5-241
H81	Warning selection 1	V/f PGV/f SLV PGV PMSIV PMPGV TRO 0000 to FFFF (in hexadecimal)	Y	Y	0000	5-242
H82	Warning selection 2		Y	Y	0000	
H83	Warning selection 3		Y	Y	0000	
H84	Pre-excitation \quad (Level)(Braking time)	100 to 400 \% (Motor rated magnetizing current for 100%)	Y	Y	100	5-246
H85		$\begin{aligned} & \hline 0.00: \text { Disable } \\ & 0.01 \text { to } 30.00 \mathrm{~s} \end{aligned}$	Y	Y	0.00	
H86	For adjustment by manufacturer *9	0 to 2	Y	Y	0	5-248
H89	For adjustment by manufacturer *9	0, 1	Y	Y	1	5-248
H90	For adjustment by manufacturer *9	0, 1	Y	Y	0	5-248
H91	Current input wire break detection	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0.0 (Alarm disable): 0.1 to 60.0 s	Y	Y	0.0	5-248
H92	Continuous running at the momentary power failure (P)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSVV PMPGV } \\ & 0.000 \text { to } 10.000 \text { times } \\ & 999 \text { : Manufacturer adjustment value } \end{aligned}$	Y	$\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \end{aligned}$	999	5-248
H93		0.010 to 10.000 s 999: Manufacturer adjustment value	Y	$\begin{aligned} & \hline \mathrm{Y} 1 \\ & \mathrm{Y} 2 \\ & \hline \end{aligned}$	999	
H94	Cumulative run time of motor 1	V/f PGV/f SLV PGV PMSV PMPGV TRQ 0 to 99990 hours (updated in 10 hour units) Change in cumulative motor run time (reset possible)	N	N	-	$\begin{aligned} & \hline 5-240 \\ & 5-248 \end{aligned}$
H95	DC braking (Braking response mode)	V/f PGV/f 0: Slow response 1: Quick response	Y	Y	1	$\begin{aligned} & 5-102 \\ & 5-248 \end{aligned}$
H96	STOP key priority/ Start check function	0: STOP key priority disable/ Start check function disable 1: STOP key priority enable/ Start check function disable 2: STOP key priority disable/ Start check function enable 3: STOP key priority enable/ Start check function enable	Y	Y	0	5-249
H97	Clear alarm data	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Disable 1: Clear alarm data (Automatically return to 0 after clearing data)	Y	N	0	5-249
H98	Protection/Maintenance function (Operation selection)	0 to 255 (Data is displayed in decimal) 0: Disable; 1: Enable) Bit 0: Lower the carrier frequency automatically (0 : Disable; 1: Enable) Bit 1: Input phase loss protection (0: Disable; 1: Enable) Bit 2: Output phase loss protection (0: Disable; 1: Enable) Bit 3: DC link bus capacitor life judgment selection (0 : Factory default referenced; 1: User measurement value standard) $\begin{array}{ll}\text { Bit 4: } \\ \text { Bit 5: } & \text { Detect DC fan lock (} 0 \text { : Enable; 1: Disable) }\end{array}$ Judge the life of DC link bus capacitor (0: Disable; 1: Enable) Bit 6: \quad Braking transistor error detection (0: Disable; 1: Enable) IP20/IP40 switching (0: IP20; 1: IP40)	Y	Y	*16	5-250
H99	Password function password 2 Setting/comparison	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0000 to FFFF (in hexadecimal)	Y	N	0	5-252

*9: This is a function code for adjustment by the manufacturer. Do not access these function codes.
*15: When the sensorless vector control for PM is set to less than 10% of F04 (base frequency), the internal operation of H64 is limited to the P89 setting (\%) of F04.
*16: Up to FRN0288G2S-2G/FRN0180G2■-4G: 83 (decimal display) FRN0346G2S-2G/FRN0216G2■-4G: 19 (decimal display)

Function code	Name	Control method and Data setting range		$\begin{aligned} & \text { 이 } \\ & \text { NO } \\ & \hline 0 \\ & 0 \\ & \mathbb{0} \\ & 0 \end{aligned}$	Factory default	
H101	Destination setting	```Not selected J Asia China Europe Americas 7: East Asia (Taiwan,etc.)```	N	Y	1	5-255
H114	Anti-regenerative control (Operation level)	PGV/f $0.0 \text { to } 50.0 \text { \%, } 999 \text { (Auto) }$	Y	Y	999	$\begin{aligned} & 5-237 \\ & 5-255 \end{aligned}$
H116	Forced operation (Operation selection)	0: [FMS] ON (Mode 1) 1: [FMS] ON/OFF torque method (Mode 1) 2: [FMS] ON latch method (Mode 1) 10: [FMS] ON (Mode 2) 11: [FMS] ON/OFF torque method (Mode 2) 12: [FMS] ON latch method (Mode 2) 20: [FMS] ON (Mode 3) 21: [FMS] ON/OFF torque method (Mode 3) 22: [FMS] ON latch method (Mode 3)	N	N	0	5-255
H117	(Confirmation time) (Set frequency)	0.5 to 10.0s	Y	Y	3.0	
H118		0.0 (Inherit): Based on normal set frequency such as F01 0.1 to 599.0 Hz	Y	Y	0.0	
H119	(Operation direction)(Starting method)(Wait time)	```Based on normal run command such as F02 Forward rotation Reverse rotation```	Y	N	0	
H120		0: Based on normal starting method 1: Auto search (Speed search)	Y	Y	0	
H121		0.5 to 20.0 s	Y	Y	5.0	
H130	For special adjustment (Torque limiting) (Torque limiting) (Torque limiting) (Anti-regenerative control) (Anti-regenerative control) (Anti-regenerative control) (Current limiting) (Current limiting)	PGV/f 0.000 to 2.000; 999	Y	Y	999	5-257
H131		0.000; 0.001 to 9.999 ; 999	Y	Y	999	
H132		0.000; 0.001 to 9.999 ; 999	Y	Y	999	
H133		0.000 to 2.000; 999	Y	Y	999	5-257
H134		0.000; 0.001 to $9.999 ; 999$	Y	Y	999	
H135		$0.000 ; 0.001$ to 9.999 ; 999	Y	Y	999	
H136		0.00 to 1.00; 999	Y	Y	999	5-257
H137		0.001 to 10.000; 999	Y	Y	999	
H147	Speed control (JOG) FF (Gain)	0.00 to 99.99 s	Y^{*}	Y	0.00	$\begin{aligned} & \hline 5-257 \\ & 5-300 \end{aligned}$
H154		```0: Disable 1: Digital torque bias 2: Analog torque bias 3: RS-485 communications link (port 1) 4: RS-485 communications link (port 2) 5: Fieldbus link```	N	Y	0	5-258
H155		-300 to +300\%	Y	Y	0	
H156		-300 to +300\%	Y	Y	0	
H157		-300 to +300\%	Y	Y	0	
H158		0 to 300%	Y	Y	0	
H159		0.00 to 1.00 s	N	Y	0.00	
H161		0.00 to 1.00 s	N	Y	0.00	
H162		0 to 300%	N	Y	200	
H173		10 to 100 \%	Y	Y	100	5-259
H180	$\begin{array}{\|l} \hline \text { Brake control signal } \\ \text { (Check-timer for brake } \\ \text { operation) } \end{array}$	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSLV PMPGV TRO } \\ & 0.00 \text { to } 10.00 \mathrm{~s} \end{aligned}$	Y	Y	1.00	$\begin{aligned} & 5-259 \\ & 5-287 \end{aligned}$
H190	Motor output phase sequence selection	```No phase sequence change Terminal [U]: outputs U phase, terminal [V]: outputs W phase, terminal [W]: outputs V phase```	N	Y	0	5-260
H193	User preference dataset (Save)	V/f PGV/f SLV PGV PMSLV PMPGV TRQ 0: Disable 1: Save	N	N	0	5-216
H194	(Protection)	0: Save enable 1: Protected (Save disable)	Y	Y	0	
H195	DC braking (Braking timer at the startup)	0.00 (Disable): 0.01 to 30.00 s PMSIV is valid only when $\mathrm{P} 30=0$	Y	Y	0.00	$\begin{aligned} & 5-102 \\ & 5-260 \end{aligned}$
H196	For adjustment by manufacturer *9	0.001 to 9.999, 999	Y	Y	999	-

Function code	Name	Control method and Data setting range		$\begin{aligned} & \text { 이 } \\ & . \frac{1}{0} \\ & 00 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Factory default	
H197	User password 1 (Selection of protective operation)	All function codes are disclosed, but the change is not allowed. Only the function code for quick setup can be disclosed/changed. Only the function code for customize logic setting is not disclosed/not changed.	Y	Y	0	5-252
H198	User password 1 (Setting/check)	0000 to FFFF (in hexadecimal)	Y	N	0	
H199	User password protection valid	V/f PGV/f SLV PGV PMSLV PMPGV TRQ 0: Disable 1: Protected	Y	N	0	

*9: This is a function code for adjustment by the manufacturer. Do not access these function codes.
*12: Y only when $\mathrm{P} 30=0$

[6] A codes: Motor 2 Parameters (Motor 2 parameters)

Function code	Name	Control method and Data setting range			Factory default	
A01	Maximum output frequency 2	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 5.0 \text { to } 599.0 \mathrm{~Hz} \end{aligned}$	N	Y	60.0	-
A02	Base frequency 2	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 5.0 to 599.0 Hz	N	Y	50.0	
A03	Rated voltage at base frequency 2	V/f PGV/f SLV PGV PMSVI 『MPGV TRQ 0 : AVR disable (output voltage proportional to power voltage) 80 to 240 V : AVR operation (200 V series) 160 to 500 V : AVR operation (400 V series)	N	Y2	200/400	
A04	Maximum output voltage 2	V/f PGV/f 80 to $240 \mathrm{~V}:$ AVR operation (200 V series) 160 to 500 V : AVR operation (400 V series)	N	Y2		
A05	Torque boost 2	0.0 to 20.0 \% (\% value against base frequency voltage 2)	Y	Y	*2	
A06	Electronic thermal overload protection for motor 2 (Select motor characteristics)	```V/f PGV/f SLV PGV PMSIV PMPGV TRO Enable (for a general-purpose motor with self-cooling fan) Enable (for an inverter-driven motor with separately powered cooling fan)```	Y	Y	1	
A07	(Operation level)	0.00 (disable), current value of 1 to 135% of inverter rated current	Y	Y1Y2	*3	
A08	(Thermal time constant)	0.5 to 75.0 min	Y	Y	*10	
A09	DC braking 2 (starting frequency)	$\begin{aligned} & \text { V/f PGV/f SLV PGV Pevsw racel lira } \\ & 0.0 \text { to } 60.0 \mathrm{~Hz} \end{aligned}$	Y	Y	0.0	
A10	(Operation level)	0 to 100 \% (HHD specification), 0 to 80 \% (HND specification)	Y	Y	0	
A11	(Braking time)	0.00 (disable): 0.01 to 30.00 s	Y	Y	0.00	
A12	Starting frequency 2	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSVV PMPGV } \\ & 0.0 \text { to } 60.0 \mathrm{~Hz} \end{aligned}$	Y	Y	0.5	
A13	Load selection/ Auto torque boost/ Auto energy-saving operation 2	0: Quadratic-torque load 1: Constant torque load 2: Auto torque boost 3: Auto energy-saving operation (quadratic-torque load) 4: Auto energy-saving operation (constant torque load) 5: Auto energy-saving operation with auto torque boost	N	Y	1	
A14	Drive control selection 2	0: V/f control without slip compensation 1: Dynamic torque vector control 2: V/f control with slip compensation 3: V/f control with sensor 4: Dynamic torque vector control with sensor 5: Sensorless vector control 6: Vector control with sensor	N	Y	0	
A15	Motor 2 (No. of poles)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 2 to 128 poles	N	Y1Y2	4	
A16	(Rated capacity)	$\begin{aligned} & 0.01 \text { to } 1000 \mathrm{~kW}(\text { when A39 = 0,2 to } 5) \\ & 0.01 \text { to } 1000 \mathrm{HP}(\text { At P39 }=1) \\ & \hline \end{aligned}$	N	Y1Y2	*6	
A17	(Rated current)	0.00 to 2000 A	N	Y1Y2	*6	
A18	(Auto-tuning)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Disable 1: Tune the motor while it is stopped 2: Rotation tuning 5: Stop tuning (\%R1, \%X only)	N	N	0	
A19	(Online tuning)	V/f 0 Invalid 1 : Valid	Y	Y	0	
A20	(No-load current)	$\begin{aligned} & \text { V/f PGV/f SLV PGV ㅌunsw runce TRQ } \\ & 0.00 \text { to } 2000 \mathrm{~A} \end{aligned}$	N	Y1Y2	*6	
A21	(\%R1)	0.00 to 50.00 \%	Y	Y1Y2	*6	
A22	(\%X)	0.00 to 50.00 \%	Y	Y1Y2	*6	
A23	(Slip compensation gain for driving)	$\begin{aligned} & \text { V/f } \\ & 0.0 \text { to } 200.0 \% \end{aligned}$	Y^{*}	Y	100.0	
A24	(Slip compensation response time)	$0.01 \text { to } 10.00 \text { s }$	Y	Y1Y2	0.12	

Function code	Name	Control method and Data setting range			Factory default	
A25	(Slip compensation gain for braking)	V/f Ravin SLV PGV Ensiv anian TRQ 0.0 to 200.0%	Y^{*}	Y	100.0	
A26	(Rated slip frequency)	V/f PGV/f SLV PGV Busviv [ivicu TRQ 0.00 to 15.00 Hz	N	Y1Y2	*6	
A27	(Iron loss factor 1)	V/f PGV/f SLV PGV [ixsiv anran TRO 0.00 to 20.00%	Y	Y1Y2	*6	
A28	(Iron loss factor 2)	0.00 to 20.00 \%	Y	Y1Y2	0.00	
A29	(Iron loss factor 3)	0.00 to 20.00 \%	Y	Y1Y2	0.00	
A30	(Magnetic saturation factor 1)	V/f PGV/f SLV PGV [imsin ampan TRQ 0.0 to 300.0% .0 TR	Y	Y1Y2	*6	
A31	(Magnetic saturation factor 2)	0.0 to 300.0 \%	Y	Y1Y2	*6	
A32	(Magnetic saturation factor 3)	0.0 to 300.0 \%	Y	Y1Y2	*6	
A33	(Magnetic saturation factor 4)	0.0 to 300.0 \%	Y	Y1Y2	*6	
A34	(Magnetic saturation factor 5)	0.0 to 300.0 \%	Y	Y1Y2	*6	
A35	(Magnetic saturation expansion coefficient a)	0.0 to 300.0 \%	Y	Y1Y2	*6	
A36	(Magnetic saturation expansion coefficient b)	0.0 to 300.0 \%	Y	Y1Y2	*6	
A37	(Magnetic saturation expansion coefficient c)	0.0 to 300.0 \%	Y	Y1Y2	*6	
A38	Load inertia 2	$\begin{aligned} & \text { VIN EGVIN SLV PGV PMSVV PMPGV IRO } \\ & 0.00 \text { to } 99.99 \mathrm{~s} \end{aligned}$	Y	Y1Y2	0.000	
A39	Motor 2 selection		N	Y1Y2	5	
A40	Slip compensation 2 (Operating conditions selection)	0: Enable during acceleration/deceleration, enable at base frequency or higher 1: Disable during acceleration/deceleration, enable at base frequency or higher 2: Enable during acceleration/deceleration, disable at base frequency or higher 3: Disable during acceleration/deceleration, disable at base frequency or higher	N	Y	0	
A41	Output current fluctuation damping gain for motor 2	V/f PGV/f sive Pav limsly ampan lira 0.00 to 1.00	Y	Y	0.20	

*2: Factory defaults are depended on motor capacity. Refer to Table 5.2-1 Factory default settings by inverter capacity.
*3: The motor rated current is automatically set. Refer to Table 5.2-2 Motor constants (function code P03).
*6: Factory defaults are depended on motor capacity.
*10: 5.0 min for FRN0115G2S-2G/FRN0060G2■-4G or lower inverters, 10.0 min for FRN0146G2S-2G/FRN0075G2■-4G or higher inverters

Function code	Name	Control method and Data setting range			Factory default	
A42	Motor/parameter switching 2 (Operation selection)	V/f PGV/f SLV PGV PMSIV TRQ 0 : Motor switching (Switching with motor 2) 1: Parameter switching (Switching with A code)	N	Y	0	5-262
A43	Speed control 2 (Speed command filter)	PGGVIT SSLV PGV PMSIV PMPGV TROD 0.000 to 5.000 s	Y	Y	0.020	5-296
A44	(Speed detection filter)	$\begin{aligned} & \text { PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.000 \text { to } 0.100 \mathrm{~s} \end{aligned}$	Y^{*}	Y	0.005	
A45	P (Gain)	$\begin{aligned} & \text { PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.1 \text { to } 200.0 \text { times } \end{aligned}$	Y^{*}	Y	10.0	
A46	I (Integral time)		Y^{*}	Y	0.100	
A47	FF (Gain)	$\begin{aligned} & \text { VIT RGVIT SLV PGV PMSLV PMPGV TRQ } \\ & 0.00 \text { to } 99.99 \mathrm{~s} \\ & \hline \end{aligned}$	Y^{*}	Y	0.00	
A48	(Output filter)	$\begin{aligned} & \text { VITA RGVIT SLV PGV PMSIV PMPGV TRQ } \\ & 0.000 \text { to } 0.100 \mathrm{~s} \end{aligned}$	Y	Y	0.002	

Function code	Name	Control method and Data setting range			Factory default	
A49	(Notch filter resonance frequency)	1 to 500 Hz SLV PGV PMSIV PMPGV TRQ	Y	Y	200	
A50	(Notch filter attenuation level)	VITV PGVII SLV PGV PMSIV PMPGV TRQ 0 to 40 dB	Y	Y	0	
A51	Cumulative run time of motor 2	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0 to 99990 hours (Updated in 10 hour units) Change in cumulative motor run time (Reset possible)	N	N	0	-
A52	Startup count for motor 2	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0 to 65535 times For adjustment when carrying out replacement	Y	N	0	
A53	Motor 2 (\%X correction factor 1)	V/f PGV/f SLV PGV EMSIV Cmicev TRQ 0 to 300%	Y	Y1Y2	100	
A54	(\%X correction factor 2)	0 to 300 \%	Y	Y1Y2	100	
A55	(Torque current under vector control)		N	Y1Y2	*6	
A56	(Induced voltage factor under vector control)	50 to 100%	N	Y1Y2	*6	
A57	(For adjustment by manufacturer *9)	0.000 to 20.000 s	Y	Y1Y2	*6	
A58	Speed control 2 (Notch filter width)	VIF 3 (0: Narrow to 3: Wide) 0 to 3 PMPGV TRO	Y	Y	2	
A60	Speed display coefficient 2	V/f PGV/f SLV PGV PMSVV PMPGV TRQ 0.00 to 600.00 0.00 : Use E50	Y	Y	0.00	
A61	Constant rate of feeding coefficient 2 / Speed display auxiliary coefficient 2	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0.000 to 9999	Y	Y	1.000	
A62	Starting frequency 2 (Holding time)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & 0.00 \text { to } 10.00 \mathrm{~s} \end{aligned}$	Y	Y	0.00	
A63	Stop frequency 2	V/f PGV/f SLV PGV PMSVV PMPGV TRO	Y	Y	999	
A64	(Detection method)		N	Y	100	
A65	(Holding time)	V/f PGV/f SLV PGV PMSIV PMPGV TROD 0.00 to 10.00 s	Y	Y	0.00	
A66	Motor 2 (Thermistor operation selection)	0: Disable 1: PTC (OH4 trips and inverter stops) 2: PTC (Output signal (THM) is out, and motor continues to run) 3: NTC (OH4 trips and inverter stops) 100: G1 compatible operation	Y	Y	100	
A67	(Operation level)	0.00 to 5.00 V	Y	Y	0.35	
A98	(Function selection)	0 to 255 Bit 0: Current limiter (F43, F44) (0: Disable, 1: Enable) Bit 1: Rotational direction control (H08) (0: Disable, 1: Enable) Bit 2: Non-linear V/f (H50 to H53, H65, H66) (0: Disable, 1: Enable) Bit 3: PID control (J01 to J62, H91) (0: Disable, 1: Enable) Bit 4: Brake signal (0: Disable, 1: Enable) Bit 5: Braking timer at startup (H195) (0: Disable, 1: Enable) Bit 6 to 7: Reserved	N	Y	0	5-265

*6: Factory defaults are depended on motor capacity.
${ }^{*} 9$: This is a function code for adjustment by the manufacturer. Do not change.

[7] b codes: Motor 3 Parameters (Motor 3 parameters)

$\begin{gathered} \text { Function } \\ \text { code } \end{gathered}$	Name	Control method and Data setting range		$\begin{aligned} & \text { 이 } \\ & \text { 리 } \\ & \text { O} \\ & \frac{\pi}{0} \\ & 0 \end{aligned}$	Factory default	
b01	Maximum output frequency 3	Same as A01	N	Y	60.0	-
b02	Base frequency 3	Same as A02	N	Y	50.0	
b03	Rated voltage at base frequency 3	Same as A03	N	Y2	200/400	
b04	Maximum output voltage 3	Same as A04	N	Y2		
b05	Torque boost 3	Same as A05 (\% value against base frequency voltage 3)	Y	Y	*2	
b06	Electronic thermal overload protection for motor 3 (Select motor characteristics)	Same as A06	Y	Y	1	
b07	(Operation level)	Same as A07	Y	Y1Y2	*3	
b08	(Thermal time constant)	Same as A08	Y	Y	*10	
b09	$\text { DC braking } 3$	Same as A09	Y	Y	0.0	
b10	(Operation level)	Same as A10	Y	Y	0	
b11	(Braking time)	Same as A11	Y	Y	0.00	
b12	Starting frequency 3	Same as A12	Y	Y	0.5	
b13	Load selection/ Auto torque boost/ Auto energy-saving operation 3	Same as A13	N	Y	1	
b14	Drive control selection 3	Same as A14	N	Y	0	
b15	Motor $3 \quad$ (No. of poles)	Same as A15	N	Y1Y2	4	
b16	(Rated capacity)	Same as A16 (Based on r39 motor 3 selection)	N	Y1Y2	*6	
b17	(Rated current)	Same as A17	N	Y1Y2	*6	
b18	(Auto-tuning)	Same as A18	N	N	0	
b19	(Online tuning)	Same as A19	Y	Y	0	
b20	(No-load current)	Same as A20	N	Y1Y2	*6	
b21	(\%R1)	Same as A21	Y	Y1Y2	*6	
b22	(\%X)	Same as A22	Y	Y1Y2	*6	
b23	(Slip compensation gain for	Same as A23	Y^{*}	Y	100.0	
b24	(Slip compensation response time)	Same as A24	Y	Y1Y2	0.12	
b25	(Slip compensation gain for braking)	Same as A25	Y^{*}	Y	100.0	
b26	(Rated slip frequency)	Same as A26	N	Y1Y2	*6	
b27	(Iron loss factor 1)	Same as A27	Y	Y1Y2	*6	
b28	(Iron loss factor 2)	Same as A28	Y	Y1Y2	0.00	
b29	(Iron loss factor 3)	Same as A29	Y	Y1Y2	0.00	
b30	(Magnetic saturation factor 1)	Same as A30	Y	Y1Y2	*6	
b31	(Magnetic saturation factor 2)	Same as A31	Y	Y1Y2	*6	
b32	(Magnetic saturation factor 3)	Same as A32	Y	Y1Y2	*6	
b33	(Magnetic saturation factor 4)	Same as A33	Y	Y1Y2	*6	
b34	(Magnetic saturation factor 5)	Same as A34	Y	Y1Y2	*6	
b35	(Magnetic saturation expansion coefficient a)	Same as A35	Y	Y1Y2	*6	
b36	(Magnetic saturation expansion coefficient b)	Same as A36	Y	Y1Y2	*6	
b37	(Magnetic saturation expansion coefficient c)	Same as A37	Y	Y1Y2	*6	
b38	Load inertia 3	Same as A38	Y	Y1Y2	0.000	
b39	Motor 3 selection	Same as A39	N	Y1Y2	5	
b40	Slip compensation 3 (Operating conditions selection)	Same as A40	N	Y	0	
b41	Output current fluctuation damping gain for motor 3	Same as A41	Y	Y	0.20	
b42	Motor/parameter switching 3 (Operation selection)	V/f PGV/f SLV PGV PMSVV PMPGV TRQ 0: Motor switching (Switching with motor 3) 1: Parameter switching (Switching with b code)	N	Y	0	

${ }^{*} 9$: This is a function code for adjustment by the manufacturer. Do not access these function codes.
*10: 5.0 min for FRN0115G2S-2G/FRN0060G2■-4G or lower inverters, 10.0 min for FRN0146G2S-2G/FRN0075G2■-4G or higher inverters

[8] r codes: Motor 4 Parameters (Motor 4 parameters)

$\begin{gathered} \text { Function } \\ \text { code } \end{gathered}$	Name	Control method and Data setting range		$\begin{aligned} & \text { 읒 } \\ & \text { 으 } \\ & 0 \\ & \frac{\pi}{0} \\ & 0 \end{aligned}$	Factory default	
r01	Maximum output frequency 4	Same as A01	N	Y	60.0	-
r02	Base frequency 4	Same as A02	N	Y	50.0	
r03	Rated voltage at base frequency 4	Same as A03	N	Y2	200/400	
r04	Maximum output voltage 4	Same as A04	N	Y2		
r05	Torque boost 4	Same as A05 (\% value against base frequency voltage 4)	Y	Y	*2	
r06	Electronic thermal overload protection for motor 4 (Select motor characteristics)	Same as A06	Y	Y	1	
r07	(Operation level)	Same as A07	Y	Y1Y2	*3	
r08	(Thermal time constant)	Same as A08	Y	Y	*10	
r09	$\text { DC braking } 4 \text { (starting frequency) }$	Same as A09	Y	Y	0.0	
r10	(Operation level)	Same as A10	Y	Y	0	
r11	(Braking time)	Same as A11	Y	Y	0.00	
r12	Starting frequency 4	Same as A12	Y	Y	0.5	
r13	Load selection/ Auto torque boost/ Auto energy-saving operation 4	Same as A13	N	Y	1	
r14	Drive control selection 4	Same as A14	N	Y	0	
r15	Motor 4 (No. of poles)	Same as A15	N	Y1Y2	4	
r16	(Rated capacity)	Same as A16 (Based on r39 motor 4 selection)	N	Y1Y2	*6	
r17	(Rated current)	Same as A17	N	Y1Y2	*6	
r18	(Auto-tuning)	Same as A18	N	N	0	
r19	(Online tuning)	Same as A19	Y	Y	0	
r20	(No-load current)	Same as A20	N	Y1Y2	* 6	
r21	(\%R1)	Same as A21	Y	Y1Y2	*6	
r22	(\%X)	Same as A22	Y	Y1Y2	*6	
r23	(Slip compensation gain for driving)	Same as A23	Y^{*}	Y	100.0	
r24	(Slip compensation response time)	Same as A24	Y	Y1Y2	0.12	
r25	(Slip compensation gain for braking)	Same as A25	Y^{*}	Y	100.0	
r26	(Rated slip frequency)	Same as A26	N	Y1Y2	*6	
r27	(Iron loss factor 1)	Same as A27	Y	Y1Y2	*6	
r28	(Iron loss factor 2)	Same as A28	Y	Y1Y2	0.00	
r29	(Iron loss factor 3)	Same as A29	Y	Y1Y2	0.00	
r30	(Magnetic saturation factor 1)	Same as A30	Y	Y1Y2	*6	
r31	(Magnetic saturation factor 2)	Same as A31	Y	Y1Y2	*6	
r32	(Magnetic saturation factor 3)	Same as A32	Y	Y1Y2	*6	
r33	(Magnetic saturation factor 4)	Same as A33	Y	Y1Y2	*6	
r34	(Magnetic saturation factor 5)	Same as A34	Y	Y1Y2	*6	
r35	(Magnetic saturation expansion coefficient a)	Same as A35	Y	Y1Y2	*6	
r36	(Magnetic saturation expansion coefficient b)	Same as A36	Y	Y1Y2	*6	
r37	(Magnetic saturation expansion coefficient c)	Same as A37	Y	Y1Y2	*6	
r38	Load inertia 4	Same as A38	Y	Y1Y2	0.000	
r39	Motor 4 selection	Same as A39	N	Y1Y2	5	
r40	Slip compensation 4 (Operating conditions selection)	Same as A40	N	Y	0	
r41	Output current fluctuation damping gain for motor 4	Same as A41	Y	Y	0.20	
r42	Motor/parameter switching 4 (Operation selection)	V/f PGV/f SLV PGV PMSIV PMPGV TRQ 0: Motor switching (Switching with motor 4) 1: Parameter switching (Switching with r code)	N	Y	0	

${ }^{*} 9$: This is a function code for adjustment by the manufacturer. Do not access these function codes.
*10: 5.0 min for FRN0115G2S-2G/FRN0060G2■-4G or lower inverters, 10.0 min for FRN0146G2S-2G/FRN0075G2■-4G or higher inverters

[9] J codes: Application Functions 1 (Application function 1)

Function code	Name	Control method and Data setting range			Factory default	
J01	PID control (Mode selection)	V/f PGVIf SLV PGV PMSIV PMPGV O: Disable 1: Process (normal operation) 2: 3: Process (inverse operation) Speed control (Dancer)	N	Y	0	5-267
J02	(Remote command)	0 : Keypad key operation (\odot) keys) PID command 1 (Analog input: Terminals [12], [C1] and [V2]) UP/DOWN 4: Communication	N	Y	0	5-268
J03	P (Gain)	0.000 to 30.000 times	Y	Y	0.100	5-275
J04	I (Integral time)	0.0 to 3600.0 s	Y	Y	0.0	
J05	D (Differential time)	0.00 to 600.00 s	Y	Y	0.00	
J06	(Feedback filter)	0.0 to 900.0 s *1	Y	Y	0.5	
J08	(Pressurization frequency)	0.0 to 599.0 Hz	Y	Y	0.0	5-278
J09	(Pressurization time)	0 to 60 s	Y	Y	0	
J10	(Anti-reset windup)	0 to 200 \%	Y	Y	200	5-280
J11	(Select Warning output)	0: Warning caused by process command value 1: Warning caused by process command value with hold 2: Warning caused by process command value with latch 3: Warning caused by process command value with hold and latch 4: 5: Warning caused by PID error value 5: 6: Warning caused by PID error value with hold 7:	Y	Y	0	5-280
J12	(Upper limit of warning (AH))	-100 \% to 100%	Y	Y	100	
J13	(Lower limit of warning (AL))	-100 \% to 100 \%	Y	Y	0	
J15	(Sleep frequency)	0.0 (Disable), 1.0 to 599.0 Hz	Y	Y	0.0	5-281
J16	(Sleep timer)	0 to 60 s	Y	Y	30	
J17	(Wakeup frequency)	0.0 to 599.0 Hz	Y	Y	0.0	
J18	(Upper limit of PID process output)	-150 \% to 150 \%, 999 (Based on F15)	Y	Y	999	5-282
J19	(Lower limit of PID process output)	-150 \% to 150 \%, 999 (Based on F16)	Y	Y	999	
J21	Condensation prevention (Duty)	V/f PGV/f SLV PGV Fusive ruran TRQ 1 to 50%	Y	Y	1	5-282
J22	Switch to commercial power supply sequence	V/f PGV/f 0: Standard sequence 1: Inverter automatic switching sequence	N	Y	0	5-282
J23	PID control (Wakeup level of PID error feedback deviation)	V/f PGV/f SLV PGV PMSIV PMPGV IRQ 0.0 to 100.0%	Y	Y	0.0	5-282
J24	(Wakeup timer)	0 to 3600 s	Y	Y	0	
J57	(Dancer position set point)	-100 to 0 to 100%	Y	Y	0	5-283
J58	(Detection width of dancer position error)	0: Disable switching PID constant 1 to 100% : Manually set value	Y	Y	0	5-284
J59	P (Gain) 2	0.000 to 30.000 times	Y	Y	0.100	
J60	1 (Integral time) 2	0.0 to 3600.0 s	Y	Y	0.0	
J61	D (Differential time) 2	0.00 to 600.00 s	Y	Y	0.00	
J62	(PID control block selection)	0 to 3 Bit 0: Select polarity compensation for PID output/error $0=$ Plus (Addition); 1=Minus (Subtraction) Bit 1: Select compensation factor for PID output $0=$ Ratio (relative to the main setting) 1=Speed command (relative to maximum frequency)	N	Y	0	5-284
J63	Overload stop (Item selection)	V/f PGV/f SLV PGV PMSIV PMPGV TRe 0: Torque, 1: Current	Y	Y	0	5-285
J64	(Detection level)	20 to 200 \%	Y	Y	100	
J65	(Operation selection)		N	Y	0	
J66	(Operation mode)	```0: During constant speed running and deceleration 1: During constant speed running 2: Anytime```	Y	Y	0	
J67	(Timer)	0.00 to 600.00 s	Y	Y	0.00	

Function code	Name	Control method and Data setting range			Factory default	
J68	Brake control signal (Brake-release current)	V/f PGV/f SLV PGV EMSIV PMPGV TiRa 0.00 to 300.00%	Y	Y	100.00	5-287
J69	(Brake-release frequency/speed)	0.0 to 25.0 Hz	Y	Y	1.0	
J70	(Brake-release timer)	0.000 to 5.000 s	Y	Y	1.000	
J71	(Brake-applied frequency/speed)	0.0 to 25.0 Hz	Y	Y	1.0	
J72	(Brake-applied timer)	0.000 to 5.000 s	Y	Y	1.000	

*1: When speed control (dancer) is selected ($\mathrm{J} 01 \neq 3 \rightarrow=3$), the J 06 setting value automatically changes to 0.0 s . To specify the filter time constant in detail, apply filter time constants for analog input (C33, C38 and C43) with J06 = 0.0. When speed control (dancer) is not selected (J01 = 3 $\rightarrow \neq 3$), the J06 setting value automatically changes to 0.5 s . Set J06 after setting J01.

Function code	Name	Control method and Data setting range			Factory default	
J90	Overload stop (Stopper contact) (Torque limiting P (Gain))	V/ff PGV/f 0.000 to $2.000,999$	Y	Y	999	5-285
J91	(Torque limiting I (Integral time))	0.001 to 9.999s, 999	Y	Y	999	
J92	(Current command level)	50.0 to 150.0 \%	Y	Y	100.0	
J95	Brake control signal \quad (Brake-release torque)	0.00 to 300.00%	Y	Y	100.00	5-287
J96	(Operation selection)	0 to 127 Bit 0: Speed detection / Speed command selection (0: Speed detection value, 1: Speed command value) Bit 1: Reserved Bit 2: Not used Bit 3: Not used Bit 4: Brake-apply condition (0 : Regardless of run command status (ON or OFF), 1: Only when run command is OFF) Bit 5: Not used Bit 6: Stop condition at position control (0 : Break signal OFF ; 1 : Break signal ON)	Y	Y	0	5-287
J97	Servo lock (Gain)	0.000 to 9.999 times	Y	Y	0.010	5-291
J98	(Completion timer)	0.000 to 1.000 s	Y	Y	0.100	
J99	(Completion range)	0 to 9999 pulses	Y	Y	10	
J105	PID control (Display unit)	0: Inherit (PID Control 1 feedback unit) 1: No unit 2: \% 4: $\mathrm{r} / \mathrm{min}$ 7: kW 8: HP 10: mm / s 11: mm / m 12: mm / h 13: m/s 14: $\mathrm{m} / \mathrm{min}$ 15: m/h 16: FPS 17: FPM 18: FPH [Flow] 20: $\mathrm{m}^{3} / \mathrm{s}$ 21: $\mathrm{m}^{3} / \mathrm{min}$ 22: $\mathrm{m}^{3} / \mathrm{h}$ 23: L/s 24: L/min 25: L/h 26: GPS 27: GPM 28: GPH 29: CFS 30: CFM 31: CFH 32: kg/s 33: kg / m 34: kg/h 35: lb/s 36: lb/m 37: lb/h	N	Y	0	5-293

Function code	Name	Control method and Data setting range			Factory default	
		38: AF/Y [Pressure] 40: Pa 41: kPa 42: MPa 43: mbar 44: bar 45: mmHg 46: PSI (Pounds per square inch absolute) 47: mWG 48 inWG 49: inHg 50: WC 51: FT WG [Temperature] 60: K 61: ${ }^{\circ} \mathrm{C}$ 62: ${ }^{\circ} \mathrm{F}$ [Distance] 65: N•m 66: lb ft 70: mm 71: cm 72: m 73: km 74: in 75: Ft 76: Yd 77: mi [Concentration] 80: ppm [Other amounts] 90: m3 91: L 92: GAL				
J106	$\begin{array}{r} \text { PID control } \\ \text { (Maximum scale) } \end{array}$	V/f PGV/f SLV PGV PMSIV PMPGV TRe	N	Y	100.00	5-293
J107	(minimum scale)	-999.0 to 0.00 to 9990.0	N	Y	0.00	
J108	(Auto-tuning)		Y	N	0	5-294
J109	(Operation frequency when tuning)	10 to 100%			10	
J136	(Multistep command 1)	-999.0 to 0.00 to 9990.0	Y	Y	0.00	5-295
J137	(Multistep command 2)	-999.0 to 0.00 to 9990.0	Y	Y	0.00	
J138	(Multistep command 3)	-999.0 to 0.00 to 9990.0	Y	Y	0.00	

[10] d codes: Application Functions 2 (Application functions 2)

Function code	Name	Control method and Data setting range			Factory default	
d01	Speed control 1 (Speed command filter) (Speed detection filter)	PGV/f SLV PGV PMSIV PMPGV 0.000 to 5.000 s If $F 42=15,16,0.200 \mathrm{~s}$ is automatically set.	Y	Y	0.020	5-296
d02		```\|V/PGV/f SLV PGV PMSIV PMPGV TTRQ 0.000 to 0.100 s If F42=15,16, 0.025 s is automatically set.```	Y	Y	0.005	
d03	I (Integral time)	PGVIf SLV PGV PMSIV PMPGV TRQ 0.1 to 200.0 times If $F 42=15,16,2.0$ times is automatically set.	Y	Y	10.0	
d04		PGVIf SLV PGV PMSIV PMPGV TRO 0.001 to $9.999 \mathrm{~s} ; 999$: Disable integral term If $F 42=15,16,0.600 \mathrm{~s}$ is automatically set.	Y	Y	0.100	
d05	FF (Gain)	0.00 to 99.99 s	Y	Y	0.00	
d06	(Output filter)	$\begin{aligned} & 0.000 \text { to } 0.100 \mathrm{~s} \\ & \text { If } F 42=15,16,0.000 \mathrm{~s} \text { is automatically set. } \end{aligned}$	Y	Y	0.002	
d07	(Notch filter resonance frequency)	1 to 500 Hz PGV PMPGV TRO	Y	Y	200	5-299
d08	(Notch filter attenuation level)	0 to 40 dB PGV PMPG TRQ	Y	Y	0	
d09	$\begin{array}{r} \text { Speed control (JOG) } \\ \text { (Speed command filter) } \\ \text { (Speed detection filter) } \\ \mathrm{P}(\text { Gain }) \\ \text { I (Integral time) } \\ \text { (Output filter) } \end{array}$	PGGV雨 SLV PGV PMSIV PMPGV TROD 0.000 to 5.000 s	Y	Y	0.020	5-300
d10		0.000 to 0.100 s	Y	Y	0.005	
d11		0.1 to 200.0 times	Y	Y	10.0	
d12		0.001 to $9.999 \mathrm{~s}, 999$: Disable integral term	Y	Y	0.100	
d13		0.000 to 0.100 s	Y	Y	0.002	
d14	PG option Ch2 (Pulse train input) \quad (Pulse input format)	0: Frequency and direction 1: Forward and reverse pulse 2: Quadrature A / B signal (B phase lead) 3: Quadrature A / B signal (A phase lead) 4: A, B phase 90° phase difference (B phase lead) UVW signal (for synchronous motors)	N	Y	2	5-301
d15	(Encoder pulse resolution)	0014 to EA60(Hexadecimal format), 20 to 60000(Decimal format)	N	Y	$\begin{gathered} 0400 \\ (1024) \\ \hline \end{gathered}$	
d16	(Pulse scaling factor 1)	1 to 32767	Y	Y	1	
d17	(Pulse scaling factor 2)	1 to 32767	Y	Y	1	
d18	(Filter time constant)	0.000 to 5.000 s	Y	Y	0.005	
d21	Speed mismatch error (Detection width) (Detection timer)		Y	Y	10.0	5-303
d22		0.00 to 10.00 s	Y	Y	0.50	
d23	Speed mismatch error selection	VIT PGV/f SLV PGV PMSIV PMPGV 0: Continue to run 1 1: Stop with alarm 1 2: Stop with alarm 2 3: Continue to run 2 4: Stop with alarm 3 5: Stop with alarm 4	N	Y	2	
d24	Zero speed control	0: Disable at startup 1: Enable at startup 2: Zero speed control not possible	N	Y	0	5-107
d25	ASR switching time	PGV/f SLV PGV PMSIV PMPGV TRQ 0.000 to 1.000 s	Y	Y	0.000	5-304
d27	Servo lock (Gain switching time)	0.000 to 1.000 s PGV BMPGV HRQ	Y	Y	0.000	5-304
d28	(Gain 2)	0.000 to 9.999 times	Y	Y	0.010	
d29	Speed control 1 (Notch filter width)	VIT PGVIV SLV PGV PMSIV PMPGV TRO 0 to 3 (0: Narrow to 3: Wide)	Y	Y	2	5-304
d30	ASR gain setting (coming soon)	0: Disable 1: ASR gain setting PGV PMSIV PMPGV IRO	N	Y	0	-
d32	Speed limit / Overspeed detection level (Level 1)	0 to 110% SLV PGV EMSIV PMPGV TRQ	Y	Y	100	5-304
d33	(Level 2)	0 to 110%	Y	Y	100	
d35	Over speed detection level	PGV/f SLV PGV PMSIV PMPGV TRQ 0 to $120 \%, 999$: Based on $\mathrm{d} 32, \mathrm{~d} 33$	Y	Y	999	5-304

Function code	Name	Control method and Data setting range			Factory default	
d41	Application specific function selection	0: Disable (Normal control) 1: Enable (Constant surface speed control) 2: Master-follower operation (Immediate synchronization mode at the start, without Z phase) 3: Master-follower operation (Master-follower operation) 4: Master-follower operation (Immediate synchronization mode at the start, with Z phase)	N	Y	0	5-305
d51	For adjustment by manufacturer *9	-500 to 500	N	Y	*14	5-308
d52	For adjustment by manufacturer *9	-500 to 500	N	Y	*14	
d53	For adjustment by manufacturer *9	-500 to 500	N	Y	*14	
d54	For adjustment by manufacturer *9	-500 to 500	N	Y	*14	
d55	For adjustment by manufacturer *9	0000 to 00FF (Display in hexadecimal)	N	Y	0000	
d59	PG option Ch1 / Terminal [X] (Pulse train input) (Pulse input format)	V/f PGV/f SLV PGV PMSIV PMPGV 0: Pulse train sign / Pulse train input 1: Forward rotation pulse / Reverse rotation pulse 2: A, B phase 90° phase difference (B phase lead) 3: A, B phase 90° phase difference (A phase lead)	N	Y	0	5-314
d60	(Encoder pulse resolution)	0014 to EA60(Hexadecimal format), 20 to 60000(Decimal format)	N	Y	$\begin{array}{r} \hline 0400 \\ (1024) \\ \hline \end{array}$	
d61	(Filter time constant)	0.000 to 5.000 s	Y	Y	0.005	5-308
d62	(Pulse scaling factor 1)	1 to 32767	Y	Y	1	
d63	(Pulse scaling factor 2)	1 to 32767	Y	Y	1	
d67	Starting characteristic (Auto search mode: speed sensorless vector control)	0: Disable (Do not set to 0 if performing restart after momentary power failure. Failure to observe this could result in motor damage.) 1: Enable (Only at restart after momentary power failure) 2: Enable (At restart after momentary power failure and at normal start) If $\mathrm{F} 42=15,2$ is automatically set.	N	Y	1	5-308
d68	For adjustment by manufacturer *9	0.0 to 10.0	N		4.0	5-308
d69	For adjustment by manufacturer *9	30.0 to 100.0	Y	Y	30.0	
d70	Speed control limiter		Y	Y	100.00	5-308

*9: This is a function code for adjustment by the manufacturer. Do not change.
*14: The factory default is set based on capacity. 5 for FRN0018G2S-2G/FRN0009G2口-4G or lower inverters, 10 for FRN0032G2S-2G/FRN0018G2 $\square-4 G$ to FRN0115G2S-2G/FRN0060G2■-4G inverters, 20 for FRN0146G2S-2G/FRN0075G2■-4G or higher inverters

Function code	Name	Control method and Data setting range			Factory default	
d71	Master follower control (Main speed regulator gain)	0.00 to 1.50 times PGV Biviv amrav tira	Y	Y	1.00	5-309
d72	(APR gain)	0.00 to 200.00 times	Y	Y	15.00	
d73	(APR output + side limiter)	20 to 200 \%: Limiter level 999: Disable	Y	Y	999	
d74	(APR output -side limiter)	$\begin{aligned} & \text { 20 to } 200 \text { \%: Limiter level } \\ & \text { 999: Disable } \end{aligned}$	Y	Y	999	
d75	(Z phase alignment gain)	0.00 to 10.00 times	Y	Y	1.00	
d76	(Offset angle between master and follower)	0 to 359 deg.	Y	Y	0	
d77	(Synchronous completion detection angle)	0 to 359 deg.	Y	Y	15	
d78	(Deviation overflow detection width)	0 to 65535 (10 pulse units)	Y	Y	65535	
d79	For adjustment by manufacturer *9	0, 80 to 240 (200 V series), 160 to 500 (400 V series), 999	N	Y2	999	5-336
d80	Motor 1 (Synchronous motor magnetic pole position draw-in frequency)	0.1 to 10.0 Hz	Y	Y	1.0	5-336
d81	For adjustment by manufacturer *9	0 to 1	Y	Y	1	5-336
d82	Magnetic flux weakening control	0: Disable 1: Enable	Y	Y	1	5-336
d83	Magnetic flux weakening lower limit value		Y	Y	40	
d84	For adjustment by manufacturer *9	0 to 20	Y	Y	5	5-336
d85	For adjustment by manufacturer *9	0 to 200	Y	Y	95	
d86	Acceleration/deceleration output filter	$0.000 \text { to } 5.000 \mathrm{~s}$	Y	Y	0.000	5-336
d88	For adjustment by manufacturer *9	0.00 to 10.00, 999	Y	Y	999	5-336
d89	Motor 1 (Synchronous motor highefficiency control)	0 to 1	N	Y	1	5-336
d90	Magnetic flux level during deceleration		Y	Y	120	5-336
d91	For special adjustment	0.00 to 2.00, 999	Y	Y	999	5-336
d92	For special adjustment	0, 0.01 to 3.00	Y	Y	0.00	5-336
d93	For adjustment by manufacturer *9	0.00 to 10.00, 999	Y	Y	999	5-336
d94	For adjustment by manufacturer *9	0.00 to 10.00, 999	Y	Y	999	
d95	For adjustment by manufacturer *9	0.00 to 10.00, 999	Y	Y	999	
d96	For adjustment by manufacturer *9	-50.0 to 50.0, 999	Y	Y	999	
d97	For adjustment by manufacturer *9	-50.0 to 50.0, 999	Y	Y	999	
d98	For special adjustment	0 to 65535	Y	Y	0	5-336
d99	Extension function 1		Y	Y	0000	5-337
d120	$\begin{aligned} & \text { Brake signal (Brake-release } \\ & \text { current) }\end{aligned}$ (REV)	V/f 0.00 to $300.00 \%, 999$ depends on the setting value of J68	Y	Y	999	5-337
d121	Brake control signal (Brakerelease frequency/speed) (REV)		Y	Y	999	
d122	$\begin{aligned} & \text { Brake control signal (Brake- } \\ & \text { release timer) }\end{aligned}$ (REV)	V/f $\mathrm{PGV/f} \mathrm{SLV}$ PGV 0.0 to $5.000 \mathrm{~s}, 999$ depends on the setting value of J70	Y	Y	999	
d123	Brake signal (Brake-release torque) (REV)	0.00 to $300.00 \%, 999$:depends on the setting value of J95	Y	Y	999	
d124	Brake control signal (Brakeapply frequency/speed) (REV)		Y	Y	999	

Function code	Name	Control method and Data setting range			Factory default	
d125	Brake control signal (Brake- apply timer)		Y	Y	999	
d150	PID control (Dancer upper limit warning position)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV } \\ & -100.00 \text { to } 100.00 \% \end{aligned}$	Y	Y	100.00	
d151	(Dancer lower limit warning position)	$\begin{aligned} & \text { V/f PGV/f SLV PGV PMSIV PMPGV TRQ } \\ & -100.00 \text { to } 100.00 \% \end{aligned}$	Y	Y	0.00	
d152	(Line speed lower limit for dancer PID output)	0.0 to 599.0 Hz	Y	Y	0.0	5-337
d153	Line speed control (Line speed compensation gain)	PGV/f SIV PGV 0.0 to 200.0%	Y	Y	100.0	5-337
d154	(Selector switch)	0 to 1 Bit 0 : Winding diameter compensation (0 : No, 1 : Yes)	N	Y	0	5-338
d158	Winding diameter calculation (Moving average count)	$\begin{aligned} & \text { PGGV/t Siv PGV [exsiv ampan lira } \\ & 0 \text { to } 100 \end{aligned}$	Y	Y	0	5-339
d159	(Dead zone)	0.000 to 10.000 \%	Y	Y	0.001	
d160	(Calculation gain)	0.00 to 1.00	Y	Y	0.10	5-339
d161	(Compensation gain)	0.000 to 10.000	Y	Y	1.000	5-339
d162	(Low-speed line speed ratio)	0.00 to 100.00%	Y	Y	3.00	5-339
d163	(Minimum winding diameter)	1 to 65535 mm (3,300 to 4,900 ft)	Y	Y	100	5-340
d164	(Maximum winding diameter)	1 to 65535 mm (3,300 to 4,900 ft)	Y	Y	1100	
d165	(Initial winding diameter)	1 to 65535 mm (3,300 to 4,900 ft)	Y	Y	700	
d166	(FM output gain)	0.0 to 100.0	Y	Y	20.0	5-341
d167	Line speed command (Maximum value)	```0.0: Disable 0.1 to 6553.5 m/min```	N	Y	0.0	5-341
d168	(Acceleration time)	0.00 to 6000 s	Y	Y	*11	
d169	(Deceleration time)	0.00 to 6000 s	Y	Y	*11	
d170	After detected load compensation (dedicated monitor function code)	V/f PGV/f SLV PGV Eusiv PMPGV IRQ -327.68 to 327.67%	-	N	-	5-343
d171	Load conversion gain (hoisting)	0.00 to 200.00 \%	Y	Y	100.00	
d172	Load conversion offset (hoisting)	-100.0 to 100.0 \%	Y	Y	0.0	
d173	Load conversion gain (lowering)	-200.00 to 200.00 \%	Y	Y	100.00	
d174	Load conversion offset (lowering)	-100.0 to 100.0 \%	Y	Y	0.0	
d175	Light load speed multiplying factor (hoisting)	100.0 to 300.0 \%, 999	Y	Y	100.0	
d176	Light load speed multiplying factor (lowering)	100.0 to 300.0 \%, 999	Y	Y	100.0	
d177	Medium load speed multiplying factor (hoisting)	100.0 to 300.0 \%,999	Y	Y	100.0	
d178	Medium load speed multiplying factor (lowering)	100.0 to 300.0 \%, 999	Y	Y	100.0	
d179	Speed multiplying factor safety factor	1.0 to 4.0	Y	Y	1.0	
d180	Load judgment delay time (hoisting)	0.00 to 10.00 s	Y	Y	2.00	
d181	Load judgment delay time (lowering)	0.00 to 10.00 s	Y	Y	2.00	
d182	Light load detection level (hoisting)	5.0 to 100.0 \%, 999	Y	Y	25.0	
d183	Light load detection level (lowering)	5.0 to 100.0 \%, 999	Y	Y	25.0	
d184	Heavy load detection level (hoisting)	5.0 to 100.0 \%, 999	Y	Y	25.0	
d185	Heavy load detection level (lowering)	5.0 to 100.0 \%, 999	Y	Y	25.0	
d186	Overload judgment delay time	0.00 to 10.00 s	Y	Y	0.50	
d187	Overload detection level	5.0 to 250.0 \%, 999	Y	Y	999	
d188	Overload detection monitor	-327.68 to 327.67 \%	-	N	-	
d189	Hoist function auxiliary setting		Y	Y	0000	

Function code	Name	Control method and Data setting range	6u!̣uunı иәчм əбиечว		Factory default	0 0 0 0 0 0 $\boxed{0}$
d190	For adjustment by manufacturer *9	0 to 150	Y	Y	0	
d192	For adjustment by manufacturer *9	0.00 to 10.00	Y	Y	0.30	5-349
d193	Special adjustment (Torque scaling factor for high load)		Y^{*}	Y	999	5-349
d194	Special adjustment (Torque scaling factor for high load (for driving))	0.0 to 30.0 \%, 999 (Same value as d193)	Y^{*}	Y	999	
d195	Special adjustment (Torque scaling factor for high load (for braking))	0.0 to 30.0 \%, 999 (Same value as d193)	Y^{*}	Y	999	
d196	Special adjustment (Torque scaling effective speed for high load (for driving))	0 to 50 times	Y	Y	4	
d197	Special adjustment (Torque scaling effective speed for high load (for braking))	0 to 50 times	Y	Y	4	
d198	For adjustment by manufacturer *9	0 to 65535	Y	Y	0	5-349
d199	For adjustment by manufacturer *9	0000 to 00FF (Display in hexadecimal)	N	Y	0000	

Function code	Name	Control method and Data setting range			Factory default	
d201	Position feed forward gain	0.00: Disables feed forward 0.01 to 1.50	Y^{*}	Y	0.00	5-350
d202	Position feed forward command filter	0.000 to 5.000 s	Y^{*}	Y	0.500	
d203	Position regulator gain 1 (Low-speed range)	0.1 to 300.0	Y^{*}	Y	1.0	
d204	Position regulator gain 2 (High-speed range)	0.1 to 300.0	Y^{*}	Y	1.0	
d205	Position regulator gain switching frequency	0.0 to 599.0 Hz	Y	Y	0.0	
d206	Electronic gear ratio denominator	1 to 65535	N	Y	1	
d207	Electronic gear ratio numerator	1 to 65535	N	Y	1	
d208	Orientation mode selection	0: With shortcut (Run command direction and with reverse rotation) 1: Without shortcut (Run command direction)	N	Y	1	
d209	Homing mode selection		N	Y	0000	
d210	Homing stopper detection time	0.000 to 10.000 s	Y	Y	0.000	
d211	Homing reference signal	0: Encoder Z-phase 1: Home position LS 2: +OT 3: -OT	N	Y	1	
d212	Homing shift reference signal	```0: Encoder Z-phase Home position LS enable edge (wire to XZ for ORT) + OT (enable only when performing position control) -OT (enable only when performing position control) Stopper (stopper contact)```	N	Y	0	
d213	Homing frequency/orientation frequency	0.1 to 599.0 Hz	Y	Y	5.0	
d214	Homing creep frequency	0.1 to 599.0 Hz	Y	Y	0.5	
d215	Homing deceleration time/orientation deceleration time	0.00 to 6000 s	Y	Y	6.00	
d216	Positioning data teaching (Positioning data number designation)	$\begin{aligned} & \text { 0: } \begin{array}{l} \text { Disable } \\ \text { 1 to 8: } \\ \begin{array}{l} \text { Enable (writes feedback current position written to positioning data } 1 \\ \text { to 8) } \end{array} \end{array} \end{aligned}$	Y	Y	0	
d217	Homing shift teaching	0: Disable 1: Enable (Calculate the position of Z phase and machine origin at orientation from the Z phase distance and preset amount, and write to d242 and d243.)	Y	Y	0	
d218	Software OT detection position teaching (+/designation)	0: Disable 1: Enable (Writes feedback current position to +OT detection position d225, d226) 2: Enable (Writes feedback current position to -OT detection position d227, d228)	Y	N	0	
d219	Pass point detection position teaching (Pass point position designation)	0: Disable 1: Enable (Writes feedback current position to pass point $1 \mathrm{~d} 229, \mathrm{~d} 230$) 2: Enable (Writes feedback current position to pass point $2 \mathrm{~d} 231, \mathrm{~d} 232$)	Y	N	0	
d220	Feedback current position memory selection	$\begin{array}{ll}\text { 0: } & \text { Do not memorize } \\ \text { 1: } & \text { Memorize following undervoltage }\end{array}$	Y	Y	0	
d221	Position clear signal (PCLR) operation selection	0: Clear at active edge (positive logic/negative logic OFF $\rightarrow \mathrm{ON}$) 1: Clear at level (positive logic/negative logic ON)	Y	Y	0	
d222	Software OT operation selection	$\begin{array}{ll} \text { 0: } & \text { Disable software OT (Endless) } \\ \text { 1: } & \text { Enable software OT (Limit target position with software OT) } \\ \text { 2: } & \text { Enable software OT (Emergency stop when software OT detected) } \end{array}$	Y	Y	0	
d223	Deviation detection overflow value (High order)	0 to 9999 User value * Disable when 0 for both d223, d224	Y	Y	0	
d224	(Low order)		Y	Y	0	

Function code	Name	Control method and Data setting range			Factory default	
d225	+ software OT detection position (High order)	-9999 to 9999 User value	N	Y	9999	
d226	(Low order)	0 to 9999 User value	N	Y	9999	
d227	$\begin{array}{ll}\text { - software OT detection } \\ \text { position } & \text { (High order) }\end{array}$	Same as d225	N	Y	-9999	
d228	(Low order)	Same as d226	N	Y	9999	
d229	Pass point detection position 1 \quad (High order)	Same as d225	Y	Y	0	
d230	(Low order)	Same as d226	Y	Y	0	
d231	Pass point detection position 2 (High order)	Same as d225	Y	Y	0	
d232	(Low order)	Same as d226	Y	Y	0	
d237	Positioning data type (INC/ABS switching)	0: Handle positioning data as absolute position (ABS) 1: Handle positioning data as travel (INC)	Y	Y	0	
d238	Positioning data selection signal agreement timer	0.000 to 0.100 s	Y	Y	0.000	
d239	In-position range	0 to 9999 User value	Y	Y	1	
d240	Preset position (High order)	-9999 to 9999 User value	Y	Y	0	
d241	Preset position (Low order)	0 to 9999 User value	Y	Y	0	
d242	Homing shift (High order)	0 to 9999 User value	Y	Y	0	
d243	Homing shift (Low order)	0 to 9999 User value	Y	Y	0	
d244	Positioning data 1 (High order)	-9999 to 9999 User value	Y	Y	0	
d245	(Low order)	0 to 9999 User value	Y	Y	0	
d246	Positioning data 2 (High order)	Same as d244	Y	Y	0	
d247	(Low order)	Same as d245	Y	Y	0	
d248	Positioning data 3 (High order)	Same as d244	Y	Y	0	
d249	(Low order)	Same as d245	Y	Y	0	
d250	Positioning data 4 (High order)	Same as d244	Y	Y	0	
d251	(Low order)	Same as d245	Y	Y	0	
d252	Positioning data 5 (High order)	Same as d244	Y	Y	0	
d253	(Low order)	Same as d245	Y	Y	0	
d254	$\begin{array}{r} \text { Positioning data } 6 \\ \text { (High order) } \end{array}$	Same as d244	Y	Y	0	
d255	(Low order)	Same as d245	Y	Y	0	
d256	Positioning data 7 (High order)	Same as d244	Y	Y	0	
d257	(Low order)	Same as d245	Y	Y	0	
d258	Positioning data 8 (High order)	Same as d244	Y	Y	0	
d259	(Low order)	Same as d245	Y	Y	0	
d276	Positioning data (Infinite direction)	0: Disable 1: Forward rotation direction 2: Reverse rotation direction	Y	Y	0	
d277	Positioning data communication command selection	0: Disable positioning data communication command 1: Enable positioning data communication command	Y	Y	0	
d280	Forced deceleration operation selection	0: Servo lock after deceleration stop 1: Er6 alarm after deceleration stop	Y	Y	0	
d296	Command current position monitor (High order)	Same as d244	-	N	-	
d297	(Low order)	Same as d245	-	N	-	
d298	Feedback current position monitor (High order)	Same as d244	-	N	-	
d299	(Low order)	Same as d245	-	N	-	

*9: This is a function code for adjustment by the manufacturer. Do not access these function codes.
*11: 6.00 s for FRN0115G2S-2G/FRN0060G2■-4G or lower inverters, 20.00 s for FRN0146G2S-2G/FRN0075G2■-4G or higher inverters

[11] U codes: Application Functions 3 (Customizable logic)

Function code	Name	Control method and Data setting range			Factory default	
U00	Customizable logic (Mode selection)	0: Disable 1: Enable (Customizable logic operation) ECL alarm occurs when the value is changed from 1 to 0 during operation.	Y	Y	0	5-380
U01	Customizable logic Step 1 (Block selection)		N	Y	0	

Function code	Name	Control method and Data setting range				$\begin{aligned} & \text { 을 } \\ & \text { 응 } \\ & \text { O} \\ & \frac{\pi}{0} \\ & 0 \end{aligned}$	Factory default	
	(Function 1) (Function 2)	$\begin{aligned} & 9005: \\ & 9006: \\ & 9007: \\ & 9008: \\ & 9010: \end{aligned}$	Analog terminal [C2] input signal Reserved Reserved Analog terminal [C1] input signal (V3 function) UP/DOWN value	"C2" "V3" "UP/DOWN"				
U04		-9990 to 0.00 to 9990.0			N	Y	0.00	
U05					N	Y	0.00	

Customizable logic Step 1 to 14 function code is assigned as follows: Setting value is the same as U01 to U05.

	Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7	Step 8	Step 9
Logic function block	U01	U06	U11	U16	U21	U26	U31	U36	U41
Input 1	U02	U07	U12	U17	U22	U27	U32	U37	U42
Input 2	U03	U08	U13	U18	U23	U28	U33	U38	U43
Function 1	U04	U09	U14	U19	U24	U29	U34	U39	U44
Function 2	U05	U10	U15	U20	U25	U39	U35	U40	U45
	Step 11	Step 12	Step 13	Step 14					
Logic function block	U51	U56	U61	U66					
Input 1	U52	U57	U62	U67					
Input 2	U53	U58	U63	U68					
Function 1	U54	U59	U64	U69					
Function 2	U55	U60	U65	U70					

Function code	Name	Control method and Data setting range			Factory default	
$\begin{aligned} & \text { U71 } \\ & \text { to } \\ & \text { U80 } \end{aligned}$	Customizable logic (Output selection) Output signal 1 to Output signal 10	0: Invalid 1 to 260: Output of Step 1 to $260 \quad$ "S001" to "S0260"	N	Y	0	5-380
$\begin{gathered} \text { U81 } \\ \text { to } \\ \text { U90 } \end{gathered}$	Customizable logic (Function selection) Output signal 1 to Output signal10	0 to 172 (1000 to 1172): same as E98, but 19 and 80 cannot be selected. 241 to 245 (1241 to 1245): User-defined alarm 1 to 5 "CA1" to "CA5" 8001 to 8020: The value with 8000 added to E61	N	Y	100	
U91	Customizable logic: Timer monitor (Step selection)	0: Monitor disable 1 to 260: Step 1 to 260	Y	N	0	
U92	Customizable logic (The coefficients of the approximate formula) (Mantissa of KA1)	-9.999 to 9.999	N	Y	0.000	
U93	(Exponent part of KA1)	-5 to 5	N	Y	0	
U94	(Mantissa of KB1)	-9.999 to 9.999	N	Y	0.000	
U95	(Exponent part of KB1)	-5 to 5	N	Y	0	
U96	(Mantissa of KC1)	-9.999 to 9.999	N	Y	0.000	
U97	(Exponent part of KC1)	-5 to 5	N	Y	0	
U98	Customizable logic Output monitor (Step selection)	$\begin{aligned} & \hline \text { 0: Monitor disable } \\ & 1 \text { to } 260 \text { : Step } 1 \text { to } 260 \end{aligned}$			0	
U99	Customizable logic Output monitor (Display unit selection)	Same as J105 (0 cannot be set.)			1	
U100	Task process cycle setting	0: Auto (Automatic selection from 1, 2, 5, 10, or 20 ms based on number of steps) 1: $\quad 1 \mathrm{~ms}$ (Up to 10 steps) 2: $\quad 2 \mathrm{~ms}$ (Up to 20 steps) 5: $\quad 5 \mathrm{~ms}$ (Up to 50 steps) 10: 10 ms (Up to 100 steps) 20: 20 ms (Up to 260 steps) 127: Multi-task (Multiple cycles can be set up to 20 steps)	N	Y	0	5-380

[12] y codes: LINK Functions (Link functions)

Function code	Name	Control method and Data setting range			6u!̣uunı иәчм әбиечว	$\begin{aligned} & \text { O } \\ & \text { C } \\ & \text { O} \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	Factory default	
y98	Bus function (Operation selection)		Frequency setting/torque command Based on H3O Bus link Based on H30 Command from bus	Run command Based on H30 Based on H30 Command from bus Command from bus	Y	Y	0	5-420
y99	Support link function (Operation selection)	3:	Frequency setting Based on H30, y98 Commands from FRENIC Loader Based on H30, y98 Commands from FRENIC Loader	Run command Based on H30, y98 Based on H30, y98 Commands from FRENIC Loader Commands from FRENIC Loader	Y	N	0	5-420

[13] o codes: Option Functions (Option functions)

Function code	Name	Control method and Data setting range			Factory default	
$\begin{aligned} & 001 \text { to } \\ & 017 \\ & \hline \end{aligned}$	Reserved	Please do not set.	-	-	-	
019	DI option (DI polarity selection)	0: Frequency setting (without polarity) 1: Frequency setting (with polarity) * This is valid only when o20 $=0,1$.	N	Y	0	
020	DI option (DI mode selection)	0: 8-bit binary frequency setting 1: 12-bit tbinary frequency setting 2: 15-bit binary frequency setting 3: 16-bit binary frequency setting 4: BCD 4-digit frequency setting 0.00 to 99.99 Hz 5: BCD 4-digit frequency setting 0.0 to 599.9 Hz 99: General-purpose DI function (11 to I16)	N	Y	0	
021	DO option (DO mode selection)	```Output frequency 1 (before slip compensation) Output frequency 2 (after slip compensation) Output current Output voltage Output torque Load factor Power consumption PID feedback value Actual speed/estimated speed value DC intermediate circuit voltage Motor output PID command (SV) PID output (MV) Master-follower angle deviation Inverter cooling fin temperature PG feedback value Torque current command value PID deviation Line speed command Winding diameter calculation value Set frequency (before acceleration/deceleration calculation) Individual signal output```	Y	Y	0	
022	RY option (Mode selection)	0: Output linked to terminal [Y1] to [Y4] functions (G1 compatible) 1: Individual signal output (set with o23 to o26)	N	Y	0	
023	$\underset{\text { Terminal }[\mathrm{Y} 1 \mathrm{~A} / \mathrm{B} / \mathrm{C}]}{\text { (Ry output) }}$	See o23 to o26 in "Table 5.2.3 Control output terminal setting list table". (Same as E20)	N	Y	0	
024	Terminal [Y2A/B/C] (Ry output)		N	Y	1	
025	Terminal [Y3A/B/C] (Ry output)		N	Y	2	
026	Terminal [Y4A/B/C] (Ry output)		N	Y	7	
027	Transmission error (Operation selection)	0: Immediate Er5 trip when communication error occurs. Immediate Er5 trip after running for time specified with timer after communication error occurs. 2: Immediate Er5 trip if communication error occurs, and communication does not recover after retry while running for time specified with timer 3: Motor continues to run without Er5 trip even if communication error occurs. Motor runs in accordance with communication command after communication recovers. 4 to 9: Same as $027=0$ 10: Er5 trip following deceleration stop due to communication error. 11: Er5 trip following deceleration stop after running for time specified with timer after communication error occurs 12: Deceleration stop if communication error occurs, and communication does not recover after retry while running for time specified with timer. Motor continues to run in accordance with communication command if communication recovers. [When combined with DeviceNet option] 13: Run command immediately turned OFF when communication error occurs. (Er5 does not occur.) 14: Forced forward rotation operation when communication error occurs. (Er5 does not occur.) 15: Forced reverse rotation operation when communication error occurs. (Er5 does not occur.) [When combined with other options] 13 to 15: Same as $027=3$	Y	Y	0	
028	Transmission error (Timer time)	0.0 to 60.0	Y	Y	0.0	
$\begin{gathered} 030 \\ \text { to } \\ \text { o39 } \end{gathered}$	Bus setting parameter 01 to Bus setting parameter 10	0 to 255 The function for each function code differs based on the bus option type. Refer to the respective bus option instruction manuals for details.	N	Y	0	

Function code	Name	Control method and Data setting range			Factory default	
040 to 047	Write function code assignment 1 to Write function code assignment 8	0000 to FFFF (in hexadecimal) Data mapped I/O (Write) The existence of support, and the number items supported differs depending on the bus option type. Refer to the respective bus option instruction manuals for details on the data setting method.	N	Y	0000	
048 to 059	Read function code assignment 1 to Read function code assignment 12	0000 to FFFF (in hexadecimal) Data mapped I/O (Read) The existence of support, and the number items supported differs depending on the bus option type. Refer to the respective bus option instruction manuals for details on the data setting method.	N	Y	0000	
060	Terminal [32] (Function selection)	Same as E61	N	Y	0	
061	(Offset adjustment)	-5.0 to 5.0 \%	Y^{*}	Y	0.0	
062	(Gain adjustment)	0.00 to 400.00 \%	Y^{*}	Y	100.00	
063	(Filter setting)	0.00 to 5.00 s	Y	Y	0.05	
064	(Gain reference point)	0.00 to 100.00%	Y^{*}	Y	100.00	
065	(Polarity selection)	0: Bipolar 1: Unipolar	N	Y	1	
066	(Bias)	-200.0 to 200.00%	Y^{*}	Y	0.00	
067	(Bias reference point)	0.00 to 100.00 \%	Y^{*}	Y	0.00	
069	(Display unit)	Same as J105 (0 cannot be set.)	N	Y	2	
070	(Maximum scale)	-999.0 to 0.00 to 9990.0	N	Y	100.00	
071	(Minimum scale)	-999.0 to 0.00 to 9990.0	N	Y	0.00	
075	Terminal [C2] (Range selection)	0: 4 to 20 mA Unipolar $1:$ 0 to 20 mA Unipolar 10: 4 to 20 mA Bipolar 11: 0 to 20 mA Bipolar	N	Y	0	
076	(Function selection)	Same as E61	N	Y	0	
077	(Offset adjustment)	-5.0 to 5.0 \%	Y^{*}	Y	0.0	
078	(Gain adjustment)	0.00 to 400.00 \%	Y^{*}	Y	100.00	
079	(Filter setting)	0.00 to 5.00 s	Y	Y	0.05	
081	(Gain reference point)	0.00 to 100.00 \%	Y^{*}	Y	100.00	
082	(Bias)	-200.0 to 200.00%	Y^{*}	Y	0.00	
083	(Bias reference point)	0.00 to 100.00 \%	Y^{*}	Y	0.00	
085	(Display unit)	Same as J105 (0 cannot be set.)	N	Y	2	
086	(Maximum scale)	-999.0 to 0.00 to 9990.0	N	Y	100.00	
087	(Minimum scale)	-999.0 to 0.00 to 9990.0	N	Y	0.00	
088	$\begin{aligned} & \text { C1OFF signal } \\ & \text { (Operation selection) } \end{aligned}$	0: Signal ON following terminal [C1] wire break 1: Signal ON following terminal [C2] wire break 2: Signal ON following terminal [C1] or [C2] wire break	N	Y	2	
090	$\underset{\text { (Function selection) }}{\text { Terminal [Ao] / [CS2] }}$	Same as F31	Y	Y	0	
091	(Output gain)	0 to 300 \%	Y^{*}	Y	100	
093	Terminal [Ao] (Polarity selection)	0: Bipolar 1: Unipolar	N	Y	1	
096	$\underset{\text { (Function selection) }}{\text { Terminal [CSS / }}$	Same as F31	Y	Y	0	
097	(Output gain)	0 to 300 \%	Y^{*}	Y	100	
$\begin{gathered} 0101 \\ \text { to } \\ 0116 \end{gathered}$	Terminal [I1] (Function selection) to Terminal [I16] (Function selection)	See o101 to o116 in "Table 5.2.2 Control input terminal setting list table".	N	Y	100	

| | | | |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |

Note 1) o201 to o284 are supported from ROM 0300 or later. For details, refer to the OPC-ETM (Option) Instruction Manual.
Note 2) After setting o201 to o284, turn OFF the inverter power. Settings will be valid when the power is turned ON again.

[14] K codes: Keypad functions (Keypad functions)

Function code	Name	Control method and Data setting range	Бu!̣uй иәчм әбиечว	$\begin{aligned} & \text { O} \\ & . \bar{त} \\ & 00 \\ & 0 \\ & \frac{\pi}{0} \\ & 0 \end{aligned}$	Factory default	0 0 0 0 0 0 0 0 0
K01	Multi-function keypad TPA2SW (Language selection)	0: Japanese 1: English 2: German $3:$ French $4:$ Spanish $5:$ Italian 6: Chinese 8: Russian $9:$ Greek $10:$ Turkish $11:$ Polish $12:$ Czech $13:$ Swedish $14:$ Portuguese $15:$ Dutch $16:$ Malay $17:$ Vietnamese $18:$ Thai $19:$ Indonesian	Y	Y	0	5-421
K02	(Backlight OFF time)	0: Always OFF 1 to 30 min	Y	Y	5	5-421
K03	(Brightness adjustment)	0 (dark) - 10 (bright)	Y	Y	5	5-421
K04	(contrast adjustment)	0 (low) - 10 (high)	Y	Y	5	
K08	(status display)	0: Hide 1: Display full * This setting also applies to the standard keypad (TP-E2) status display selection.	Y	Y	1	5-422
K15	(Monitor display selection)	0: Operation guide display 1: Bar graph display	Y	Y	0	5-422
K16	(Sub-monitor 1 display contents)	```Output frequency }1\mathrm{ (before slip compensation) Output frequency 2 (after slip compensation) Set frequency Motor speed Load shaft speed Feed speed Constant feeding rate time Speed (%) Line speed set value Line speed output value Output current Output voltage Calculated motor output torque Power consumption PID process command PID feedback value Timer value PID output Load factor Motor output Analog signal input monitor Current position Positioning deviation Torque current (%) Magnetic flux command (%) Input watt-hour Winding diameter Position control start position Stop target position PID deviation Torque bias Estimated inertia acceleration/deceleration time conversion value (coming soon) Customizable logic output```	Y	Y	13	5-423
K17	(Sub-monitor 2 display contents)	Same as K16	Y	Y	18	
K20	(Bar graph 1 display contents)	$1 \text { to } 26$ 1: Output frequency 1 (before slip compensation)	Y	Y	1	
K21 K22	(Bar graph 2 display contents) (Bar graph 3 display contents)	13: Output current 14: Output voltage 18: Calculated motor output torque 19: Power consumption 25: Load factor 26: Motor output	Y Y	Y Y	13 18	
K40	Reserved	0 to 7	Y	Y	0	5-423

Function code	Name	Control method and Data setting range		$\begin{aligned} & \text { 잋 } \\ & \text { 이 } \\ & 0 \\ & \frac{\mathbb{0}}{0} \end{aligned}$	Factory default	
K51	$\begin{aligned} & \text { Traceback } \\ & \text { (Permit/prohibit data } \\ & \text { overwriting) } \end{aligned}$	0: Permit 1: Prohibit	Y	Y	0	5-423
K52	(Sampling cycle)	0: 1 ms $1:$ 2 ms 2: 5 ms $3:$ 10 ms 4: 20 ms $5:$ 50 ms 6: 100 ms $7:$ 200 ms 8: 500 us	Y		0	5-423
K53	(CH4 operation selection)	0: Analog signal 1: Digital signal	Y		0	5-424
K54	(Analog Ch1 source selection)	0000 to FFFF (hexadecimal format)	Y		2907	
K55	(Analog Ch2 source selection)				290B	
K56	(Analog Ch3 source selection)				0815	
K57	(Analog Ch4 source selection)				FFFF	
K58	(Digital Ch1 source selection)	0000 to 00FF (hexadecimal format)	Y		0080	
K59	(Digital Ch2 source selection)				0081	
K60	(Digital Ch3 source selection)				0082	
K61	(Digital Ch4 source selection)				0083	
K62	(Digital Ch5 source selection)				0084	
K63	(Digital Ch6 source selection)				00FF	
K64	(Digital Ch7 source selection)				00FF	
K65	Digital Ch8 source selection)				00FF	
K91	$\begin{aligned} & \text { Multi function keypad } \\ & \text { TP-A2SW } \\ & \text { (< key shortcut selection) } \end{aligned}$	$\begin{aligned} & \text { 0: Disable } \\ & 11 \text { to 99: Respective mode } \end{aligned}$	Y	Y	0	5-425
K92	(> key shortcut selection)		Y	Y	64	
K96	TP-G1 compatibility mode	$\begin{array}{ll} \text { 0: } & \text { G1 } \\ 1: & \text { GX1 } \\ \hline \end{array}$	Y		0	5-426

Table 5.2-1 Factory default settings by inverter capacity
Fuji standard motors, 8-series

Motor capacity [kW]	Torque boost 1 to 4 F09/A05/b05/r05	Restart mode after momentary power failure H13	Motor capacity [kW]	Torque boost 1 to 4 F09/A05/b05/r05	Restart mode after momentary power failure H 13
0.4	7.1	0.5	55	0.0	1.5
0.75	6.8		75		
1.5			90		
2.2			110		
3.7	5.5		132		2.0
5.5	4.9		160		
7.5	4.4		200		2.5
11	3.5	1.0	220		
15	2.8		280		
18.5	2.2		315		4.0
22			355		
30	0.0		400		5.0
37			500		
45		1.5	630		

Fuji premium efficiency motors

Motor capacity [kW]	Torque boost 1 to 4 F09/A05/b05/r05		Restart mode after momentary power failure H 13	Motor capacity [kW]	Torque boost 1 to 4 F09/A05/b05/r05		Restart mode after momentary power failure (restart timer) H13
	HHD	HND			HHD	HND	
0.4	7.1	7.1	0.5	55	0.0	0.0	1.5
0.75	3.8	3.2		75			
1.5	3.0	2.4		90			
2.2	2.5	2.1		110			
3.7	2.4	2.0		132			2.0
5.5	1.9	1.9		160			
7.5	1, 8	1, 8		200			
11	1.3	1.3	1.0	220			2.5
15	1.2	1.2		280			
18.5	0.9	0.9		315			40
22	0.9	0.9		355			4.0
30	0.0	0.0		400			5.0
37				500			
45			1.5	630			

Table 5．2－2 Motor constants
When Fuji standard motor 8－series，or other motors are selected by motor selection
（Function code P99／A39／b39／r39＝ 0 or 4）
■ Three－phase 200 V series

	年	$\stackrel{\square}{\circ}$						$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\infty}$	$\stackrel{-}{-}$	$\stackrel{\sim}{\square}$	$\stackrel{m}{\square}$		$\stackrel{\sim}{\mathrm{i}}$		$\stackrel{\sim}{\sim}$			$\stackrel{\circ}{\text { i }}$	$\stackrel{\infty}{\sim}$	N	$\stackrel{\sim}{\infty}$
		$\begin{array}{\|c\|} \hat{\mathrm{a}} \\ 0 \end{array}$	む	$\left.\begin{gathered} \stackrel{0}{0} \\ 0 \\ 0 \end{gathered} \right\rvert\,$	N	ơo	$\begin{aligned} & \bar{\circ} \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \bar{\circ} \\ & \hline 0 \\ & \hline \end{aligned}$	0	$\stackrel{\mathrm{O}}{\mathrm{O}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\cong}{\stackrel{m}{c}}$	$\stackrel{\overline{5}}{\substack{0}}$	N్ర	$\begin{gathered} \text { స్స్ } \\ \hline \end{gathered}$	몽	$\stackrel{\text { Nan }}{\substack{0}}$	N్రు	$\begin{aligned} & \text { ön } \\ & \hline 1 \end{aligned}$	충	$\overline{\text { joj }}$	¢
												\＆										
		ก	¢	$\stackrel{\circ}{\circ}$	$\stackrel{\%}{\stackrel{O}{+}}$	$\left\|\begin{array}{c} \stackrel{\leftrightarrow}{\sim} \\ \sim \end{array}\right\|$	$\left.\begin{array}{\|c\|c\|} \hline 0 \\ i 0 \end{array} \right\rvert\,$	先	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\stackrel{\infty}{\infty}}{\infty}$	$\begin{array}{\|l\|l\|l\|l\|} \substack{\mathcal{A} \\ \hline} \\ \hline \end{array}$	$\stackrel{\circ}{\stackrel{\sim}{\sim}}$	$\begin{array}{\|c} \text { to } \\ \stackrel{\rightharpoonup}{\circ} \end{array}$	$\begin{array}{\|c} \underset{\sim}{\aleph} \\ \hline \end{array}$	$\underset{\underset{\sim}{\mathrm{I}}}{\mathrm{~N}}$	$\begin{aligned} & \stackrel{O}{\dot{\sigma}} \\ & \hline \end{aligned}$	蚞	$\begin{gathered} \infty \\ \underset{\sim}{\dot{W}} \end{gathered}$	$\begin{aligned} & \stackrel{\infty}{\otimes} \\ & \stackrel{\otimes}{0} \end{aligned}$	$\stackrel{\underset{\sim}{\sim}}{\substack{0}}$	$\stackrel{\rightharpoonup}{\mathrm{e}}$	$\stackrel{\circ}{\text { ¢ }}$
		$\underset{\substack{\infty \\ \infty \\ \underset{\sim}{\infty} \\ \hline}}{ }$	$\begin{aligned} & \stackrel{\circ}{\oplus} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { 捋 } \end{aligned}$	$\left\lvert\, \begin{aligned} & \ddagger \\ & \underset{\sim}{\infty} \end{aligned}\right.$	$\left.\begin{aligned} & \dot{\infty} \\ & \underset{寸}{2} \end{aligned} \right\rvert\,$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \end{array}$	$$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{e}} \\ & \hline \end{aligned}$	$\begin{array}{\|l\|} \substack{\mathrm{o} \\ \underset{\sim}{2}} \end{array}$	$\stackrel{\substack{j \\ j}}{ }$	$\stackrel{\infty}{\stackrel{\infty}{\mathrm{c}}}$	$\stackrel{n}{\ddagger}$	$$	$\begin{aligned} & \dot{\sim} \\ & \stackrel{\ddot{\sim}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{y}} \\ & \stackrel{y}{c} \end{aligned}$	$\begin{aligned} & \infty \\ & \ddagger \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\omega}{\omega} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \ddagger \\ & \ddagger \end{aligned}$	な	$\underset{\text { ¢ }}{\underset{\sim}{ \pm}}$
			$\stackrel{\sim}{\stackrel{\infty}{+}}$	$\left.\begin{gathered} \mathbf{m} \\ \underset{\sim}{j} \end{gathered} \right\rvert\,$	$\begin{array}{\|c} \stackrel{\leftrightarrow}{\circ} \\ \stackrel{\sim}{\circ} \end{array}$	$\begin{gathered} \text { N } \\ \underset{\sim}{*} \end{gathered}$	$\left\lvert\,\right.$	$\begin{aligned} & \text { 哃 } \\ & \text { n } \end{aligned}$	Nom	$\underset{\sim}{\text { M }}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \end{aligned}$	$\begin{gathered} \underset{\sim}{0} \\ \stackrel{\rightharpoonup}{0} \end{gathered}$	$\begin{gathered} m \\ \underset{\sim}{N} \end{gathered}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{ }$		$\begin{gathered} \underset{\sim}{m} \\ \hline \end{gathered}$	$\underset{\sim}{\circ}$	$\stackrel{\sim}{\circ}$	$\begin{aligned} & \text { N} \\ & \stackrel{e}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\square}{\square}$	$\stackrel{\bar{\sim}}{\stackrel{\circ}{\text { ® }}}$
		é	$\begin{aligned} & \infty \\ & \infty \\ & \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \dot{E} \end{aligned}\right.$	$\stackrel{\overline{\mathrm{N}}}{\underset{\mathrm{~N}}{ }}$	$$		$\stackrel{\stackrel{\rightharpoonup}{\stackrel{\rightharpoonup}{f}}}{\underset{f}{2}}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{~}} \\ & \hline \end{aligned}$	$\stackrel{\substack{\mathrm{m} \\ \stackrel{y y}{*}}}{ }$	$\stackrel{\hat{N}}{\underset{y}{\mid}}$		음	$\stackrel{-}{\mathrm{N}}$	$\underset{\underset{F}{f}}{ }$	$\stackrel{\infty}{\stackrel{~}{\underset{~}{2}}}$	$\underset{\underset{\sim}{N}}{\substack{2}}$	$\stackrel{\cong}{\underset{~ N}{j}}$	$\stackrel{N}{\tilde{E}}$	$\stackrel{o}{\stackrel{\circ}{\rightleftarrows}}$	$\stackrel{\curvearrowleft}{\square}$	$\stackrel{\sim}{\sim}$
		앙	－	$\stackrel{\sim}{\text { ¢ }}$	$\begin{aligned} & \infty \\ & \\ & \text { gin } \end{aligned}$	$\stackrel{\rightharpoonup}{\bar{\sigma}}$	$\left\|\begin{array}{c} \text { N } \\ \text { G } \end{array}\right\|$	$\stackrel{\infty}{\infty}$	$\overline{\text { बjom }}$	$\stackrel{\infty}{\mp}$		\％	$\begin{array}{\|l\|l} \hline 8 . \\ \dot{g} \end{array}$	$\stackrel{\rightharpoonup}{\dot{\infty}}$		$\begin{aligned} & \infty \\ & \dot{y} \\ & \hline \end{aligned}$	$\stackrel{\rightharpoonup}{\dot{g}}$	声	$\overline{\text { Mj }}$	$\underset{\sim}{\text { gi }}$	ま	$\stackrel{\infty}{\sim}$
		$\begin{gathered} \text { n } \\ \text { in } \end{gathered}$	¢	$\left\lvert\, \begin{aligned} & \text { 毋 } \\ & \dot{心} \end{aligned}\right.$	$\underset{\sim}{0}$	$\underset{\sim}{\infty}$	－	¢	$\begin{array}{\|l\|l} \hline \stackrel{\circ}{\mathrm{g}} \end{array}$	Nij	$\stackrel{\bar{\circ}}{0}$	®	\hat{i}	$\dot{8}$	$\bar{\circ}$	$\underset{i}{n}$	~~	$\begin{array}{\|l\|l\|l} \text { H } \end{array}$	$\stackrel{\circ}{i}$	笖	郆	$\stackrel{\sim}{\infty}$
		$\stackrel{1}{\circ}$	先	$\stackrel{\circ}{\circ}$	¢	$\stackrel{\bullet}{\mathrm{O}}$	$\underset{\sim}{\dot{N}}$	$\stackrel{\text { ¢ }}{\stackrel{1}{6}}$	$\begin{aligned} & m \\ & \vdots \end{aligned}$	守	$\overline{\stackrel{\rightharpoonup}{\circ}}$	$\begin{aligned} & \dot{8} \\ & \dot{8} \end{aligned}$	츠N	$\hat{人}$	$\dot{\oplus}$	¢̂¢	＋	$\begin{aligned} & \infty \\ & \dot{8} \end{aligned}$	$\hat{\mathrm{G}}$	$\begin{aligned} & \text { m } \\ & \hline 0 \end{aligned}$	$\stackrel{8}{8}$	$\stackrel{\sim}{i}$
		$\stackrel{n}{\infty}$	$\bar{\infty}$	$\left.\frac{9}{\bar{\infty}} \right\rvert\,$	$\frac{m}{\infty}$	$\stackrel{\text { ® }}{ }$	$\left\|\begin{array}{c} \infty \\ \underset{\infty}{\infty} \end{array}\right\|$	$\stackrel{\bigcirc}{+}$	$\stackrel{\text { ¢ }}{\stackrel{1}{8}}$	Ṅ	－	$\underset{\infty}{\infty}$	$\begin{aligned} & \text { 毋 } \\ & \infty \\ & \hline \end{aligned}$	œ	$\frac{m}{\infty}$	$\stackrel{\varrho}{\dot{\infty}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { ® }}{\text {－}}$	$\stackrel{\text { ®．}}{\text { ® }}$	$\stackrel{\sim}{\sim}$	®	$\stackrel{\sim}{\infty}$
		$\stackrel{\infty}{\infty}$	¢	へ⿵冂𠃍冂め）	¢	$\underset{\infty}{\infty}$	خু	둥	®	$\stackrel{\infty}{\infty}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\frac{m}{\sigma}$	$\begin{aligned} & \circ \\ & 88 \\ & 8 \end{aligned}$	人̀	$\stackrel{\text { ¢ }}{\infty}$	$\stackrel{\text { Nón }}{\text { No }}$	¢ ${ }_{\text {¢ }}$	®	$\underset{\infty}{\sim}$	－	$\stackrel{\infty}{\infty}$	¢
	$\begin{aligned} & \hat{y} \hat{y} \\ & \text { miv 셈 } \end{aligned}$	\pm	\ddagger	$\stackrel{\circ}{\dot{\mathrm{I}}} \mid$	$\stackrel{\infty}{\infty}$	$\stackrel{4}{*}$	$\begin{array}{\|c\|c\|c\|} \substack{\infty\\ } \end{array}$	$\overline{5}$	ホ	$\stackrel{\curvearrowleft}{\square}$	$\stackrel{\text { ¢ }}{\substack{\text { b }}}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\mathrm{m}}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\infty}{\infty}$	$\bar{¢}$	$\stackrel{\sim}{\mathrm{i}}$	$\stackrel{\infty}{\sim}$	$\underset{\sim}{\mathrm{q}}$	$\stackrel{\infty}{\sim}$	$\overline{\text { in }}$	$\stackrel{\sim}{\stackrel{\sim}{\sim}}$
$\underset{\stackrel{0}{x}}{\stackrel{\rightharpoonup}{x}} \frac{0}{\bar{\sigma}}$		N	$\stackrel{\text { N}}{\sim}$	$\underset{\mathrm{N}}{\mathrm{M}}$	$\stackrel{\text { ̇ }}{ }$	$\stackrel{\sim}{\sim}$	\sim	$\stackrel{\infty}{\square}$	$\stackrel{\text { ¢ }}{\stackrel{\circ}{+}}$	$\stackrel{+}{+}$	$\stackrel{\text { en }}{\sim}$	$\stackrel{\text { or}}{+}$	$\stackrel{\varrho}{\stackrel{m}{\leftrightarrows}}$	¢0．	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\circ}$	$\stackrel{\infty}{\infty}$	嵜	$\stackrel{\infty}{\circ}$	$\stackrel{\infty}{\infty}$	$\stackrel{\square}{\circ}$
㐅 ¢ ○		$\stackrel{N}{\underset{\sim}{c}}$	$\stackrel{\hat{\circ}}{\stackrel{\rightharpoonup}{j}}$	$\left\lvert\, \begin{gathered} \underset{\sim}{\underset{\sim}{j}} \end{gathered}\right.$	$\begin{array}{\|l} \stackrel{\circ}{\mathrm{C}} \\ \hline \end{array}$	$\stackrel{0}{\circ}$	$\left\|\begin{array}{c} \overline{\mathrm{y}} \\ \mathrm{~F} \end{array}\right\|$	劵	$\stackrel{\curvearrowleft}{\underset{\sim}{c}}$	$\begin{aligned} & \bar{m} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \ddagger \\ & \ddagger \end{aligned}$	$\begin{aligned} & 8 \\ & \stackrel{8}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \hat{m} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\infty}{e} \\ \stackrel{\circ}{\circ} \end{array}$	$\stackrel{\square}{\circ}$	$\begin{aligned} & \circ \\ & \ddagger \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathscr{G}} \end{aligned}$	$\begin{array}{\|l} \hline 0 \\ \hline \stackrel{0}{\circ} \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{⿻}$	$\begin{aligned} & \mathscr{\otimes} \\ & \stackrel{\otimes}{\circ} \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{0}{6} \\ \stackrel{\ominus}{\circ} \\ \hline \end{array}$	$\stackrel{\circ}{\stackrel{\circ}{\text { ® }}}$
둥		$\underset{\sim}{\infty}$	$\stackrel{\circ}{\stackrel{\circ}{i}} \mid$	$\left.\begin{array}{\|c} \stackrel{\leftrightarrow}{\mathrm{\sim}} \\ \underset{\sim}{2} \end{array} \right\rvert\,$	$\stackrel{\sim}{\circ}$	$\stackrel{\stackrel{\omega}{\infty}}{ }$	$\left\|\begin{array}{c} \stackrel{\leftrightarrow}{0} \\ 0 \end{array}\right\|$	$\begin{aligned} & \substack{\infty \\ 0 \\ 0} \end{aligned}$	$\stackrel{9}{i}$	$\underset{\sim}{\infty}$	¢	$\stackrel{\infty}{\infty}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\underset{\sim}{2}}$	\hat{N}	$\underset{\sim}{\mathrm{a}}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\text { ¢ }}{ }$	$\stackrel{\sim}{\sim}$	$\stackrel{\circledR}{\square}$	$\stackrel{N}{\sim}$	$\stackrel{\stackrel{\circ}{+}}{\stackrel{-}{+}}$
		\％	号	$\stackrel{\circ}{\square}$	$\stackrel{\bullet}{\square}$	$\stackrel{\sim}{\mathrm{N}}$	$\begin{array}{\|} \hline \\ \bar{\infty} \end{array}$	$\stackrel{\text { \％}}{\substack{+ \\ \hline}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{o}}}{\circ}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{O}}}{\stackrel{-}{2}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { N}}{\sim}$	～	$\stackrel{\stackrel{O}{4}}{\stackrel{1}{2}}$	¢ّ	$\mathscr{\infty}$	$\stackrel{8}{\dot{\sigma}}$	$\stackrel{\substack{\mathrm{O} \\ \underset{\sim}{2}}}{ }$	$\stackrel{\circ}{\infty}$	No	N	$\stackrel{\stackrel{\rightharpoonup}{\square}}{\square}$
		䌾	$\stackrel{\infty}{\circ}$	$\stackrel{\oplus}{\square}$	$\stackrel{\sim}{\mathrm{N}}$	$\stackrel{\circ}{\infty}$	$\bar{\circ}$	Nั	$\stackrel{\square}{\square}$	$\stackrel{\text { ベ }}{ }$	～	テ	\＆	¢	$\stackrel{\sim}{\sim}$	응	\％	$\stackrel{\circ}{\circ}$	$\stackrel{\square}{\circ}$	$\stackrel{\circ}{\circ}$	응	$\stackrel{\circ}{0}$
		$\stackrel{\circ}{\circ}$	$\bar{\circ}$	N	$\stackrel{7}{\circ}$	$\stackrel{\sim}{0}$	$\stackrel{\sim}{\square}$	～	¢	$\stackrel{\sim}{\circ}$	$\stackrel{\text { ® }}{\sim}$	$=$	$\stackrel{\square}{\square}$	$\stackrel{\text { ® }}{\text { ¢ }}$	～	－\％	¢̀	\＆	吕	$\stackrel{セ}{\circ}$	8	\bigcirc
	\qquad		$\begin{array}{\|l\|l} \hline 0 \\ \vdots \\ \vdots \\ \vdots \\ \hline \end{array}$	$\begin{array}{\|c} \substack{0 \\ \dot{i} \\ \dot{o} \\ \hline 0 \\ \hline} \\ \hline \end{array}$		$\begin{array}{\|c} \begin{array}{c} \stackrel{9}{\dot{1}} \\ \stackrel{\rightharpoonup}{0} \\ \hline \end{array} \\ \hline \end{array}$	$\left\|\begin{array}{c} o \\ \dot{\sim} \\ \dot{O} \\ \underset{\sim}{C} \end{array}\right\|$			$$								＋	$\begin{aligned} & \hline 0 \\ & \vdots \\ & \vdots \\ & \dot{\circ} \\ & 6 \\ & \hline 6 \end{aligned}$		－	$\stackrel{\circ}{\circ}$

Three－phase 400V series

	옻	$\stackrel{0}{0}$					$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\circ}$	\bigcirc	$\stackrel{\text { N }}{ }$	$\stackrel{m}{\square}$	$\stackrel{\circ}{\text {－}}$		$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$		$\stackrel{\odot}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{10}{\sim}$	$\stackrel{-}{\text {－}}$	$\stackrel{\sim}{\circ}$	$\hat{+}$		안	$\stackrel{\sim}{6}$	$\stackrel{\square}{\circ}$		$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\infty}$		$\stackrel{\sim}{\circ}$	
		$\left\|\begin{array}{c} \hat{0} \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{J}{0}$	$\begin{array}{c\|cc} \substack{0} \\ 0 & \hat{0} \\ \hline \end{array}$		$\bar{\circ}$	$\begin{aligned} & \bar{i} \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} \tilde{0} \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \tilde{\infty} \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \text { 㔯 } \\ & \hline 0 \\ & \hline-2 \end{aligned}$	$\stackrel{m}{\square}$	$\frac{\overline{5}}{\dot{0}}$	$\underset{O}{N}$		$\stackrel{N}{0}$	$\underset{\substack{N \\ \\ \hline}}{ }$	$\left\|\begin{array}{c} \hat{0} \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \tilde{\sim} \\ \underset{\sim}{0} \end{array}\right\|$	$\overline{\mathrm{m}}$	$\begin{gathered} \infty \\ \widehat{m} \\ 0 \end{gathered}$	$\left\|\begin{array}{c} \underset{~}{\mathbf{m}} \\ \underset{o}{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \tilde{\infty} \\ \substack{1 \\ 0} \end{gathered}\right.$	$\stackrel{\text { W }}{\substack{0}}$	$\left\|\begin{array}{c} \overline{0} \\ 0 \\ 0 \end{array}\right\|$	$\begin{aligned} & \bar{n} \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \end{array}\right\|$	N					$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\circ}{\circ}$
		®																			8												
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\stackrel{\stackrel{N}{0}}{\stackrel{\circ}{0}}$	$\stackrel{\rightharpoonup}{心} \text { © }$		$\stackrel{\overbrace{0}^{\sim}}{\dot{\sim}} \mid$	$\underset{\sim}{\text { j }}$	$\left\|\begin{array}{c} \infty \\ \underset{0}{\infty} \end{array}\right\|$	$\left\|\begin{array}{c} \dot{\mathrm{N}} \\ \mathrm{o} \end{array}\right\|$	$\begin{array}{\|c} \underset{\sim}{\mathrm{N}} \end{array}$	$\stackrel{\infty}{\stackrel{\infty}{\infty}} \underset{\sim}{\infty}$	㞧	$\stackrel{\bar{J}}{\dot{m}}$	$\begin{gathered} \text { + } \\ \stackrel{\rightharpoonup}{\circ} \end{gathered}$	$\begin{gathered} \infty \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{aligned} & \underset{\sim}{f} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \dot{m} \\ & \underset{\sim}{3} \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{\mathrm{N}} \end{array}\right\|$	$\begin{array}{\|l\|l} \infty \\ \underset{\sim}{\mathrm{N}} \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\underset{\sim}{\dot{~}}}{\stackrel{\rightharpoonup}{\prime}}$	$\left\|\begin{array}{l} \stackrel{\leftrightarrow}{\dot{0}} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	م	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{\mathrm{j}} \end{array}\right\|$	$\begin{aligned} & 9 \\ & \hline 8 \\ & \hline 8 \end{aligned}$	$\left\|\begin{array}{c} \dot{g} \\ \dot{寸} \end{array}\right\|$	$\left\|\begin{array}{c} n \\ \stackrel{y}{0} \\ i \end{array}\right\|$			$\begin{aligned} & \dot{\circ} \\ & \dot{\infty} \end{aligned}$	$\stackrel{\Gamma}{\infty}$	$\stackrel{\circ}{0}$	$\stackrel{\text { ® }}{\stackrel{\text { ® }}{7}}$
		$\begin{gathered} \infty \\ \infty \\ \underset{c}{\infty} \end{gathered}$	$\begin{array}{\|c\|c} \stackrel{0}{\mathrm{~N}} \\ \stackrel{\rightharpoonup}{\mathrm{~N}} & \underset{\sim}{\mathrm{~F}} \end{array}$			$\begin{gathered} \dot{\oplus} \\ \stackrel{\dot{\sim}}{ } \end{gathered}$	$$	$\left\|\begin{array}{c} \underset{\sim}{\dot{~}} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{\circ}{\stackrel{i}{n}} \\ \stackrel{n}{2} \end{array}\right\|$	$\begin{aligned} & \text { N } \\ & \text { dí } \end{aligned}$	$\stackrel{g}{\dot{j}}$	$\begin{aligned} & \stackrel{\infty}{\dot{m}} \\ & \stackrel{\sim}{c} \end{aligned}$	$\begin{gathered} \circ \\ \stackrel{\circ}{\dot{f}} \end{gathered}$			$\stackrel{\infty}{\dot{\square}}$	$\begin{array}{\|c} \infty \\ \stackrel{\infty}{n} \\ \hline \end{array}$	$\left\lvert\, \begin{array}{l\|} \substack{0 \\ \dot{j} \\ \hline} \end{array}\right.$	荷	$\begin{aligned} & \underset{\sim}{\dot{G}} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{j} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} o \\ \stackrel{\rightharpoonup}{\dot{G}} \\ \underset{\sim}{2} \end{gathered}\right.$	$$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\dot{O}} \\ \stackrel{\mathrm{M}}{2} \end{array}\right\|$	$\stackrel{\infty}{\stackrel{\sim}{m}}$								
		$\stackrel{\sim}{\underset{\sim}{\mathrm{N}}}$	$\begin{array}{c\|c} \hat{N} \\ \underset{\sim}{\infty} \\ \underset{\sim}{c} \\ \end{array}$			$\begin{array}{\|} \stackrel{\circ}{\dot{o}} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \text { n } \\ & \text { nem } \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{m} \\ \stackrel{y}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{m} \\ \stackrel{y}{2} \end{array}\right\|$	$\begin{array}{\|c} \underset{\sim}{\infty} \\ \underset{\sim}{2} \end{array}$	$\begin{array}{\|c} \underset{\sim}{\mathrm{N}} \\ \hline \end{array}$	$\stackrel{m}{\underset{\sim}{j}}$	$\stackrel{\Im}{\mathrm{N}}$		$\begin{aligned} & \underset{\sim}{\circ} \\ & \stackrel{\circ}{*} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{\circ}} \\ & \stackrel{y}{c} \end{aligned}$		$\left\|\begin{array}{c} \infty \\ \underset{\sim}{j} \end{array}\right\|$	$\begin{aligned} & 0 . \\ & \stackrel{\rightharpoonup}{\mathrm{p}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\dot{\circ}} \\ & \underset{\sim}{2} \end{aligned}$	$\left\|\begin{array}{c} \stackrel{\circ}{\mathrm{N}} \\ \stackrel{\sim}{\mathrm{~N}} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{n}{0} \\ \stackrel{m}{2} \end{array}\right\|$	$\begin{aligned} & \hat{\mathrm{N}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\underset{\sim}{\underset{N}{N}}$								
	$\begin{array}{lll} \hline \text { n } & 0 \\ \\ \vdots & 0 \\ \\ \hline \end{array}$	$\begin{aligned} & m \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ -1 \end{array}\right\|$	$\stackrel{O}{\dot{F}} \underset{\sim}{\underset{\sim}{\mathrm{~N}}}$		$\stackrel{\stackrel{\rightharpoonup}{\dot{\prime}}}{\stackrel{+}{7}}$	$\underset{\stackrel{N}{\dot{\mu}}}{\stackrel{\sim}{j}}$	$\left\|\begin{array}{c} \stackrel{\varphi}{\stackrel{i}{j}} \\ \stackrel{2}{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \stackrel{\sim}{\dot{j}} \\ \underset{\sim}{2} \end{gathered}\right.$	$\stackrel{\underset{j}{\dot{~}}}{ }$	$\stackrel{\underset{\sim}{\dot{~}}}{\square}$	$\begin{array}{\|c} \circ \\ \dot{O} \\ \stackrel{0}{2} \end{array}$	$\stackrel{\Gamma}{\mathrm{N}}$		$\underset{\underset{\sim}{\mathrm{N}}}{ }$	$\stackrel{\sim}{\underset{\sim}{i}}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{\underset{\mathrm{~F}}{2}}$	$\left\|\begin{array}{c} \underset{\dot{j}}{\dot{\sim}} \end{array}\right\|$	$\begin{array}{\|l\|l\|l\|} \stackrel{\circ}{\dot{~}} \\ \hline \end{array}$	$\stackrel{\underset{\sim}{N}}{\underset{\sim}{2}}$	$\left\lvert\, \begin{gathered} \stackrel{9}{\mathrm{j}} \\ \underset{\mathrm{j}}{ } \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{0}{\dot{\dot{C}}} \\ & \stackrel{1}{2} \end{aligned}\right.$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \\ & \stackrel{\circ}{2} \end{aligned}$	$\begin{gathered} \hat{\infty} \\ \stackrel{\infty}{\circ} \\ \hline \end{gathered}$	$$								
		$\begin{aligned} & 0 \\ & 0 \\ & \vdots \end{aligned}$	$\begin{array}{c\|c} \hat{N} \\ \dot{\circ} & \text { लु } \end{array}$			$\begin{gathered} \text { N } \\ \text { G } \end{gathered}$	$\begin{aligned} & \infty \\ & \dot{\infty} \end{aligned}$	$\underset{\text { ৷. }}{\mid} \mid$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{子} \\ & \hline \end{aligned}\right.$	$\stackrel{\bullet}{\stackrel{\circ}{8}}$		$\begin{array}{\|l\|l} \stackrel{n}{q} \\ \dot{q} \end{array}$	$\hat{\sim}$		$\stackrel{\rightharpoonup}{\tilde{\sim}}$	\dot{F}	$\begin{gathered} \Gamma_{\tilde{y}} \end{gathered}$	$\left\|\begin{array}{c} \dot{\sim} \\ \underset{\sim}{2} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \dot{J} \end{aligned}$	$\begin{gathered} \infty \\ \stackrel{\sim}{f} \end{gathered}$	$\left\|\begin{array}{l} \bullet \\ \stackrel{\varphi}{q} \end{array}\right\|$	$\left\|\begin{array}{c} 9 \\ \dot{q} \end{array}\right\|$	$\begin{gathered} \stackrel{\circ}{\dot{f}} \\ \stackrel{1}{2} \end{gathered}$	$\left.\begin{array}{\|c} \stackrel{\circ}{\dot{\circ}} \\ \dot{\sigma} \end{array} \right\rvert\,$					$\stackrel{\circ}{\circ}$				
		\mathfrak{c}	$\begin{array}{\|c\|c} 0 & \text { is } \\ & \stackrel{5}{5} \end{array}$		$\begin{gathered} \underset{\sim}{C} \\ \hline \end{gathered}$	$\bar{\infty}$	$\begin{aligned} & \text { m } \\ & \text { in } \end{aligned}$	$\left\|\begin{array}{l} \stackrel{\leftrightarrow}{\bullet} \\ \dot{q} \end{array}\right\|$	$\left\lvert\, \begin{array}{\|c} \hat{\mathrm{i}} \\ \hline \end{array}\right.$	\bar{i}	0	$\hat{\hat{e}}$	$\stackrel{\circ}{\circ}$		N゙	$\stackrel{\leftrightarrow}{6}$	$\mid \stackrel{0}{0}$	$\left\|\begin{array}{c} \mathrm{y} \\ \mathbf{S} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \dot{1} \end{array}\right\|$	$\begin{gathered} \hat{\infty} \\ \dot{\infty} \end{gathered}$	$\left\|\begin{array}{l} \infty \\ \stackrel{\infty}{i} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}\right.$	$\begin{array}{\|c} \infty \\ \dot{0} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ \hline \end{array}$								
		$\begin{aligned} & \circ \\ & \stackrel{y}{n} \end{aligned}$		$\begin{array}{c\|c} \stackrel{0}{\dot{\theta}} & \stackrel{\rightharpoonup}{\dot{e}} \end{array}$		$\stackrel{i}{\circ} \stackrel{\check{i}}{\dot{\sim}}$	$\stackrel{\stackrel{\rightharpoonup}{\dot{\circ}}}{ }$	$\|\stackrel{c}{\stackrel{e}{5}}\|$	$\left\|\begin{array}{c} \dot{G} \\ \dot{G} \end{array}\right\|$	$\stackrel{\rightharpoonup}{\mathrm{i}}$	$\begin{array}{\|l\|} \dot{9} \\ \dot{B} \end{array}$	$\overline{\mathrm{N}}$	\hat{i}		茳	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\circ} \end{aligned}$	$\left\|\begin{array}{\|c\|} \hat{d} \end{array}\right\|$	$\left\|\begin{array}{c} \mathbf{c} \\ \dot{6} \end{array}\right\|$	$\stackrel{0}{0 .}$	\hat{i}	$\left\|\begin{array}{l} \infty \\ \dot{0} \end{array}\right\|$	$\stackrel{\Gamma}{i}$	$\left\|\begin{array}{c} \mathrm{M} \\ \mathrm{~N} \end{array}\right\|$	$\stackrel{\underset{\sim}{\mathrm{N}}}{\mathrm{~N}}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$								
		$\stackrel{n}{\infty}$	$\begin{array}{\|c\|c} \bar{\infty} & \stackrel{\sigma}{\infty} \\ \hline \infty \end{array}$	$\stackrel{\infty}{\dot{\infty}} \underset{\infty}{\infty}$	$\stackrel{m}{\infty} \underset{\stackrel{c}{\lambda}}{\wedge}$	$\underset{\infty}{\infty}$	$\stackrel{\bullet}{\stackrel{\circ}{ \pm}}$	$\left\|\begin{array}{c} 9 \\ \stackrel{0}{1} \end{array}\right\|$	$\left\|\begin{array}{c} N \\ \dot{N} \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & \infty \end{aligned}$	$\underset{\infty}{\infty}$	$\left.\begin{array}{\|c} \infty \\ \infty \\ \infty \end{array} \right\rvert\,$	$\stackrel{0}{\infty}$		$\underset{\sim}{\infty}$	$\hat{\alpha}$	$\left\|\begin{array}{c} m \\ \dot{\alpha} \end{array}\right\|$	$\left.\begin{gathered} \infty \\ \infty \\ \sim \end{gathered} \right\rvert\,$	$\stackrel{0}{\mathrm{~N}}$	$\underset{\substack{\dot{\infty} \\ \infty}}{ }$	$\left\|\frac{9}{\infty}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \end{array}\right\|$	$\bar{\infty} \mid$	$\left\lvert\, \begin{aligned} & \dot{\Phi} \\ & \dot{\Phi} \end{aligned}\right.$								
		$\begin{aligned} & \infty \\ & \dot{m} \end{aligned}$		$\begin{array}{c\|c} \wedge & \hat{\infty} \\ \underset{\infty}{\infty} \end{array}$		$\begin{gathered} \infty \\ \infty \\ \hline \end{gathered}$	$\underset{\infty}{\underset{\infty}{\infty}}$	$\left\|\begin{array}{c} 0 \\ \dot{\infty} \\ \infty \end{array}\right\|$	$\left\|\begin{array}{c\|} \circ \\ \infty \\ \infty \end{array}\right\|$	$\underset{\infty}{\underset{\infty}{N}}$	$\stackrel{m}{\sigma}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \\ \hline \end{array}$	$\hat{\circ}$	8	$\stackrel{\wedge}{\infty}$	$\stackrel{\circ}{\infty}$	$\left\|\begin{array}{c} \underset{\infty}{\infty} \end{array}\right\|$	$\underset{\infty}{\infty} \mid$	$\left\lvert\, \begin{gathered} \infty \\ \infty \\ \infty \end{gathered}\right.$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \end{array}$	$\left\|\begin{array}{c} \mathrm{m} \\ \dot{\circ} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{\mathrm{N}} \end{gathered}\right.$	$\left\|\begin{array}{l} \circ \\ \stackrel{\sigma}{\sigma} \end{array}\right\|$	$\overline{\dot{m}} \mid$	$\underset{\sim}{\sim}$								
		$\left\lvert\, \begin{aligned} & \mathrm{O} \\ & \dot{j} \end{aligned}\right.$	$\begin{array}{l\|l} \stackrel{\circ}{\circ} \\ \dot{\sim} & \stackrel{0}{c} \\ \underset{\sim}{2} \end{array}$	$\begin{array}{c\|c} \stackrel{\circ}{\circ} \\ \stackrel{\rightharpoonup}{*} & \stackrel{\infty}{\circ} \\ \hline \end{array}$	$\stackrel{\infty}{\infty} \underset{\sim}{\circ} \underset{\sim}{c}$	$\left.\begin{gathered} \mathscr{\infty} \\ \stackrel{\circ}{\circ} \end{gathered} \right\rvert\,$	$\begin{aligned} & \overline{5} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$	$\begin{array}{\|c\|c\|c\|c\|} \substack{n \\ \infty} \end{array}$	$\left\|\begin{array}{c} \stackrel{\Omega}{\mathrm{N}} \\ \dot{寸} \end{array}\right\|$	$\left.\begin{gathered} 0 \\ \dot{子} \end{gathered} \right\rvert\,$	$\left\|\begin{array}{l} \underset{\sim}{\infty} \end{array}\right\|$	$\underset{\substack{\mathrm{m} \\ \hline \\ \hline}}{ }$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\substack{2}}$	$\underset{n}{\infty} \underset{\sim}{\infty}$		$\stackrel{\infty}{\stackrel{\infty}{\mathrm{N}}}$	$\left\lvert\, \begin{gathered} \substack{\mathrm{g} \\ \mathrm{i}} \end{gathered}\right.$	$\left\|\begin{array}{c} \tilde{m} \\ \underset{i}{c} \end{array}\right\|$	$\stackrel{\bar{m}}{\dot{N}}$	$\stackrel{N}{\stackrel{N}{C}}$	$\stackrel{\stackrel{\infty}{\infty}}{\underset{\sim}{2}} \mid$	$\stackrel{\circ}{\circ}$	$\stackrel{\otimes}{\stackrel{O}{c}} \mid$	$\stackrel{\sim}{\sim}$	$\stackrel{\substack{\mathrm{m}}}{\square}$	$\left\lvert\, \begin{array}{\|c} \underset{\sim}{\mathrm{N}} \end{array}\right.$	$\stackrel{\square}{+}$	－		$\stackrel{+}{\circ}$	$\stackrel{\square}{+}$	న	فิ．
		$\stackrel{\text { N }}{\stackrel{ }{+}}$	찯	$\stackrel{\sim}{\sim}$		$\underset{\sim}{n} \underset{\sim}{\sim}$	$\stackrel{\otimes}{\infty}$	$\|\stackrel{\leftrightarrow}{\mathrm{O}}\|$	$\left\|\begin{array}{c} \underset{i}{g} \end{array}\right\|$	$\stackrel{\hat{n}}{\Gamma}$	$\stackrel{\rightharpoonup}{\dot{C}}$	$\stackrel{\stackrel{m}{\dot{r}}}{ }$	$\stackrel{\hat{\infty}}{\substack{\circ}}$		$\stackrel{\infty}{\circ}$	$\begin{gathered} \infty \\ 0 \\ 0 \end{gathered}$	\％	$\left.\begin{gathered} \infty \\ \infty \\ 0 \end{gathered} \right\rvert\,$	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{\circ}$	$\left\|\begin{array}{l} \circ \\ \hline \\ \hline \end{array}\right\|$	$\begin{array}{\|c} \circ \\ \hline \end{array}$	$\left.\begin{array}{\|l} \circ \\ \circ \\ \circ \end{array} \right\rvert\,$	$\left.\begin{gathered} \infty \\ 0 \\ 0 \\ 0 \end{gathered} \right\rvert\,$		${ }^{3}$	$\left.\begin{array}{\|c} 8 \\ 0 \\ 0 \end{array} \right\rvert\,$	－		$\stackrel{\infty}{\Gamma}$	N	$\stackrel{\text { N}}{0}$	－
․ㅡㅇ	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\infty} \\ & \text { Nin } \end{aligned}$	$\stackrel{n}{\underset{\sim}{c}}$	$\begin{array}{c\|c} \stackrel{\rightharpoonup}{\dot{~}} & \underset{\sim}{\sim} \\ \underset{\sim}{2} \end{array}$	$\stackrel{N}{\stackrel{N}{N}} \underset{\stackrel{\circ}{\circ}}{ }$	$\begin{array}{l\|l} \substack{c \\ \stackrel{c}{c} \\ \stackrel{y}{c} \\ \hline} \end{array}$		$\left\lvert\, \begin{gathered} \hat{o} \\ \dot{\rho} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{c} \stackrel{\sim}{\sim} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \bar{\sim} \\ \dot{寸} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \dot{+} \\ \dot{+} \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hline 0 \\ \stackrel{y}{\dot{n}} \end{array} \right\rvert\,$	$\begin{aligned} & \hat{e} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\bullet} \\ & \stackrel{\circ}{2} \end{aligned}$		F－	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{9} \\ \stackrel{\circ}{0} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \infty \\ \underset{\sim}{\circ} \end{array}\right\|$	$\begin{aligned} & \stackrel{0}{\circ} \\ & \stackrel{\ominus}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\sim}{\sim} \\ & \hline \end{aligned}$	$\left.\begin{gathered} \stackrel{\circ}{\infty} \\ \stackrel{\infty}{\infty} \end{gathered} \right\rvert\,$	$\begin{gathered} \stackrel{N}{N} \\ \dot{\sim} \end{gathered}$	$\begin{gathered} \text { N. } \\ \text { N } \end{gathered}$	$\begin{array}{\|c} \hline 0 \\ \stackrel{N}{i} \end{array}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\left\lvert\, \begin{array}{\|c\|} \stackrel{\infty}{\dot{\sigma}} \\ \hline \end{array}\right.$	$\left\lvert\, \begin{aligned} & \circ \\ & \stackrel{0}{6} \\ & \stackrel{2}{2} \end{aligned}\right.$	$\begin{aligned} & \stackrel{o}{t} \\ & \stackrel{\rightharpoonup}{\circ} \end{aligned}$		$\begin{gathered} \infty \\ \stackrel{\sim}{\mathrm{j}} \end{gathered}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$	$\stackrel{\text { N}}{\stackrel{1}{+}}$	$\stackrel{\text { ® }}{\substack{\text { ¢ }}}$
동		$\underset{\substack{\infty \\ \underset{\sim}{2} \\ \hline}}{ }$	$\begin{array}{c\|c} \stackrel{\circ}{\mathrm{N}} \\ \stackrel{\circ}{\mathrm{~N}} \\ \underset{\sim}{2} \end{array}$	$\begin{array}{c\|c} \sim \\ \stackrel{\sim}{\mathrm{N}} \end{array}$	$\begin{array}{c\|c} \underset{N}{N} \\ \hdashline & \underset{\sim}{\circ} \\ \hline \end{array}$	$\begin{array}{c\|c} 0 \\ \infty & \stackrel{n}{n} \\ 0 \\ 0 \end{array}$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{\infty}{6} \end{aligned}\right.$	$\mid \stackrel{\underset{\sim}{\circ}}{\stackrel{\rightharpoonup}{\circ}}$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{\circ} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{0}{2} \\ \dot{q} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{\infty}{\sim} \\ \stackrel{\sim}{2} \end{array}\right\|$	$\stackrel{\substack{\mathrm{N} \\ \mathrm{~N} \\ \hline}}{ }$	$\underset{\sim}{\sim}$		$\stackrel{\circ}{\text { i }}$	$\stackrel{\sim}{\sim}$	$\left\|\begin{array}{c} \stackrel{\sim}{\mathrm{N}} \end{array}\right\|$	$\stackrel{\infty}{9}$	$\stackrel{n}{\sim}$	$\stackrel{\stackrel{8}{\mathrm{O}}}{\stackrel{1}{2}}$	$\stackrel{\Omega}{\stackrel{n}{i}} \underset{\sim}{2}$	$\stackrel{\infty}{\stackrel{\infty}{c}}$	$\left\lvert\, \begin{array}{r} \hat{N} \\ \underset{\sim}{2} \end{array}\right.$	$\stackrel{\stackrel{\circ}{\bullet}}{\stackrel{1}{c}}$	$\underset{\sim}{\mathscr{O}}$	$\|\stackrel{\circ}{\stackrel{m}{r}}\|$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$	$\stackrel{\infty}{\infty}$		50	Nọ	$\overbrace{0}^{\circ}$	\％
		i_{0}°		$\begin{array}{c\|cc} \substack{0} \\ & 0 \\ \hline \end{array}$	$\begin{array}{c\|c} \infty \\ \infty & \stackrel{n}{-} \\ \stackrel{n}{-} \\ \hline \end{array}$	$\stackrel{\sim}{\square} \stackrel{\Gamma}{\sim}$	$\underset{\sim}{\mathrm{N}}$	$\left.\begin{aligned} & \mathbf{\infty} \\ & \underset{c}{n} \end{aligned} \right\rvert\,$	$\left\|\begin{array}{c} 0 \\ \stackrel{0}{0} \\ \stackrel{5}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{\sim}{n} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \end{array}\right\|$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \stackrel{i}{\circ} \end{aligned}$		$\stackrel{\circ}{\circ}$	$\begin{aligned} & \infty \\ & \underset{\sim}{0} \end{aligned}$	$\begin{array}{\|c} \stackrel{0}{\mathrm{o}} \\ \dot{\mathrm{~N}} \end{array}$	$\left\|\begin{array}{c} \stackrel{0}{6} \\ \dot{\sigma} \end{array}\right\|$	$\begin{array}{\|l\|l} \stackrel{\circ}{\circ} \\ \dot{子} \end{array}$	$\begin{array}{\|c} \stackrel{\circ}{0} \\ \stackrel{\rightharpoonup}{4} \end{array}$	$\left\|\begin{array}{c} \circ \\ \stackrel{0}{1} \\ \stackrel{1}{2} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \dot{0} \\ \vdots \end{array}\right\|$	$\begin{aligned} & 0 \\ & \stackrel{0}{\lambda} \\ & \hline \end{aligned}$	$\begin{array}{\|c} \infty \\ \stackrel{\infty}{r} \\ \stackrel{2}{2} \end{array}$	$\stackrel{\otimes}{\infty}$	$\begin{aligned} & \stackrel{\varrho}{2} \\ & \underset{\Omega}{2} \end{aligned}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\dot{~}} \\ \stackrel{\sim}{2} \end{array}\right\|$	$\begin{aligned} & \stackrel{\circ}{\dot{j}} \\ & \stackrel{\mathrm{~N}}{2} \end{aligned}$				$\begin{array}{\|c} \stackrel{0}{i n} \\ \stackrel{e}{0} \end{array}$	－
		$\underset{0}{N}$		$\begin{array}{c\|c} \stackrel{n}{\circ} \\ \hline \end{array}$	$\stackrel{\infty}{\square}$		$\stackrel{\square}{\square}$	$\stackrel{0}{\mathrm{O}} \underset{\sim}{n}$		$\left\|\begin{array}{c} \stackrel{\circ}{0} \\ \dot{f} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{8}{\mathrm{~N}} \end{array}\right\|$	$\stackrel{\stackrel{i}{\circ}}{\stackrel{N}{N}}$	$\begin{aligned} & \stackrel{\circ}{\dot{m}} \\ & \dot{W} \end{aligned}$	$\begin{array}{c\|c} 8 \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{6} \\ & \stackrel{C}{6} \end{aligned}$	$\begin{gathered} \circ \\ \infty \\ \sim \end{gathered}$	$\begin{array}{\|c} \hline \mathrm{O} \\ \text { in } \end{array}$	$\left\|\begin{array}{c} \stackrel{o}{\dot{o}} \\ \stackrel{\mathrm{~m}}{\sim} \end{array}\right\|$	$\begin{array}{\|l\|l\|} \hline \stackrel{i}{e} \\ \stackrel{e}{c} \end{array}$	$\begin{gathered} \stackrel{0}{\infty} \\ \underset{\sim}{\infty} \end{gathered}$	$\left\|\begin{array}{c} \underset{\sim}{\dot{N}} \\ \mid \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{N} \\ \underset{\mathrm{~N}}{ } \end{gathered}\right.$	$\left\|\begin{array}{l} \stackrel{0}{i} \\ \stackrel{e}{m} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \stackrel{0}{0} \\ \text { O } \end{array}\right\|$	$\begin{array}{\|l} \hline \stackrel{O}{j} \\ \frac{\stackrel{N}{2}}{} \end{array}$	$\left\|\begin{array}{c\|} \hline \dot{\mathrm{j}} \\ \dot{\mathrm{G}} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \stackrel{i}{0} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \stackrel{0}{0} \\ & \dot{R} \end{aligned}$	－	$\begin{aligned} & 0 \\ & \stackrel{N}{\infty} \\ & \text { in } \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \dot{c} \\ & \dot{b} \end{aligned}\right.$		－
		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\bigcirc \bigcirc$	N	\bigcirc	$\stackrel{\sim}{\circ}$	N	へ	$\stackrel{\sim}{6}$	$\stackrel{\sim}{\circ}$	F	$\stackrel{\square}{\square}$	$\stackrel{\sim}{\infty}$	N	ले	\％	\＆	$\stackrel{N}{N}$	8	욷	N	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{\sim}$	슬	유N	$\stackrel{\sim}{\sim}$	$\frac{n}{m}$	$\stackrel{\sim}{0}$	－	앙	$\stackrel{\circ}{\circ}$	\％	은
		$\begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \substack{0 \\ 0 \\ 0 \\ 0 \\ 0} \\ \hline \end{gathered}$	\circ \vdots \vdots 0 0 \vdots \vdots 0				$\left\|\begin{array}{l} \stackrel{0}{0} \\ \dot{c} \\ 0 \\ 0 \\ \underset{\sim}{c} \end{array}\right\|$		$\left\|\begin{array}{l} \stackrel{g}{\dot{1}} \\ \hat{0} \\ 0 \\ 0 \\ \stackrel{0}{0} \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \\ \dot{0} \\ 0 \\ 0 \\ 0 \\ \\ \underset{0}{2} \end{array}\right\|$					$\stackrel{+}{+}$				$\begin{array}{\|c\|} \hline 0 \\ \dot{0} \\ \dot{0} \\ \dot{0} \\ \dot{0} \\ \dot{0} \\ \hline 0 \end{array}$				0 $\stackrel{j}{2}$ $\stackrel{y}{N}$ \vdots 0 0 \dot{N}		0 $\stackrel{0}{N}$ N 0 0 0 0 0 0		0 $\underset{\sim}{0}$ 0 0 0 0 $\stackrel{\omega}{m}$	$\begin{aligned} & 0 \\ & \dot{0} \\ & \stackrel{e}{0} \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{6} \\ & \hline 0.0 \end{aligned}$	\％	0 0 0 0 0 0 0 0 0 0	O	O	－

When Fuji standard motor 6－series is selected by motor selection

（Function code P99／A39／b39／r39＝3）
－Three－phase 200 V series

	¢	\bigcirc						$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\circ}$		$\stackrel{\text { }}{+}$	$\stackrel{\sim}{\square}$		$\stackrel{\sim}{\circ}$		$\stackrel{\sim}{\mathrm{N}}$			$\stackrel{\odot}{\text {－}}$	$\stackrel{\infty}{\mathrm{i}}$	N	$\stackrel{\sim}{\sim}$
		No	ત্ত犬	$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \mathrm{O} \\ & \hline \end{aligned}$	N్రి	$\begin{aligned} & \widetilde{0} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\bar{\circ}}{0}$	$\begin{aligned} & \bar{b} \\ & 0 . \end{aligned}$	厄̈	$\left.\begin{array}{\|c\|} \infty \\ 0 \\ 0 \\ 0 \end{array} \right\rvert\,$	$\begin{array}{\|l} \text { ® } \\ \hline 0 \\ \hline \end{array}$	$\stackrel{\widetilde{N}}{\stackrel{N}{0}}$	$\stackrel{\bar{n}}{\vdots}$	$\begin{gathered} \text { N } \\ \text { ci } \end{gathered}$	$\stackrel{\underset{N}{N}}{\substack{0}}$	$\begin{gathered} \text { Nָ } \\ \text { No } \end{gathered}$	No	N	$\stackrel{N}{\oplus}$	N্ণ	$\overline{\mathrm{m}}$	$\stackrel{\infty}{\infty}$
												๕										
		$\stackrel{N}{0}$	$\stackrel{\rightharpoonup}{\mathrm{m}}$	$\stackrel{\infty}{\circ}$	$\stackrel{\oplus}{\stackrel{\circ}{7}}$	$\begin{aligned} & \stackrel{\leftrightarrow}{\circ} \\ & \stackrel{\sim}{i} \end{aligned}$	$\stackrel{8}{8}$	$\underset{\sim}{\mathrm{N}}$	$\begin{array}{\|l\|l\|l\|l\|l\|} \stackrel{N}{\mathrm{~N}} \end{array}$	$\begin{array}{\|c\|} \stackrel{\infty}{\infty} \\ \stackrel{\infty}{\infty} \end{array}$	$\begin{aligned} & \text { N } \\ & \stackrel{\sim}{N} \end{aligned}$	$\stackrel{\varrho}{\underset{\sim}{e}}$	$\begin{aligned} & \text { d } \\ & \stackrel{\rightharpoonup}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \text { Un } \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{j}{2} \end{aligned}$	$\stackrel{\varrho}{\vdots}$	$\begin{aligned} & \text { Ni } \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{array}{\|l\|l} \infty \\ \underset{\sim}{\mathrm{N}} \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\infty} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\text { N }}{\underset{\sim}{\mathrm{N}}}$	No	$\stackrel{\bullet}{\text { ¢ }}$
		$\begin{aligned} & \infty \\ & \infty \\ & \stackrel{\infty}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\bullet}{\mathrm{N}} \\ & \stackrel{1}{2} \end{aligned}$	$\overline{\overleftarrow{y y y}}$	$\stackrel{\cong}{\dot{F}}$	$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\sim}{\circ} \end{gathered}$	$\begin{gathered} \dot{\oplus} \\ \dot{\oplus} \end{gathered}$	$\begin{aligned} & \bullet \\ & \stackrel{\circ}{6} \\ & \stackrel{\circ}{2} \end{aligned}$		$\begin{aligned} & 0 \\ & \dot{0} \\ & \stackrel{n}{c} \end{aligned}$	$\begin{aligned} & \text { N. } \\ & \dot{F} \end{aligned}$	$\begin{aligned} & \dot{g} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{c} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\mathrm{f}} \\ & \underset{\mathrm{~J}}{2} \end{aligned}$	$$	$\begin{aligned} & \infty \\ & \text { N్ } \end{aligned}$	$\begin{aligned} & \bullet \\ & \stackrel{j}{\tau} \end{aligned}$	$\stackrel{\infty}{\dot{J}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\text { だ }} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\dot{G}}{\dot{G}} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \stackrel{\text { Hj}}{\ddagger} \end{aligned}$	$\stackrel{\text { ¢ }}{\text { ¢ }}$
		$\stackrel{\sim}{\text { Ni }}$	$\stackrel{\widehat{\infty}}{\stackrel{\infty}{\Gamma}}$	$\begin{aligned} & \stackrel{\oplus}{\dot{\sim}} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\text { ® }}{\text { N }} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{array}{r} \underset{\underset{\sim}{\circ}}{ } \end{array}$	$\begin{aligned} & \text { n } \\ & \text { ल్ల } \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { ल్ల } \end{aligned}$	$\begin{aligned} & \underset{\sim}{\dot{\sim}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{*} \end{aligned}$	$\begin{aligned} & \text { N. } \\ & \text { ¢̀ } \end{aligned}$	$\stackrel{m}{\stackrel{m}{\sim}}$	$\stackrel{\varrho}{\stackrel{N}{N}}$	$\begin{aligned} & \text { N. } \\ & \text { ¢̀ } \end{aligned}$	$\begin{gathered} \text { N} \\ \underset{\sim}{\mathrm{N}} \end{gathered}$	$\begin{aligned} & \underset{\oplus}{\circ} \\ & \stackrel{\text { N}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{O}{\circ} \\ & \stackrel{\rightharpoonup}{\mathrm{~N}} \end{aligned}$	$\begin{aligned} & \text { N} \\ & \text { ë } \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \text { ले두 } \end{aligned}$	$\stackrel{\text { ¢ }}{\stackrel{\text { N}}{\sim}}$
		$\begin{aligned} & \text { m } \\ & \text { ó } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\underset{\text { Ni }}{\substack{\text { N }}}$	$\underset{\underset{\mathrm{N}}{\mathrm{~N}}}{ }$	$\begin{aligned} & \underset{\text { ̇ }}{\text { N }} \end{aligned}$		$\stackrel{\underset{\aleph}{\stackrel{~}{\circ}}}{\stackrel{2}{2}}$	$\begin{array}{\|l} \stackrel{\bullet}{\stackrel{\circ}{\circ}} \\ \hline \end{array}$	$\stackrel{\underset{ }{\dot{F}}}{\underset{F}{\prime}}$	$\stackrel{\mathrm{N}}{\mathrm{~F}}$	$\underset{\underset{\sim}{\dot{J}}}{\stackrel{\rightharpoonup}{\prime}}$	오	$\stackrel{\underset{\mathrm{N}}{\mathrm{~N}}}{ }$	$\underset{\underset{\sim}{\dot{J}}}{\underset{\sim}{\prime}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{亡} \end{aligned}$	$\underset{\underset{N}{N}}{ }$	$\stackrel{\sim}{\mathrm{N}}$	$\stackrel{N}{N}$	$\begin{aligned} & \stackrel{9}{\dot{~}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\circ}{j}} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\text { N }}{\text { N }}$
		Oi	\hat{i}	Oị	๗j	$\underset{\bar{\sigma}}{\dot{J}}$	N	$\underset{\sim}{\infty}$	두	$\overline{\mathcal{F}}$	$\begin{aligned} & \circ \\ & \hline \text { 㞧 } \end{aligned}$	$\stackrel{\circ}{\dot{j}}$	$\begin{aligned} & \text { ! } \\ & \dot{\sigma} \end{aligned}$	$\widehat{\substack{o \\ q}}$	$$	$$	$\underset{\sim}{\dot{\sim}}$	$\underset{~}{寸}$	$\overline{\mathscr{y}}$	$\underset{\sim}{\dot{q}}$	$\stackrel{\circ}{\dot{J}}$	$\stackrel{\infty}{\sim}$
		$\stackrel{\sim}{\mathrm{i}}$	$\stackrel{\varrho}{\check{\circ}}$	$\begin{aligned} & \circ \\ & \hline 6 \end{aligned}$	Ni	$\stackrel{\infty}{i}$	$\bar{\infty}$	$\stackrel{m}{\circ}$	$\begin{aligned} & \text { ® } \\ & \dot{\sigma} \end{aligned}$	$\begin{gathered} \text { N } \\ \text { Li } \end{gathered}$	\bar{i}	0	\hat{i}	ீ	广্চ앙	$\underset{i}{N}$	$\stackrel{\text { N }}{\underset{\sim}{\circ}}$	范	$\stackrel{\circ}{\circ}$	$\stackrel{\text { N }}{\stackrel{1}{5}}$	$\stackrel{\circ}{\dot{\circ}}$	$\stackrel{\sim}{\infty}$
		잉	$\underset{\text { t }}{\text { I }}$	$\stackrel{\varrho}{\mathrm{O}}$	$\stackrel{\circ}{\mathrm{e}}$	$\begin{aligned} & \circ \\ & \text { © } \end{aligned}$	$\underset{\sim}{\Sigma}$	$\stackrel{\wedge}{\dot{\sigma}}$	$\stackrel{m}{6}$	$\begin{array}{\|l\|} \hline 0 \\ 0 \\ 0 \end{array}$	$\stackrel{\rightharpoonup}{\hat{e}}$	®்	$\overline{\mathrm{N}}$	\hat{i}	$\stackrel{\infty}{\infty}$	$\stackrel{\wedge}{\infty}$		$\begin{aligned} & \infty \\ & \stackrel{\circ}{8} \end{aligned}$	$\hat{\mathrm{G}}$	$\begin{gathered} \text { O } \\ \hline \end{gathered}$	$\stackrel{\circ}{60}$	$\hat{\sim}$
		$\stackrel{\sim}{\infty}$	$\bar{\infty}$	$\stackrel{m}{\infty}$	$\stackrel{m}{\infty}$	$\stackrel{\wedge}{\wedge}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\stackrel{\ominus}{\underset{\sim}{+}}$	$\stackrel{9}{6}$	$\begin{gathered} \sim \\ \infty \\ \end{gathered}$	O.	$\underset{\infty}{\infty}$	$\stackrel{\complement}{\infty}$	0	$\stackrel{m}{\infty}$	$\stackrel{\bullet}{\infty}$	∞	$\hat{\sim}$	$\stackrel{m}{\underset{\sim}{j}}$	$\stackrel{\circ}{\sim}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\bigcirc}{\infty}$
		$\underset{\infty}{\infty}$	$\stackrel{m}{\infty}$	O்	$\widehat{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\overline{\text { ®⿵冂 }}$	$\underset{\infty}{\infty}$	$\begin{aligned} & 0 \\ & \dot{\infty} \\ & \hline \end{aligned}$	$\underset{\substack{\infty \\ \\ \hline}}{ }$	$\stackrel{\wedge}{\infty}$	$\stackrel{m}{\sigma}$	$\begin{aligned} & \text { 毋 } \\ & \text { Q8 } \end{aligned}$	$\hat{8}$	$\underset{\infty}{\infty}$	N்	$\underset{\infty}{\infty}$	O.	$\underset{\infty}{\infty}$	$\bar{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \text { 毋O } \\ & \text { Q } \end{aligned}$
		$\stackrel{\stackrel{\circ}{\dot{j}}}{\stackrel{1}{2}}$	$\begin{aligned} & \stackrel{\circ}{\dot{+}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{N}} \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\text { g }}{1}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \dot{\circ} \\ & \hline \end{aligned}$	$\underset{\sim}{\text { Hin }}$	$\stackrel{N}{\stackrel{N}{\dot{\sim}}}$	$\stackrel{\varrho}{\dot{\sigma}}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\sim}$	$\underset{\sim}{\mathbf{N}}$	$\stackrel{\infty}{\mathrm{m}}$	$\stackrel{\stackrel{\sim}{\infty}}{ }$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\infty}{\stackrel{N}{N}}$	$\stackrel{\text { \& }}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\overline{\mathrm{N}}}{ }$	$\stackrel{\sim}{\stackrel{\sim}{¢}}$
		$\underset{~}{~}$	$\underset{~}{~}$	$\stackrel{\sim}{\mathrm{N}}$	$\underset{\sim}{\mathrm{i}}$	$\stackrel{\sim}{\mathrm{N}}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\otimes}{\infty}$	$\stackrel{\leftrightarrow}{\Gamma}$	$\stackrel{\underset{r}{\square}}{\square}$	$\stackrel{\sqrt{n}}{\Gamma}$	$\stackrel{\rightharpoonup}{+}$	$\stackrel{m}{\stackrel{m}{r}}$	$\widehat{o b}_{0}^{\infty}$	8	$\stackrel{\infty}{\infty}$	$\mathrm{C}_{\infty}^{\infty}$	$\stackrel{\infty}{\infty}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\infty}{\infty}$	©	$\stackrel{\bigcirc}{\circ}$
징 ¢		$\stackrel{\curvearrowleft}{\stackrel{N}{F}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{N}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{0}{\dot{\sim}} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\dot{~}}{\dot{~}} \end{aligned}$	$\begin{aligned} & \because \\ & \hline- \\ & \hline \end{aligned}$	$\stackrel{\stackrel{N}{\mathrm{~N}}}{\underset{\sim}{c}}$	$\stackrel{\stackrel{\rightharpoonup}{\circ}}{\stackrel{\circ}{\circ}}$	$\stackrel{\underset{\sim}{N}}{\underset{\sim}{2}}$	$\begin{array}{\|l\|} \hline \stackrel{\circ}{\dot{~}} \end{array}$		$\stackrel{N}{\stackrel{N}{\oplus}}$	$\begin{aligned} & \hat{m} \\ & \stackrel{0}{\circ} \end{aligned}$	$\stackrel{8}{\stackrel{\circ}{-}}$	$\begin{array}{\|l\|l} \stackrel{\circ}{\circ} \\ \stackrel{\ominus}{0} \end{array}$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\text { en }}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathcal{F}} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{array}{\|l\|l} \hline \stackrel{0}{6} \\ \stackrel{\circ}{2} \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \mathscr{\infty} \\ & \stackrel{\oplus}{\oplus} \end{aligned}$	$\begin{aligned} & \text { Øo } \\ & \stackrel{\circ}{6} \end{aligned}$	$\stackrel{\text { ® }}{\text { ® }}$
$\frac{\bar{\alpha}}{\circ}$		$\stackrel{\stackrel{N}{c}}{\underset{\sim}{c}}$	$\begin{aligned} & \AA \\ & \stackrel{\text { ® }}{ } \end{aligned}$	$\begin{gathered} \stackrel{\circ}{\dot{\mathrm{N}}} \end{gathered}$	$\begin{aligned} & \text { Ǹ } \\ & \text { 아 } \end{aligned}$	$\stackrel{\widehat{\infty}}{\infty}$		$\stackrel{\substack{\infty \\ \oplus \\ \hline}}{ }$	$\stackrel{0}{\circ}$	$\begin{aligned} & 8 \\ & \hline i \end{aligned}$	$\begin{aligned} & 0 \\ & \underset{\sim}{0} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{c}}$	$\underset{\sim}{\text { N }}$	$\stackrel{8}{\mathrm{i}}$	$\stackrel{\curvearrowright}{\mathrm{N}}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\ominus}{\stackrel{~}{\mathrm{~N}}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\infty}{\stackrel{\infty}{\Gamma}}$	$\stackrel{ }{\stackrel{1}{+}}$	$\stackrel{8}{\circ}$
		$\stackrel{O}{0}$	号	$\stackrel{\otimes}{-}$	$\stackrel{\ominus}{̣}$	$\stackrel{\sim}{\mathrm{N}}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\infty}{\infty}$	$\stackrel{\gtrless}{\wedge}$	$\begin{array}{\|l\|} \hline \stackrel{O}{2} \\ \stackrel{\circ}{2} \end{array}$	$\begin{array}{\|l} \stackrel{\circ}{\mathrm{N}} \\ \stackrel{y}{2} \end{array}$	$\stackrel{\circ}{\stackrel{\circ}{\sim}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\mathrm{C}}$	$\stackrel{8}{\dot{\sim}}$	$\stackrel{\stackrel{\circ}{\dot{N}}}{\stackrel{1}{2}}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\stackrel{i}{\circ}}{\underset{\sim}{q}}$	$\stackrel{\circ}{\sim}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\underset{\infty}{\infty}$	$\begin{aligned} & \text { N్} \\ & \text { §i } \end{aligned}$	$\stackrel{\text { Ņ }}{\text { ¢ }}$
	$\stackrel{\stackrel{N}{\wedge}}{\stackrel{N}{\circ}}$	$\underset{0}{寸}$	$\stackrel{\infty}{\circ}$	$\stackrel{\mathrm{O}}{\stackrel{1}{c}}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\dot{6}}$	$\stackrel{\text { N̈ }}{ }$	$\begin{array}{\|l\|l} \hline \stackrel{\circ}{\mathrm{e}} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline \mathrm{O} \\ \text { Nָ } \end{array}$	$\stackrel{\circ}{\text { ® }}$	$\begin{aligned} & \text { O } \\ & \text { y } \end{aligned}$	$\begin{array}{\|l} \hline 8 \\ \text { in } \\ \hline \text { R } \end{array}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{O}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{array}{\|l} \hline \underset{\infty}{\infty} \\ \stackrel{\infty}{2} \end{array}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\mathrm{O}} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{M}}}{\stackrel{\mathrm{C}}{2}}$	$\begin{aligned} & 0 \\ & \stackrel{0}{e} \\ & \stackrel{e}{2} \end{aligned}$	$\begin{aligned} & \circ . \\ & \hline \text { - } \\ & \hline- \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{O}{\dot{m}}$	－
		$\stackrel{\circ}{\circ}$	$\stackrel{\square}{0}$	No	$\underset{0}{0}$	$\stackrel{\llcorner }{\stackrel{N}{\circ}}$	$\stackrel{\sim}{\Gamma}$	N	$\widehat{\sim}$	مٌ	$\stackrel{\curvearrowleft}{\wedge}$	F	$\stackrel{\square}{\square}$	$\begin{aligned} & \text { @ } \\ & \end{aligned}$	N	－	ले	\％	$\stackrel{\sim}{\circ}$	$\stackrel{\wedge}{\sim}$	8	$\stackrel{\sim}{7}$
	$\stackrel{0}{4} \stackrel{0}{\Sigma}$		$\stackrel{?}{0}$ \vdots \vdots \vdots \vdots	$\begin{aligned} & \text { on } \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 \end{aligned}$	$\begin{aligned} & \text { J } \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$		$\begin{aligned} & \stackrel{0}{N} \\ & \stackrel{\rightharpoonup}{N} \\ & \stackrel{2}{0} \\ & \stackrel{̣}{C} \end{aligned}$		$\begin{aligned} & 9 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}$		$$			$\begin{aligned} & \stackrel{\circ}{\dot{1}} \\ & \stackrel{1}{N} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\infty} \end{aligned}$					$\begin{aligned} & \hline \stackrel{\circ}{+} \\ & \dot{+} \\ & \stackrel{0}{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{j}{\circ} \end{aligned}$			$\stackrel{\circ}{\circ}$ $\stackrel{\circ}{+}$ $\stackrel{+}{+}$

Three－phase 400 V series

$$	옻				\bigcirc			$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\circ}$	$\stackrel{+}{-}$	$\stackrel{+}{\sim}$	$\stackrel{m}{\square}$		$\stackrel{\circ}{\text {－}}$		$\stackrel{\sim}{\mathrm{N}}$		$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\mathrm{i}}$	$\stackrel{\infty}{\sim}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{n}$	－	$\stackrel{\sim}{8}$		F	is	$\stackrel{\sim}{\circ}$			$\stackrel{\sim}{\sim}$		$\stackrel{\infty}{\infty}$		$\stackrel{\sim}{\circ}$
		$\begin{aligned} & \hat{0} \\ & 0 \\ & 0 \end{aligned}$	$\left\|\begin{array}{c} \underset{0}{0} \\ 0 \end{array}\right\|$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} 0 \\ 0 \\ 0 \end{gathered}$	$\begin{gathered} \tilde{N} \\ 0 \\ 0 \\ \hline \end{gathered}$	$\begin{aligned} & \bar{\circ} \\ & \hline 0 \\ & \hline \end{aligned}$	$\left\lvert\, \begin{gathered} \bar{o} \\ \dot{\circ} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{n}{0} \\ \mathbf{o} \\ \mathbf{O} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{c} \\ \dot{0} \end{array}\right\|$	$\stackrel{\stackrel{\rightharpoonup}{n}}{\stackrel{\rightharpoonup}{0}} \mid$	$\begin{gathered} \substack{N \\ \vdots \\ 0} \end{gathered}$	$\left\lvert\, \begin{gathered} \infty \\ \underset{\sim}{\mathrm{N}} \\ \hline \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \tilde{\sim} \\ \underset{0}{2} \end{gathered}\right.$	$\left\|\begin{array}{c} \stackrel{\sim}{n} \\ 0 \end{array}\right\|$	$\underset{\sim}{N}$	$\left\|\begin{array}{c} \hat{0} \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \tilde{\sim} \\ \underset{\sim}{0} \end{array}\right\|$	$\left.\begin{gathered} \bar{m} \\ \dot{0} \end{gathered} \right\rvert\,$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \dot{0} \end{aligned}$		\％	$\begin{aligned} & \stackrel{N}{0} \\ & 0 \end{aligned}$	¢	－	O80	N	$\left\|\begin{array}{c} \bar{\infty} \\ \underset{\infty}{0} \end{array}\right\|$	$\begin{array}{\|c\|} \infty \\ \stackrel{\infty}{0} \\ 0 \end{array}$	－	$\stackrel{\stackrel{\sim}{\mathrm{m}}}{\stackrel{1}{+}}$	$\stackrel{\text { Lemp }}{ }$	$\stackrel{\circ}{\circ}$
												®																							
		\div	$\underset{0}{\circ}$	$\stackrel{\stackrel{~}{\mathrm{O}}}{\stackrel{\circ}{2}}$	$\begin{aligned} & \infty \\ & \stackrel{0}{\circ} \end{aligned}$	$\underset{\sim}{N}$	$\left\|\begin{array}{c} \stackrel{\sim}{\mathrm{O}} \\ \underset{\sim}{2} \end{array}\right\|$	$\underset{\sim}{\underset{\sim}{j}} \underset{\sim}{N}$	$\begin{gathered} \underset{\sim}{\infty} \\ \underset{\varphi}{\circ} \end{gathered}$	$\left\lvert\, \begin{gathered} \underset{\mathrm{N}}{ } \\ \text { oे } \end{gathered}\right.$	$\left\lvert\, \begin{gathered} \underset{\sim}{\mathrm{j}} \\ \underset{\sim}{2} \end{gathered}\right.$	$\left\|\begin{array}{l\|} \circ \\ \infty \\ \infty \end{array}\right\|$	$\left.\begin{gathered} \hat{\underset{~}{4}} \\ \stackrel{\sim}{n} \end{gathered} \right\rvert\,$	$\begin{gathered} \bar{f} \\ \stackrel{\rightharpoonup}{m} \end{gathered}$	$\left\|\begin{array}{c} \stackrel{n}{0} \\ \underset{\sim}{m} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \dot{H} \\ & \dot{B} \\ & \dot{B} \end{aligned}\right.$	$\begin{array}{\|c} \infty \\ \underset{\sim}{\infty} \\ \hline \end{array}$		$\left\|\begin{array}{c} \dot{ल} \\ \dot{\infty} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\mathrm{N}} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{\mathrm{N}} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{\infty} \\ & \underset{\sim}{\infty} \end{aligned}\right.$	$\stackrel{\Sigma}{N}$	$\begin{aligned} & \stackrel{\circ}{\dot{\circ}} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\mathrm{M}} \end{aligned}$	$\begin{array}{\|c\|} \hline 9 \\ \vdots \\ \hline \end{array}$	$\dot{寸}$	$\left\|\begin{array}{c} n \\ \stackrel{y}{0} \\ \dot{O} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \dot{8} \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \text { ח } \\ \dot{G} \end{array}\right\|$	$\stackrel{\underset{N}{\mathrm{~N}}}{ }$	¢	\div	$\stackrel{\text { ¢ }}{\stackrel{\text { \％}}{+}}$
		$\underset{\substack{\infty \\ \infty \\ \stackrel{\infty}{c} \\ \hline}}{ }$	$\left\|\begin{array}{c} \stackrel{\bullet}{\underset{\sim}{\sim}} \end{array}\right\|$	$\stackrel{-\dot{\dot{b}}}{\dot{\sim}} \mid$	$\stackrel{m}{\dot{G}} \underset{\sim}{\mid}$	$\begin{gathered} \stackrel{+}{\infty} \\ \underset{\sim}{\dot{f}} \end{gathered}$	$\begin{array}{\|c} \dot{\tilde{q}} \\ \underset{\sim}{2} \end{array}$	$\left\|\begin{array}{c} \stackrel{0}{\dot{p}} \\ \stackrel{n}{c} \end{array}\right\|$	$\begin{aligned} & \text { ᄃ } \\ & \stackrel{\text { ju}}{\sim} \end{aligned}$	$\left\lvert\, \begin{gathered} \stackrel{9}{\dot{0}} \\ \stackrel{0}{c} \end{gathered}\right.$	$\left\|\begin{array}{c} \underset{\sim}{\dot{G}} \\ \dot{寸} \end{array}\right\|$	$\begin{gathered} \stackrel{\ddots}{\mathrm{J}} \\ \stackrel{\rightharpoonup}{\mathrm{~J}} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{m} \\ & \stackrel{\rightharpoonup}{2} \end{aligned}$	$\begin{gathered} \stackrel{i}{\mathrm{~L}} \\ \stackrel{y}{\mathrm{G}} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{n} \\ & \stackrel{n}{r} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\sim}{e} \\ \stackrel{e}{c} \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{\bullet}{\dot{寸}} \\ & \underset{寸}{ } \end{aligned}\right.$	$\stackrel{\infty}{\dot{J}}$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{n}{n} \\ & \stackrel{1}{2} \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ \dot{寸} \\ \dot{寸} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{0}{\dot{b}} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { Ji } \\ \text { ju } \end{gathered}\right.$	$\stackrel{\infty}{\dot{f}} \underset{\sim}{\dot{f}}$	$\begin{gathered} \circ \\ \stackrel{\circ}{\dot{o}} \\ \stackrel{y}{c} \end{gathered}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{e}{c} \end{aligned}$	$\begin{gathered} \stackrel{\circ}{\dot{\circ}} \\ \stackrel{\rightharpoonup}{\sim} \end{gathered}$	$\stackrel{\infty}{\stackrel{\circ}{\text { ¢ }}}$					$\begin{aligned} & \text { م } \\ & \text { ल్ల } \end{aligned}$			
		$\stackrel{\substack{\mathrm{N} \\ \underset{\sim}{2} \\ \hline}}{ }$	$\begin{gathered} \stackrel{\rightharpoonup}{\infty} \\ \underset{\sim}{\circ} \end{gathered}$	$\begin{array}{\|c} \stackrel{\circ}{\dot{\circ}} \\ \stackrel{\oplus}{2} \end{array}$		$\begin{gathered} \underset{\sim}{\underset{\sim}{N}} \end{gathered}$	$\left\lvert\, \begin{gathered} \underset{\circ}{\underset{\sim}{c}} \\ \hline \end{gathered}\right.$	$\left.\begin{aligned} & \stackrel{\sim}{m} \\ & \stackrel{m}{c} \end{aligned} \right\rvert\,$	$\left\|\begin{array}{c} \underset{\sim}{m} \\ \stackrel{\sim}{c} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\mathrm{N}} \\ \underset{y}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\infty}{\infty} \\ \underset{\sim}{\sim} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{c} \\ \stackrel{e}{m} \end{array}\right\|$	$\begin{gathered} \underset{\sim}{\underset{\sim}{\sim}} \\ \hline \end{gathered}$	$\begin{gathered} \stackrel{\Im}{\mathrm{N}} \\ \hline \end{gathered}$	$\begin{array}{\|c} \underset{\sim}{N} \\ \underset{\sim}{\mathrm{~m}} \end{array}$	$\left.\begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{m} \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \underset{\dot{N}}{\stackrel{~}{*}} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\dot{~}} \\ \stackrel{y}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{e} \\ \stackrel{\rightharpoonup}{c} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{\sim}{\dot{\sim}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\dot{m}} \\ \underset{\sim}{2} \end{gathered}\right.$	$\begin{array}{\|c} \underset{\stackrel{\rightharpoonup}{\mathrm{N}}}{ } \end{array}$	$\stackrel{\bullet}{\stackrel{0}{\sim}}$	$\begin{aligned} & \stackrel{\sim}{0} \\ & \stackrel{\sim}{r} \end{aligned}$	$\begin{aligned} & \hat{\mathrm{N}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\sim}{\sim}$					$\begin{aligned} & \text { N. } \\ & \text { Nָ } \end{aligned}$			
		$\begin{gathered} n \\ \vdots \\ \dot{0} \\ \hline \end{gathered}$	$\left\|\begin{array}{l} \infty \\ \infty \\ 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|c} \underset{\sim}{i} \\ \underset{\sim}{2} \end{array}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\mathrm{N}} \end{array}\right\|$	$\underset{\sim}{\underset{\sim}{\mathrm{N}}}$	$\underset{\underset{y}{7}}{\underset{y}{2}}$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\dot{\rho}} \\ \stackrel{\rightharpoonup}{c} \\ \hline \end{gathered}\right.$	$\begin{aligned} & \stackrel{\bullet}{\stackrel{\circ}{\circ}} \\ & \stackrel{\circ}{2} \end{aligned}$	$\|\stackrel{\hat{H}}{\dot{F}}\|$	$\left\lvert\, \begin{aligned} & \stackrel{\rightharpoonup}{\dot{~}} \\ & \dot{\dot{N}} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \underset{\sim}{\dot{f}} \\ \underset{\sim}{2} \end{gathered}\right.$	$\left\lvert\, \begin{gathered} 0 \\ \dot{\circ} \\ \hline 0 \end{gathered}\right.$	$\stackrel{\overline{\mathrm{N}}}{\stackrel{1}{\mathrm{j}}}$	$\stackrel{-}{\underset{\sim}{\dot{~}}}$	$\stackrel{\infty}{\stackrel{\perp}{\dot{f}}}$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\mathrm{N}} \\ & \hline \end{aligned}\right.$	$\stackrel{\mathrm{m}}{\underset{\sim}{\mathrm{~N}}}$	$\begin{aligned} & \underset{\sim}{\underset{~}{~}} \\ & \hline \end{aligned}$	$\left\|\begin{array}{l} \stackrel{g}{\dot{j}} \\ \stackrel{y}{j} \end{array}\right\|$	$\begin{array}{\|c} \stackrel{0}{\stackrel{\circ}{2}} \\ \stackrel{2}{2} \end{array}$	$\underset{\sim}{\underset{\sim}{N}}$	$\stackrel{\stackrel{\circ}{\mathrm{i}}}{\stackrel{\sim}{\sim}}$	$\stackrel{\circ}{\stackrel{+}{+}}$	$\begin{aligned} & \stackrel{\infty}{\dot{8}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{aligned} & \hat{o} \\ & \underset{\sim}{\circ} \end{aligned}$	$\stackrel{\circ}{\circ}$					$\begin{aligned} & \text { m} \\ & \stackrel{\circ}{-} \end{aligned}$			
		0	\hat{i}	$\dot{j} \left\lvert\,\right.$	$\left\|\begin{array}{c} \infty \\ \dot{q} \end{array}\right\|$	$\stackrel{\rightharpoonup}{\dot{\sigma}}$	$\left\|\begin{array}{c} n \\ \mathscr{q} \end{array}\right\|$	$\left\lvert\, \begin{array}{l\|} \infty \\ \underset{\sim}{\infty} \\ \hline \end{array}\right.$	$\underset{\underset{\sim}{x}}{ }$	$\|\dot{\dot{j}}\|$	$\left\|\begin{array}{c\|} \bullet \\ \stackrel{\bullet}{g} \\ \mid \end{array}\right\|$	$\left\lvert\, \begin{gathered} \stackrel{0}{\mathrm{G}} \\ \stackrel{1}{2} \end{gathered}\right.$	$\left\|\begin{array}{l} \mathbf{n} \\ \dot{q} \end{array}\right\|$	$\hat{\alpha_{\sigma}^{\prime}}$	$\left\|\begin{array}{c} \dot{d} \\ \dot{q} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{\text { g }} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \underset{\sim}{\dot{q}} \end{gathered}\right.$	$\stackrel{\dot{F}}{\dot{f}}$		$\left\lvert\, \begin{aligned} & \underset{\sim}{\dot{j}} \\ & \hline \end{aligned}\right.$	$\left\|\begin{array}{l} 0 \\ \dot{G} \end{array}\right\|$	$\stackrel{\infty}{\infty}$	$\stackrel{\varphi}{\dot{q}}$	$\begin{aligned} & \dot{o} \\ & \dot{q} \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{\dot{*}}}$	$\begin{array}{\|c} \circ \\ \dot{q} \\ \dot{q} \end{array}$									
		$\left\|\begin{array}{c} n \\ \dot{e} \end{array}\right\|$	$\left\|\begin{array}{c} \bullet \\ \check{\varrho} \end{array}\right\|$	$\left.\begin{array}{\|c\|} \bullet \\ \dot{6} \end{array} \right\rvert\,$	N	$\stackrel{\infty}{\dot{n}}$	$\underset{\infty}{\dot{\infty}}$	$\left\lvert\, \begin{gathered} m \\ \dot{B} \\ \hline \end{gathered}\right.$	$\begin{aligned} & \text { ח } \\ & \dot{q} \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \underset{\sim}{c} \\ \dot{心} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \bar{\circ} \\ \hline \stackrel{\circ}{0} \end{gathered}\right.$	$\left\|\begin{array}{c} \circ \\ \dot{\infty} \\ \dot{\rho} \end{array}\right\|$	\hat{i}	$\begin{aligned} & \dot{\circ} \\ & \dot{\circ} \end{aligned}$	$\stackrel{\dot{8}}{\dot{8}} \mid$	$\stackrel{\sim}{\sim}$	$\left\|\begin{array}{c} \text { N } \\ \dot{心} \end{array}\right\|$	$\underset{\substack{\circ \\ \hline}}{ }$	$\left\|\begin{array}{c} \bullet \\ \dot{\sim} \end{array}\right\|$	$\left\|\begin{array}{c} \text { Ň } \\ \dot{心} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & \dot{5} \\ & \hline \end{aligned}\right.$	$\underset{\infty}{i}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\infty}$	$\begin{array}{\|l\|} \hline 0 \\ \stackrel{\circ}{\circ} \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{0} \end{aligned}$	－					$\stackrel{9}{8}$			
		$\begin{aligned} & 0 \\ & \stackrel{j}{\mathrm{j}} \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{\sim}{J} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\stackrel{\underset{0}{0}}{\stackrel{1}{2}}$	$\stackrel{\stackrel{1}{0}}{\stackrel{1}{0}}$	$\stackrel{\bullet}{\dot{O}}$	$\underset{\Gamma}{\Gamma}$		$\left.\frac{m}{\dot{\sigma}} \right\rvert\,$	$\left\|\begin{array}{l} n \\ \stackrel{n}{0} \end{array}\right\|$	$\left\|\begin{array}{l} \overline{\hat{0}} \\ \mid \end{array}\right\|$	$\left\|\begin{array}{c} \dot{9} \\ \dot{B} \end{array}\right\|$	$\stackrel{\Gamma}{\mathrm{N}}$	\hat{i}	$\left\lvert\, \begin{array}{l\|} \dot{\infty} \\ \infty \\ 0 \end{array}\right.$	$\left.\begin{array}{\|c\|} \hat{\infty} \\ \dot{e} \end{array} \right\rvert\,$	$\left\|\begin{array}{c} \underset{\sim}{4} \\ \underset{0}{2} \end{array}\right\|$	$\stackrel{\infty}{\stackrel{\infty}{\circ}}$	$\left\|\begin{array}{c} \hat{G} \\ \dot{G} \end{array}\right\|$	$\left\|\begin{array}{c} m \\ \dot{G} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \stackrel{\rightharpoonup}{0} \end{array}\right\|$	\hat{i}	$\begin{aligned} & \infty \\ & \dot{\circ} \end{aligned}$	$\underset{\sim}{i}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\underset{N}{\mathrm{~N}}}{ }$	N					N			
		$\stackrel{n}{\infty}$	$\left\|\begin{array}{c} \bar{\infty} \\ \infty \end{array}\right\|$	$\stackrel{m}{\infty}$	$\stackrel{m}{\infty}$	$\stackrel{\wedge}{\lambda}$	$\left\lvert\, \begin{gathered} \infty \\ \dot{\infty} \\ \infty \end{gathered}\right.$	$\left\|\begin{array}{l} \circ \\ \stackrel{\rightharpoonup}{\prime} \end{array}\right\|$	$\stackrel{9}{i}$	$\left\|\begin{array}{c} N \\ \end{array}\right\|$	$\left\|\begin{array}{l\|} \hline 0 \\ \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \end{array}\right\|$	$\begin{array}{\|c\|} \hline \\ \infty \\ \infty \end{array}$	$\stackrel{m}{\infty}$	$\left\|\begin{array}{l} 0 \\ \stackrel{\infty}{\infty} \end{array}\right\|$	$\begin{array}{l\|} \infty \\ \infty \\ \infty \end{array}$	$\hat{\hat{\alpha}}$	$\left\|\begin{array}{c} m \\ \dot{r} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \circ \\ \stackrel{\circ}{\circ} \\ \stackrel{1}{2} \end{gathered}\right.$	$\left\|\begin{array}{l\|} \hline 0 \\ \stackrel{9}{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\infty}{\infty} \\ \underset{\infty}{ } \end{gathered}\right.$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \hline \end{aligned}$	$\left.\begin{array}{\|l\|l\|} \bullet \\ \infty \\ \infty \end{array} \right\rvert\,$	$\bar{\infty}$	¢					$\stackrel{¢}{\infty}$			
		\dot{m}	$\left.\begin{gathered} m \\ \dot{\Omega} \end{gathered} \right\rvert\,$	$\stackrel{0}{\circ}$	$\stackrel{\wedge}{\infty}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\overline{\mathrm{j}}$	$\underset{\infty}{\infty}$	$\stackrel{\dot{\infty}}{0}$	$\left\lvert\, \begin{gathered} \underset{\infty}{\infty} \\ \mid \end{gathered}\right.$	$\stackrel{\wedge}{\hat{\infty}} \mid$	$\stackrel{m}{\dot{\sigma}} \mid$	$\left\|\begin{array}{c\|} n \\ \dot{8} \\ \dot{8} \end{array}\right\|$	$\hat{8}$	$\left\lvert\, \begin{array}{\|c\|} \hat{\infty} \\ \hline \end{array}\right.$	$\begin{gathered} \text { N. } \\ \text { g } \end{gathered}$	$\left\|\begin{array}{c} \hat{\infty} \\ \infty \\ \infty \end{array}\right\|$	$\stackrel{\circ}{\infty} \mid$	$\left\lvert\, \begin{gathered} \underset{\infty}{\infty} \\ \hline \end{gathered}\right.$	$\underset{\infty}{\dot{\infty}} \mid$	$\left\lvert\, \begin{array}{c\|} \infty \\ \infty \\ \infty \end{array}\right.$	$\begin{array}{\|l\|} \hline 0 \\ 8 \\ 8 \end{array}$	$\stackrel{\infty}{8}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\circ}{\dot{\sigma}}$	$\bar{\aleph}$	N					$\hat{\sim}$			
	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{y}{M} \\ & \underset{\sim}{2} \end{aligned}$	$\left\lvert\, \begin{aligned} & \underset{\dot{f}}{\mid} \\ & \hline \end{aligned}\right.$	$\left\|\begin{array}{c} \circ \\ \dot{\sim} \end{array}\right\|$	$\begin{aligned} & \stackrel{\circ}{\dot{i}} \\ & \stackrel{\sim}{2} \end{aligned}$	$\begin{gathered} \infty \\ \infty \\ \propto \end{gathered}$	$\stackrel{\substack{~ \\ \\ \hline}}{ }$	$\left\|\begin{array}{l} \infty \\ \infty \\ \infty \end{array}\right\|$	$\begin{array}{\|c\|} \bar{m} \\ \dot{心} \end{array}$	$\left.\begin{array}{\|c} \underset{\sim}{N} \\ \end{array} \right\rvert\,$	$\left.\begin{array}{\|c} \stackrel{N}{\sim} \\ \dot{子} \end{array} \right\rvert\,$		$\left\|\begin{array}{c} \underset{\sim}{\infty} \end{array}\right\|$	$\stackrel{N}{\mathrm{~m}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\substack{2}}$	$\stackrel{\sim}{\infty}$	$\stackrel{O}{\dot{m}}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{ }$	$\stackrel{\infty}{\stackrel{\infty}{\mathrm{N}}} \mid$	$\left\|\begin{array}{c} \mathrm{O} \\ \mathrm{~N} \end{array}\right\|$	$\left\|\begin{array}{c} \mathrm{m} \\ \mathrm{i} \end{array}\right\|$	$\left\|\begin{array}{c} \bar{\sim} \\ \stackrel{N}{\mathrm{i}} \end{array}\right\|$	$\stackrel{N}{\underset{\sim}{2}}$	$\stackrel{\infty}{\circ}$	$\stackrel{\square}{\square}$	$\stackrel{\odot}{\Gamma}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { m }}{\sim}$	$\stackrel{\text { N}}{\sim}$	$\left\lvert\, \begin{gathered} \underset{\infty}{\infty} \\ \underset{\sim}{2} \end{gathered}\right.$	$\underset{i}{\underset{\sim}{i}}$	$\left\|\begin{array}{l} \infty \\ \stackrel{\sim}{0} \end{array}\right\|$	$\stackrel{\text { ¢ }}{\text {＋}}$	$\stackrel{\otimes}{\square}$	$\stackrel{\text { ¢ }}{\stackrel{\sim}{+}}$	¢
		$\underset{r}{N}$	$\stackrel{\underset{~}{\wedge}}{\underset{~}{2}}$	$\stackrel{ल}{\sim}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{ }$	$\stackrel{\sim}{\sim}$	$\begin{aligned} & \mathrm{O} \\ & \mathrm{~N} \end{aligned}$	$\stackrel{\circ}{\infty}$	$\stackrel{\substack{\mathrm{O}}}{ }$	$\left\|\begin{array}{c} \dot{q} \\ \dot{r} \end{array}\right\|$	$\|\stackrel{N}{\hat{e}}\|$	$\stackrel{\rightharpoonup}{\stackrel{0}{c}}$	$\stackrel{m}{\square}$	$\begin{array}{\|c\|c\|c\|c\|} \hline \infty \\ 0 \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ 0 \end{array}$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \end{array}\right\|$	$\begin{gathered} \infty \\ 0 \\ 0 \end{gathered}$	$\left\|\begin{array}{l} \pi \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|l\|} \hline \stackrel{\circ}{0} \\ \hline \end{array}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\left\lvert\, \begin{aligned} & \infty \\ & 0 \\ & 0 \end{aligned}\right.$	容		$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \tilde{y} \\ \dot{0} \end{array}\right\|$	$\begin{gathered} \mathbf{N} \\ \mathbf{O} \end{gathered}$	$\underset{0}{9}$	$\underset{\sim}{\infty} \underset{\sim}{\circ} \underset{\sim}{\circ}$	$\stackrel{\rightharpoonup}{0}$	N
증 잉		$\stackrel{n}{\underset{F}{2}}$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\dot{~}} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	$\dot{\substack{i}} \begin{gathered} \mathscr{e} \\ \underset{\sim}{m} \\ \hline \end{gathered}$	$\begin{gathered} \dot{\sim} \\ \dot{\sim} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{\circ} \end{aligned}$	$\mid \stackrel{\stackrel{O}{\underset{\sim}{c}}}{\underset{~}{2}}$	$\begin{gathered} \hat{e} \\ \dot{\circ} \\ \hline \end{gathered}$	$\begin{gathered} \underset{N}{\underset{~}{j}} \end{gathered}$	$\left\lvert\, \begin{gathered} \stackrel{\circ}{\dot{\sim}} \\ \stackrel{1}{2} \end{gathered}\right.$	$\left\|\begin{array}{l} \stackrel{O}{n} \\ \dot{f} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{\dot{\sim}} \\ \stackrel{N}{2} \end{gathered}\right.$	$\begin{aligned} & \hat{N} \\ & \stackrel{\rightharpoonup}{0} \\ & \hline \end{aligned}$	$\stackrel{8}{\stackrel{\circ}{\mathrm{C}}}$	$\left\lvert\, \begin{aligned} & \stackrel{\bullet}{\mathrm{O}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}\right.$	$\left.\begin{gathered} \stackrel{8}{\stackrel{\rightharpoonup}{\varphi}} \\ \stackrel{y}{2} \end{gathered} \right\rvert\,$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\mathcal{F}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \underset{0}{\dot{0}} \\ \stackrel{1}{2} \end{gathered}\right.$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{2} \\ \stackrel{0}{0} \end{array}\right\|$	$\left.\begin{aligned} & \mathscr{O} \\ & \underset{\sim}{\circ} \end{aligned} \right\rvert\,$	$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{c} \bullet \\ \stackrel{\infty}{\sim} \end{array}\right\|$	$\stackrel{\circ}{\circ}$	$\stackrel{\sim}{N}$	$\begin{gathered} N \\ \dot{N} \end{gathered}$	$\begin{aligned} & \text { Q } \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{\infty}{\underset{\sigma}{\circ}} \\ & \hline \end{aligned}\right.$	$\left\|\begin{array}{l} \ddot{\infty} \\ \stackrel{0}{\dot{O}} \end{array}\right\|$	$\left\|\begin{array}{l} \dot{q} \\ \dot{0} \end{array}\right\|$	$\left.\begin{array}{\|l\|} \stackrel{\rightharpoonup}{\bullet} \\ \stackrel{\varphi}{e} \end{array} \right\rvert\,$	$\begin{array}{\|c} \stackrel{0}{\dot{m}} \\ \underset{\sim}{2} \end{array}$	$\begin{array}{c\|c} \underset{\sim}{\infty} \\ \stackrel{\rightharpoonup}{\mathrm{i}} & \stackrel{\rightharpoonup}{\mathrm{~m}} \end{array}$	$\underset{\underset{\sim}{N}}{\stackrel{N}{2}}$	$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$
등		$\underset{\substack{9 \\ \underset{m}{2} \\ \hline}}{ }$	$\left\|\begin{array}{l} \ddot{8} \\ \underset{\mathrm{j}}{ } \end{array}\right\|$		$\left\|\begin{array}{c} \stackrel{\sim}{N} \\ \stackrel{O}{0} \end{array}\right\|$	$\begin{gathered} \hat{6} \\ \infty \end{gathered}$	$\left\|\begin{array}{l} \stackrel{n}{n} \\ \dot{0} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \underset{6}{6} \end{array}\right\|$	$\begin{array}{\|c} \stackrel{9}{\omega} \\ \underset{\omega}{2} \end{array}$	$\left\|\begin{array}{c} \stackrel{8}{8} \\ \stackrel{\rightharpoonup}{\circ} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{0}{2} \\ \dot{q} \end{array}\right\|$	$\left\|\begin{array}{l} \infty \\ \stackrel{\infty}{\infty} \end{array}\right\|$	$\underset{\sim}{\underset{\sim}{n}}$	$\stackrel{\circ}{\mathrm{i}} \mid$	$\stackrel{O}{\mathrm{~N}}$	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{\mathrm{i}} \\ & \mid \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{0}{\mathrm{i}} \\ & \hline \end{aligned}\right.$	$\stackrel{\substack{\mathrm{N}}}{ }$	$\left\|\begin{array}{c} \stackrel{\sim}{\mathrm{i}} \\ \hline \end{array}\right\|$	$\stackrel{\otimes}{\stackrel{\infty}{c}} \mid$	$\stackrel{\substack{\mathrm{n}}}{ }$	$\stackrel{\stackrel{\circ}{\mathrm{O}}}{\stackrel{2}{2}}$	$\stackrel{\text { 上 }}{\stackrel{\circ}{+}}$	$\stackrel{\infty}{-}$	ị	$\stackrel{\circ}{-}$	$\stackrel{\text { ¢ }}{\stackrel{-}{+}}$	$\stackrel{\square}{+}$	$\left\|\begin{array}{c} \pm \\ \infty \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{\text { O}}{0}$	Ợ	50	$\stackrel{\circ}{\circ}$	Ơ
		M	$\left\|\begin{array}{c} \hat{y} \\ 0 \end{array}\right\|$	$\stackrel{0}{0}$	$\stackrel{\infty}{\stackrel{\infty}{0}}$	$\stackrel{\infty}{\stackrel{\infty}{r}}$	$\mid \stackrel{\leftrightarrow}{\bullet}$	$\left\lvert\, \begin{gathered} \underset{\sim}{\sim} \\ i \end{gathered}\right.$	$\stackrel{\leftrightarrow}{\infty}$	$\left\|\begin{array}{c} \stackrel{\sim}{0} \\ \stackrel{\omega}{\circ} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{N}{N} \\ 0 \end{array}\right\|$	$\left.\begin{array}{c\|} \infty \\ \infty \\ \infty \end{array} \right\rvert\,$	$\begin{array}{\|c\|} \hline 0 \\ \dot{O} \\ \hline \end{array}$	$\stackrel{\stackrel{\circ}{\dot{+}}}{\stackrel{1}{2}}$	$\stackrel{\stackrel{\otimes}{\dot{\sim}}}{\stackrel{\rightharpoonup}{\dot{2}}}$	$\left\|\begin{array}{l} \stackrel{\circ}{0} \\ \stackrel{i}{2} \end{array}\right\|$	$\begin{gathered} \infty \\ \dot{\sim} \\ \dot{\sim} \end{gathered}$	$\left\|\begin{array}{l} \infty \\ \underset{j}{n} \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\mathrm{N}} \\ \underset{\sim}{2} \end{array}\right\|$		$\begin{aligned} & \stackrel{\circ}{0} \\ & \dot{寸} \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\circ}{\circ} \\ \stackrel{\rightharpoonup}{4} \end{array}$	$\begin{gathered} \stackrel{8}{0} \\ i \end{gathered}$	$\begin{gathered} \stackrel{8}{0} \\ \dot{\oplus} \end{gathered}$	$\stackrel{0}{\stackrel{0}{\Sigma}}$	$\stackrel{\infty}{\stackrel{\infty}{亡}}$	$\stackrel{\stackrel{\rightharpoonup}{\infty}}{\stackrel{\infty}{\infty}}$	¢	$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\dot{N}} \\ \stackrel{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\mathrm{j}} \\ \stackrel{\mathrm{~m}}{\sim} \end{array}\right\|$	$\begin{array}{\|l\|} \hline 0 \\ \hline \mathbf{N} \\ \hline \end{array}$		$\stackrel{\circ}{\mathrm{O}}$	$\begin{aligned} & \circ \\ & \stackrel{\leftrightarrow}{6} \\ & \stackrel{0}{0} \end{aligned}$	－
		N	$\left\|\begin{array}{c} \infty \\ 0 \\ 0 \end{array}\right\|$	$\stackrel{\bullet}{\circ}$	$\stackrel{\stackrel{\rightharpoonup}{+}}{\underset{\sim}{2}}$	$\stackrel{\infty}{\dot{\infty}}$	$\frac{0}{m}$	$\|\stackrel{\circ}{\circ}\|$	$\stackrel{\circ}{\circ}$	$\|\stackrel{\circ}{\dot{+}}\|$	$\left\|\begin{array}{l} \stackrel{0}{0} \\ \dot{j} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\circ}{\dot{N}} \\ \mid \end{array}\right\|$	$\stackrel{\stackrel{\circ}{\mathrm{O}}}{\stackrel{\mathrm{~N}}{2}}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\dot{~}} \end{aligned}$	$\mid \stackrel{\circ}{\circ}$			$\begin{gathered} \mathrm{O} \\ \underset{\sim}{\infty} \end{gathered}$	$\left\lvert\,\right.$	$\left\|\begin{array}{c} \underset{\sim}{\dot{m}} \\ \stackrel{c}{2} \end{array}\right\|$	$\begin{array}{\|c} 0 \\ \stackrel{i}{n} \\ \stackrel{y}{n} \end{array}$	$\begin{array}{\|c} \stackrel{\circ}{\infty} \\ \underset{\sim}{\infty} \end{array}$	$\underset{\sim}{\underset{\sim}{\sim}}$	－	$\stackrel{0}{\omega}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{e} \\ & \hline \end{aligned}$	$\stackrel{\circ}{\circ}$	O	$\left\|\begin{array}{c} 0 \\ \stackrel{i}{0} \\ i \end{array}\right\|$	$\left\|\begin{array}{c\|} 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} 0 \\ \stackrel{0}{2} \\ \dot{0} \end{array}\right\|$	$\begin{aligned} & \mathrm{O} \\ & \stackrel{\rightharpoonup}{\lambda} \end{aligned}$		웅	－
		$\left\|\begin{array}{l} \circ \\ 0 \\ 0 \end{array}\right\|$	$\overline{0} \mid$	Nu	$\stackrel{\square}{\circ}$	$\stackrel{N}{\stackrel{N}{0}}$	$\stackrel{\varrho}{\square}$	N	へ－	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{\sim}$	F	$\stackrel{\sim}{\square}$	$\stackrel{\sim}{\infty}$	～	¢	¢	¢	뇨	$\stackrel{\sim}{\sim}$	8	욷	N	©	웃	슬	유N	$\stackrel{\sim}{\sim}$	$\frac{10}{m}$	牬	암	令	i	\％	읓
		$\left\lvert\, \begin{gathered} 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \\ 0 \\ 0 \end{gathered}\right.$	$\left\lvert\, \begin{aligned} & \circ \\ & \vdots \\ & \vdots \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline \end{aligned}\right.$		\mathfrak{c}	$\begin{array}{\|c\|c\|c\|c} 9 \\ \vdots \\ \vdots \\ \\ \\ 0 \\ 0 \end{array}$		$\left\lvert\, \begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \underset{\sim}{2} \\ & \underset{\sim}{2} \end{aligned}\right.$			$\begin{array}{\|c\|} \hline 8 \\ 0 \\ \vdots \\ \vdots \\ 0 \\ 0 \\ \stackrel{0}{n} \\ \hline \end{array}$					$\begin{array}{\|l\|} \hline \stackrel{8}{0} \\ \dot{e} \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$			$\begin{array}{\|c\|} \hline 8 \\ \dot{+} \\ \dot{d} \\ 0 \\ 0 \\ \dot{C} \\ \dot{B} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{0} \\ \dot{0} \\ 0 \\ 0 \\ 0 \\ \dot{0} \\ \hline \end{array}$	$\begin{array}{\|c\|} \hline 0 \\ \dot{0} \\ \dot{0} \\ \dot{0} \\ \vdots \\ \vdots \\ \dot{o} \\ \hline \end{array}$			－			cor	O	$\begin{array}{\|l\|} \hline 0 \\ \stackrel{0}{\dot{0}} \\ 0 \\ 0 \\ 0 \\ \stackrel{i}{m} \\ \hline \end{array}$			－		O－1	－

When dedicated Fuji motor for vector control is selected by motor selection （Function code P99／A39／b39／r39＝2）

－200V series

	¢	$\stackrel{0}{0}$						$\stackrel{\bigcirc}{\circ}$	$\stackrel{\infty}{\circ}$	$\stackrel{+}{-}$	$\stackrel{\sim}{\square}$	$\stackrel{m}{\stackrel{-}{+}}$		$\stackrel{\circ}{\circ}$		$\stackrel{\sim}{\mathrm{i}}$			$\stackrel{\odot}{\circ}$	$\stackrel{\infty}{\text { i }}$	$\stackrel{\sim}{\mathrm{N}}$
		No	ત্তু	N్ర్రీ	N	$\begin{aligned} & \text { ざ } \\ & \stackrel{\circ}{\circ} \end{aligned}$	芯	$\begin{aligned} & 0.0 \\ & \text { O. } \\ & \hline \end{aligned}$	急	染	$\begin{aligned} & \text { N } \\ & \text { O- } \\ & \hline \end{aligned}$		$\begin{aligned} & \hat{\circ} \\ & \hline 0 . \end{aligned}$	$\stackrel{N}{\circ}$		$\stackrel{\pi}{\div}$	N̈	$\stackrel{\infty}{\stackrel{+}{0}}$	N Nָ	$\stackrel{\infty}{\stackrel{\infty}{\mathrm{N}}}$	$\underset{\substack{\text { N } \\ 0}}{\substack{\text { ¢ }}}$
						$\stackrel{\text { ® }}{ }$	®	ォ	$\stackrel{\infty}{\sim}$	®	※	¢	\＆	¢	ゅ	∞	®	¢	б	8	8
		Nị	$\underset{O}{\mathbf{m}}$	$\stackrel{\infty}{\circ}$	$\stackrel{\stackrel{\circ}{\mathrm{p}}}{\stackrel{y}{2}}$	$\underset{\sim}{\sim}$	$\stackrel{\infty}{\infty}$	$\underset{\sim}{\circ}$	$\begin{aligned} & \stackrel{8}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{N}{\underset{\sim}{\sim}}$	$\begin{aligned} & \circ \\ & \hline \end{aligned}$	$\begin{aligned} & \text { ơ } \\ & \text { of } \end{aligned}$	$\begin{aligned} & \circ \\ & \\ & \hline \end{aligned}$	$\stackrel{\infty}{\infty}$	$\underset{\infty}{\substack{\infty \\ \underset{\infty}{2}}}$	$\stackrel{-}{\infty}$	$\begin{aligned} & \text { N } \\ & \text { ल్ల } \end{aligned}$	$\begin{aligned} & \hat{O} \\ & \dot{\theta} \end{aligned}$	$\stackrel{\varrho}{\grave{\circ}}$	$\stackrel{\bullet}{\stackrel{\circ}{\sim}}$	$\stackrel{\sim}{\text { ¢ }}$
		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mp} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} \infty \\ \underset{\sim}{\dot{G}} \end{gathered}$	$\begin{aligned} & \text { N. } \\ & \text { ल్ల } \end{aligned}$	$\begin{aligned} & \text { N. } \\ & \text { ल్ల } \end{aligned}$	$\begin{aligned} & 0 . \\ & \text { 울 } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\oplus}{\oplus} \end{aligned}$	$\underset{\stackrel{\rightharpoonup}{6}}{\stackrel{\rightharpoonup}{\circ}}$	$\begin{aligned} & \ddagger \\ & \stackrel{\ominus}{\gtrless} \end{aligned}$	$\stackrel{\varrho}{\underset{\sim}{\Sigma}}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\stackrel{\circ}{\dot{m}}}{\stackrel{\rightharpoonup}{r}}$	$\begin{aligned} & \text { No } \\ & \text { O} \end{aligned}$	$\begin{aligned} & \stackrel{\oplus}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$	$$		$\begin{aligned} & \text { y } \\ & \text { ¢ } \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\omega} \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\circ}{\stackrel{\sim}{\sim}}{ }_{\sim}^{+}}{ }$
		$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\stackrel{\underset{\infty}{\infty}}{\stackrel{\infty}{\tau}}$	$\stackrel{m}{\sim}$	$\begin{aligned} & \stackrel{\circ}{\dot{\sim}} \\ & \stackrel{y}{\circ} \end{aligned}$	$\underset{\underset{\sim}{N}}{\underset{\sim}{\top}}$	$\underset{\underset{\sim}{N}}{\underset{\sim}{2}}$	$\underset{\stackrel{\rightharpoonup}{\dot{m}}}{\stackrel{-}{2}}$	$\begin{aligned} & \text { O. } \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$	$\underset{\sim}{\text { Ni }}$	$\underset{\underset{\sigma}{\prime}}{\hat{\sigma}}$	$\stackrel{\varrho}{\stackrel{\mathrm{N}}{2}}$	$\begin{array}{\|l\|l\|} \hline \text { 内N } \\ \text { N } \end{array}$	$\underset{\underset{N}{\underset{N}{N}} \underset{\sim}{2}}{ }$	$\begin{aligned} & \text { N゙ } \\ & \text { ¢ } \end{aligned}$	$\begin{aligned} & \hat{\circ} \\ & \underset{\sigma}{\circ} \end{aligned}$	$\begin{gathered} \stackrel{m}{\dot{j}} \\ \hline \end{gathered}$	$\begin{aligned} & \text { N} \\ & \text { N్ల } \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\mathrm{N}} \end{aligned}$	$\underset{\underset{N}{N}}{\stackrel{\text { N}}{2}}$	$\stackrel{\text { N}}{\stackrel{\rightharpoonup}{\mathrm{N}}}$
		$\begin{aligned} & \text { m } \\ & \text { Ó } \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \sim \end{aligned}$	$\stackrel{0}{\dot{F}}$	$\begin{gathered} \underset{\mathrm{N}}{+} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \hline- \end{aligned}$	$\stackrel{\text { N゙ }}{\stackrel{\text { N}}{2}}$	$\stackrel{\Gamma}{\stackrel{m}{c}}$	$\begin{array}{\|l\|l} \stackrel{\circ}{\dot{~}} \end{array}$	$\begin{aligned} & \stackrel{\ominus}{\stackrel{ }{\rightleftharpoons}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\rho}{5}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{i} \end{aligned}$	$\begin{aligned} & \text { ㅇ․ } \\ & \stackrel{\rightharpoonup}{ } \end{aligned}$	$\stackrel{\text { N }}{\underset{\sim}{\Sigma}}$	$\begin{aligned} & \text { @ } \\ & \stackrel{\circ}{\Gamma} \end{aligned}$	$\begin{array}{r} \underset{\sim}{\mathrm{N}} \end{array}$	$\stackrel{\underset{N}{\mathrm{~N}}}{ }$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\dot{\circ}} \end{aligned}$	$\stackrel{\Gamma}{\circ}$	$\stackrel{\infty}{\stackrel{\circ}{+}}$
	$\begin{aligned} & \text { 荷第 } \\ & \text { ì } \end{aligned}$	웅	\hat{i}	$\underset{\sim}{\text { M }}$	$\begin{gathered} \infty \\ \underset{\sim}{\dot{q}} \end{gathered}$	$\stackrel{\ominus}{\stackrel{\circ}{+}}$	$\stackrel{\circ}{\stackrel{\circ}{*}}$	$\underset{\mathrm{m}}{\text { N }}$	O.	$\stackrel{\circ}{\dot{q}}$	$\underset{\text { I }}{\text { J }}$	亗	$\stackrel{\dot{J}}{\circ}$	$\underset{寸}{J}$	$\stackrel{\ominus}{\mathscr{F}}$	$\stackrel{\infty}{\infty}$	ஹ்	$\underset{\sim}{\text { + }}$	$\stackrel{\bullet}{6}$	$$	¢
		$\begin{aligned} & \text { ® } \\ & \text { Un } \end{aligned}$	$\stackrel{\varrho}{\mathscr{C}}$	$\begin{aligned} & \text { 毋ீ } \\ & \dot{心} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\circ}{\circ} \end{aligned}$	0	웅	$\stackrel{\ominus}{\underset{\sim}{f}}$	广্ড		$\stackrel{\underset{\sim}{q}}{ }$	$\begin{aligned} & 0 \\ & i \end{aligned}$	$\underset{\sim}{n}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\dot{\infty}$	$\begin{aligned} & \text { R } \\ & 0 \\ & 0 \end{aligned}$	No	\overbrace{i}^{∞}	$\underset{\text { in }}{\text { ti }}$	N
		이싱	$\underset{\sim}{\text { I }}$	$\stackrel{9}{8}$	$\stackrel{\circ}{\circ}$	$\stackrel{\ominus}{\mathrm{i}}$	$\stackrel{\ominus}{\mathrm{i}}$	풍	$\begin{aligned} & 7 \\ & \hline 8 \end{aligned}$	0	$\stackrel{\infty}{ }$	$\stackrel{\ominus}{\overleftarrow{6}}$	$\underset{\hat{6}}{\underset{\sim}{n}}$	$\begin{aligned} & \text { חి } \\ & \text { O } \end{aligned}$	$\bar{\circ}$	مٌ	$\underset{\mathrm{O}}{\mathrm{O}}$	$\stackrel{\ominus}{\oplus}$	$\stackrel{\circ}{\stackrel{\circ}{\sim}}$	$\underset{\infty}{\dot{\infty}}$	$\stackrel{\circ}{2}$
		$\stackrel{\infty}{\infty}$	$\underset{\infty}{\overleftarrow{\infty}}$	$\stackrel{\varrho}{\infty}$	$\underset{\infty}{\infty}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\underset{\infty}{\infty}$	$\widehat{\sim}$	ז்	$\stackrel{\curvearrowleft}{\sim}$	$\stackrel{N}{\mathrm{e}}$	이N	$\hat{\infty}$	$\underset{\infty}{N}$	$\underset{\infty}{N}$	$\stackrel{0}{\dot{J}}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\bullet}{\infty}$	$\stackrel{\infty}{\infty}$	O.	¢
		$\begin{gathered} \infty \\ \underset{\sim}{j} \end{gathered}$	ल்	$\hat{\infty}$	$\widehat{\infty}$	০	ভ்	$\underset{\infty}{N}$	$\underset{\infty}{\ddagger}$	$\underset{\infty}{\infty}$	$\underset{\infty}{\infty}$	$\stackrel{\circ}{\dot{\infty}}$	$\widehat{\infty}$	$\hat{8}$	$\stackrel{\ulcorner }{\overleftarrow{\sigma}}$	$\underset{\infty}{\underset{\infty}{+}}$	$\underset{\sim}{4}$	N゙	$\stackrel{\varrho}{\dot{\sigma}}$	ষ்	$\stackrel{\square}{\bar{\sigma}}$
						$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	O	$\stackrel{\otimes}{\square}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\circ}{\mathrm{e}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{N}}}{\mathbf{N}}$	Ní	$\stackrel{\circ}{\square}$	B0	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	O	O	$\frac{n}{0}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\circ}{0}$	$\stackrel{\circ}{\circ}$
						$\stackrel{\circ}{\circ}$	$\stackrel{\oplus}{\infty}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{O}}}{\mathrm{~J}}$	$\stackrel{\varrho}{\mathrm{N}}$	مion	$\stackrel{\varrho}{\underset{\sim}{2}}$	$\stackrel{\infty}{\infty}$		OR	N	$\stackrel{0}{0}$	$\stackrel{\circ}{\mathrm{m}}$	$\stackrel{\circ}{0}$	$\stackrel{\infty}{\infty}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{ }$	8
		$\begin{aligned} & \stackrel{\circ}{\dot{j}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{j}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{i}} \\ & \end{aligned}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{\mathrm{M}}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\circ}{\mathrm{j}}$	$\underset{\sim}{N}$	$\stackrel{0}{\sim}$	O.	$\stackrel{0}{0}$	$\stackrel{\mathrm{O}}{\mathrm{o}}$	$\stackrel{\sim}{\mathrm{N}}$	$\stackrel{\otimes}{\stackrel{\circ}{\square}}$	$\stackrel{\otimes}{-}$	$\stackrel{\circ}{\mathrm{j}}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{8}{\circ}$
$\begin{aligned} & \frac{.0}{\stackrel{0}{\tilde{x}}} \\ & \stackrel{\circ}{\bar{c}} \end{aligned}$		$\underset{~}{~}$	$\stackrel{\text { N }}{\stackrel{1}{+}}$	$\stackrel{\sim}{N}$	$\underset{\sim}{\underset{\sim}{i}}$	$\stackrel{\sim}{\Gamma}$	$\stackrel{\text { ti }}{\stackrel{\rightharpoonup}{+}}$	$\underset{\sim}{\sim}$	$\stackrel{8}{\mathrm{~N}}$	$\stackrel{\text { 子寸 }}{\underset{\sim}{2}}$	$\underset{~}{~}$	®ọ.	$\stackrel{\rightharpoonup}{\underset{+}{+}}$	$\stackrel{0}{\circ}$	$\bar{\circ}$	$\stackrel{\bar{\circ}}{\circ}$	0	に.	$\stackrel{N}{\circ}$	$\stackrel{\text { + }}{\substack{0}}$	$\stackrel{\bigcirc}{\circ}$
						$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \hat{\circ} \\ & \stackrel{\circ}{\tau} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\sigma} \end{aligned}$	$\stackrel{\circ}{8}$	$\begin{aligned} & \stackrel{\circ}{⿺} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\underset{\infty}{\star}$	응	$\hat{8}$	$\underset{\underset{\sim}{\overleftarrow{J}}}{\dot{F}}$	$\begin{aligned} & \dot{9} \\ & \dot{\circ} \end{aligned}$	$\stackrel{\infty}{0}$	표	$\stackrel{\infty}{\infty}$	$\begin{aligned} & \text { N } \\ & \text { O} \end{aligned}$	$\stackrel{\oplus}{\square}$
증 ¢	$\begin{aligned} & \underset{\sim}{N} \\ & \text { N N } \\ & \text { 웅 } \end{aligned}$	$\stackrel{N}{\stackrel{N}{\rightleftharpoons}}$	$\begin{aligned} & \stackrel{\rightharpoonup}{\dot{N}} \\ & \end{aligned}$	$\begin{aligned} & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{+} \\ & \stackrel{\oplus}{c} \end{aligned}$	$\stackrel{\rightharpoonup}{\circ}$	$\stackrel{\varrho}{\stackrel{\circ}{\dot{J}}}$	$\begin{aligned} & \text { 囚 } \\ & \stackrel{\sim}{\mathrm{j}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{+}} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\underset{\sim}{G}}{\stackrel{G}{c}}$	$\begin{aligned} & \text { 毋 } \\ & \underset{\sim}{N} \end{aligned}$	$\begin{aligned} & \text { ষ } \\ & \underset{~}{+} \end{aligned}$	$\begin{aligned} & \stackrel{N}{N} \\ & \underset{N}{2} \end{aligned}$	$\begin{aligned} & \oplus \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{F}}$	$\stackrel{M}{\stackrel{N}{\mathrm{~N}}}$	$\begin{aligned} & \stackrel{8}{\dot{~}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \text { Ni } \\ & \end{aligned}$	$\begin{aligned} & \stackrel{0}{\mathrm{~N}} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{9}{\mathrm{~N}} \\ & \stackrel{\sim}{2} \end{aligned}$	$\stackrel{N}{\stackrel{\sim}{\sim}}$
둥		$\stackrel{\underset{\sim}{9}}{\underset{\sim}{2}}$	$\begin{aligned} & \AA \\ & \stackrel{\mathrm{N}}{2} \end{aligned}$	$\begin{aligned} & \text { 囚 } \\ & \stackrel{\text { N }}{2} \end{aligned}$	$\begin{aligned} & \text { ®̀ } \\ & \text { 아 } \end{aligned}$	$\underset{寸}{\underset{\sim}{\mathrm{O}}}$	$\stackrel{\circ}{\circ}$	$\underset{\infty}{N}$	$\begin{aligned} & \infty \\ & \oplus \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & 0 \end{aligned}$	$\stackrel{\ominus}{\bullet}$	$\stackrel{\stackrel{O}{\mathrm{O}}}{\substack{2}}$	$\underset{寸}{\underset{寸}{\prime}}$	$\underset{\sim}{N}$	$\stackrel{0}{0}$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\mathrm{N}}$	$\underset{\sim}{N}$	$\stackrel{\infty}{\stackrel{\circ}{\mathrm{N}}}$	$\stackrel{̣}{\stackrel{1}{2}}$	$\stackrel{\sim}{\sim}$
		$\stackrel{\ddots}{\circ}$	R	$\stackrel{\circ}{\square}$	$\stackrel{\ominus}{-}$	$\overline{ल j}$	$\underset{\sim}{\mathrm{N}}$	$\underset{\sim}{\infty}$	$\underset{\infty}{\underset{\infty}{F}}$	$\begin{aligned} & \text { ® } \\ & \stackrel{\text { i }}{ } \end{aligned}$	$\begin{aligned} & \underset{N}{\text { N}} \\ & \stackrel{\oplus}{\dot{\rho}} \end{aligned}$	$\stackrel{\text { ® }}{\underset{\sim}{d}}$	$\begin{array}{\|l\|} \stackrel{8}{\dot{\sim}} \\ \stackrel{\rightharpoonup}{2} \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{O}} \end{aligned}$	$\underset{\underset{\sim}{\dot{j}}}{\stackrel{N}{\prime}}$	$\underset{\sim}{\tilde{\sim}}$	$\begin{aligned} & 0 \\ & \hline 0 \\ & 0 \\ & \hline 0 \end{aligned}$	$\underset{i}{\hat{\circ}}$	$\begin{aligned} & \underset{\oplus}{\mathrm{O}} \\ & \hline \end{aligned}$	$\begin{aligned} & \dot{\mathbf{N}} \\ & \text { बু } \end{aligned}$	$\stackrel{\stackrel{M}{\infty}}{\stackrel{\infty}{\infty}}$
		$\underset{\Delta}{\mathcal{G}}$	$\stackrel{\infty}{\circ}$	$\stackrel{\mathrm{p}}{\mathrm{p}}$	$\stackrel{\stackrel{0}{\mathrm{~N}}}{ }$	$\stackrel{\mathrm{O}}{\underset{\sim}{x}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\stackrel{\circ}{F}}{\dot{F}}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \stackrel{\infty}{\circ} \end{aligned}$	O-்	$\stackrel{0}{\mathrm{~m}}$	$\begin{aligned} & 0 \\ & i \end{aligned}$	$\stackrel{0}{0}$	$\stackrel{\circ}{\mathrm{J}^{\prime}}$	웅	$\begin{aligned} & 0 \\ & \stackrel{\circ}{i} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{g}} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{i} \\ & \stackrel{\dot{N}}{2} \end{aligned}$	$\begin{aligned} & \stackrel{0}{\dot{0}} \\ & \stackrel{N}{n} \end{aligned}$	－
	®	$\stackrel{\circ}{\text { N }}$	－	$\stackrel{\text { i }}{ }$	－	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square}$	$\stackrel{\infty}{\square}$	$\stackrel{\text { ® }}{\sim}$	$\stackrel{\infty}{\sim}$	$\stackrel{\infty}{\sim}$
		$\stackrel{\circ}{\circ}$	¢	ก	$\stackrel{\square}{0}$	$\underset{\substack{\mathrm{N} \\ \hline}}{ }$	$\stackrel{\sim}{\square}$	N	$\stackrel{\sim}{\mathrm{m}}$	$\stackrel{\sim}{\circ}$	$\stackrel{\sim}{\sim}$	F	$\stackrel{\sim}{\square}$	$\begin{aligned} & \text { @ } \\ & \infty \end{aligned}$	N	－	ले	$\stackrel{\square}{8}$	号	$\stackrel{\llcorner }{\sim}$	8
		$\begin{aligned} & \circ \\ & 0 . \\ & 0 \\ & \stackrel{0}{0} \\ & \hline 0 . \end{aligned}$	$\begin{aligned} & \stackrel{0}{0} \\ & 0 \\ & 0 \\ & \vdots \\ & \hline 0 \end{aligned}$	$\begin{aligned} & \text { ò } \\ & 0 \\ & 0 \\ & \stackrel{0}{0} \\ & 0 . \end{aligned}$	$\begin{aligned} & t \\ & \vdots \\ & 0 \\ & 0 \\ & \vdots \\ & \vdots \\ & 0 \end{aligned}$	$\begin{aligned} & \stackrel{?}{\dot{G}} \\ & \stackrel{0}{\circ} \\ & \stackrel{N}{i} \\ & \dot{i} \end{aligned}$	$\begin{aligned} & \stackrel{0}{N} \\ & \stackrel{1}{2} \\ & \stackrel{0}{0} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{8}{0} \\ & \dot{\sim} \\ & \stackrel{\rightharpoonup}{0} \\ & \stackrel{\sim}{1} \end{aligned}$	$\begin{aligned} & \stackrel{9}{G} \\ & 6 \\ & 0 \\ & 0 \\ & \stackrel{\rightharpoonup}{\circ} \\ & j \end{aligned}$	$$		$\begin{aligned} & \stackrel{\circ}{\dot{+}} \\ & \stackrel{+}{\circ} \\ & \stackrel{\circ}{\dot{~}} \end{aligned}$								$\begin{aligned} & \dot{\circ} \\ & \dot{\infty} \\ & \dot{\infty} \\ & \stackrel{\rightharpoonup}{\circ} \\ & \stackrel{\circ}{\circ} \\ & \dot{j} \\ & \hline \end{aligned}$	

- 400V series

\begin{tabular}{|c|}
\hline \begin{tabular}{|c|}
\hline \begin{tabular}{c}
Motor rated \\
capacity \\
setting range \\
(kW)
\end{tabular} \\
P02/A16 \\
b16/r16 \\
\hline
\end{tabular} \& \& \begin{tabular}{l}
Base Frequency voltage \\
F05
\end{tabular} \& \(\begin{gathered}\text { Rated } \\ \text { current } \\ \text { (A) }\end{gathered}\)

P03/A17

b17/r17 \& \begin{tabular}{l}
No-load Current (A)

P06/A20 b20/r20

 \&

\hline$\% R 1$

$(\%)$

P07/A21

b21/r21

 \&

\hline$\% X$

$(\%)$

\hline P08/A22

b22/r22

 \&

\hline Slip

compensation

gain (for

braking)

 \&

\hline | Rated |
| :---: |
| slip |

P12/A26

b26/r26

 \&

\hline | Iron loss |
| :--- |
| factor 1 |
| |
| |
| P13/A27 |
| b27/r27 |

\hline

 \&

Iron loss factor 2

P14/A28 b28/r28

 \&

Iron loss factor 3

P15/A29 b29/r29
\end{tabular} \& Magnetic

saturation
factor 1
P16/A30

b30/r30 \& \begin{tabular}{|c|}

Magnetic
saturation
factor 2

P17/A31

b31/r31

 \&

Magnetic
saturation
factor 3

P18/A32

b32/r32
\end{tabular} \& Magnetic

saturation
factor 4
P19/A33

b 33/r33 \& \begin{tabular}{l}
Magnetic saturation factor 5

P20/A34 b34/r34

 \&

Magnetic

saturation

expansion

coefficient

a

a

P21/A35

b35/r35

\hline

 \&

Magnetic

saturation

expansion

coefficient

b

b22/A36

b36/r36

\hline

 \&

Magnetic

saturation

expansion

coefficient

c

c

P23/A37

b37/r37

\hline

 \&

\hline Torque

current for

vector

control

P55/A55

b55/r55

\hline

 \&

\hline Induced

voltage

factor for

vector

control

P56/A56

b56/r56

\hline

 \&

For adjustment by manufacturer

P57/A57 b57/r57

 \&

Starting characteristic (Auto search delay time 2)

H46
\end{tabular}

\hline 0.01 to 0.09 \& 0.06 \& 40G \& 0.22 \& 0.20 \& 13.79 \& 11.75 \& \multirow[t]{7}{*}{100.0} \& 1.77 \& 14.00 \& 0.00 \& 0.00 \& 93.8 \& 87.5 \& 75.0 \& 62.5 \& 50.0 \& 106.3 \& 112.5 \& 118.8 \& 0.10 \& \multirow[t]{7}{*}{85} \& 0.027 \& \multirow[t]{6}{*}{0.5}

\hline 0.10 to 0.19 \& 0.1 \& 40G \& 0.35 \& 0.27 \& 12.96 \& 12.67 \& \& 1.77 \& 14.00 \& 0.00 \& 0.00 \& 93.3 \& 86.1 \& 74.4 \& 63.6 \& 50.7 \& 108.8 \& 118.7 \& 129.6 \& 0.17 \& \& 0.024 \&

\hline 0.20 to 0.39 \& 0.2 \& 40G \& 0.65 \& 0.53 \& 12.95 \& 12.92 \& \& 2.33 \& 12.60 \& 0.00 \& 0.00 \& 89.7 \& 81.9 \& 66.9 \& 54.5 \& 43.3 \& 111.0 \& 129.3 \& 148.4 \& 0.34 \& \& 0.023 \&

\hline 0.40 to 0.74 \& 0.4 \& 40G \& 1.15 \& 0.83 \& 10.20 \& 13.66 \& \& 2.40 \& 9.88 \& 0.00 \& 0.00 \& 88.7 \& 81.3 \& 67.0 \& 55.2 \& 43.8 \& 112.1 \& 126.5 \& 144.3 \& 0.68 \& \& 0.027 \&

\hline 0.75 to 1.49 \& 0.75 \& 40G \& 1.80 \& 1.15 \& 8.67 \& 10.76 \& \& 2.33 \& 7.40 \& 0.00 \& 0.00 \& 88.3 \& 77.7 \& 62.6 \& 51.8 \& 41.1 \& 112.4 \& 129.2 \& 148.4 \& 1.27 \& \& 0.033 \&

\hline 1.50 to 2.19 \& 1.5 \& 40G \& 3.10 \& 1.51 \& 6.55 \& 11.21 \& \& 2.00 \& 5.85 \& 0.00 \& 0.00 \& 92.1 \& 82.8 \& 71.1 \& 58.1 \& 46.2 \& 111.4 \& 126.1 \& 143.9 \& 2.55 \& \& 0.061 \&

\hline 2.20 to 3.69 \& 2.2 \& 40G \& 4.60 \& 2.43 \& 6.48 \& 10.97 \& \& 1.80 \& 5.91 \& 0.00 \& 0.00 \& 85.1 \& 74.6 \& 61.7 \& 50.3 \& 39.8 \& 115.7 \& 133.5 \& 150.6 \& 3.74 \& \& 0.051 \& 0.6

\hline 3.70 to 5.49 \& 3.7 \& 376 \& 9.00 \& 3.93 \& 6.86 \& 13.94 \& 93.2 \& 2.51 \& 2.35 \& 2.55 \& 1.20 \& 90.5 \& 82.4 \& 68.7 \& 57.0 \& 45.3 \& 113.1 \& 130.9 \& 158.0 \& 7.78 \& 78 \& 0.052 \& 0.8

\hline 5.50 to 7.49 \& 5.5 \& 376 \& 15.00 \& 7.15 \& 5.50 \& 12.78 \& 104.5 \& 1.31 \& 2.00 \& 5.00 \& 7.00 \& 88.0 \& 79.2 \& 65.6 \& 53.6 \& 42.2 \& 114.0 \& 132.0 \& 155.1 \& 10.74 \& 80 \& 0.039 \& 1.0

\hline 7.50 to 10.99 \& 7.5 \& 376 \& 18.50 \& 7.81 \& 4.37 \& 13.72 \& 115.1 \& 1.47 \& 7.61 \& 2.00 \& 1.00 \& 85.9 \& 76.9 \& 63.4 \& 51.6 \& 40.5 \& 117.6 \& 140.7 \& 176.4 \& 15.33 \& 82 \& 0.032 \& 1.2

\hline 11.00 to 14.99 \& 11 \& 376 \& 25.00 \& 12.39 \& 4.27 \& 11.67 \& 83.4 \& 0.99 \& 4.53 \& 1.88 \& 0.22 \& 84.9 \& 75.0 \& 61.6 \& 50.0 \& 39.4 \& 115.0 \& 137.9 \& 171.9 \& 20.15 \& 93 \& 0.044 \& 1.3

\hline 15.00 to 18.49 \& 15 \& 376 \& 31.70 \& 14.47 \& 4.48 \& 13.69 \& 98.4 \& 1.29 \& 1.00 \& 0.50 \& 1.00 \& 88.7 \& 81.7 \& 67.2 \& 55.2 \& 44.0 \& 110.4 \& 125.0 \& 142.7 \& 28.63 \& 81 \& 0.067 \& \multirow[t]{3}{*}{2.0}

\hline 18.50 to 21.99 \& 18.5 \& 376 \& 37.00 \& 14.02 \& 2.66 \& 12.45 \& 100.0 \& 0.88 \& 1.00 \& 3.00 \& 3.00 \& 92.5 \& 84.3 \& 70.3 \& 57.1 \& 45.1 \& 110.0 \& 121.4 \& 139.6 \& 36.06 \& 85 \& 0.148 \&

\hline 22.00 to 29.99 \& 22 \& 376 \& 45.00 \& 16.81 \& 3.61 \& 14.06 \& 98.7 \& 0.90 \& 1.50 \& 1.50 \& 3.00 \& 91.1 \& 83.2 \& 69.1 \& 56.5 \& 44.6 \& 114.2 \& 134.2 \& 159.7 \& 41.72 \& 85 \& 0.194 \&

\hline 30.00 to 36.99 \& 30 \& 376 \& 58.00 \& 25.74 \& 2.55 \& 12.16 \& 97.3 \& 0.67 \& 2.50 \& 3.50 \& 9.50 \& 84.4 \& 74.0 \& 59.5 \& 48.9 \& 38.0 \& 119.5 \& 146.7 \& 183.4 \& 52.52 \& 88 \& 0.193 \& 2.3

\hline 37.00 to 44.99 \& 37 \& 376 \& 71.00 \& 30.07 \& 2.49 \& 14.11 \& 100.2 \& 0.50 \& 1.79 \& 1.80 \& 5.00 \& 85.4 \& 75.7 \& 62.3 \& 50.5 \& 39.9 \& 120.1 \& 147.3 \& 186.4 \& 65.54 \& 89 \& 0.092 \& 2.5

\hline 45.00 to 54.99 \& 45 \& 376 \& 85.00 \& 28.36 \& 2.73 \& 15.30 \& 98.9 \& 0.95 \& 0.50 \& 1.50 \& 1.85 \& 89.2 \& 81.6 \& 67.6 \& 56.2 \& 43.4 \& 112.7 \& 133.2 \& 163.3 \& 84.85 \& 87 \& 0.148 \&

\hline 55.00 to 74.99 \& 55 \& 376 \& 108.0 \& 33.11 \& 2.05 \& 12.20 \& 95.8 \& 0.62 \& 3.00 \& 0.83 \& 0.21 \& 91.5 \& 83.8 \& 70.6 \& 57.8 \& 45.6 \& 109.8 \& 122.8 \& 146.2 \& 98.98 \& 89 \& 0.266 \& 2.6

\hline 75.00 to 89.99 \& 75 \& 365 \& 138.0 \& 49.67 \& 1.71 \& 15.39 \& 104.2 \& 0.64 \& 2.00 \& 2.00 \& 0.00 \& 90.4 \& 83.0 \& 68.4 \& 57.4 \& 46.4 \& 110.1 \& 121.4 \& 135.8 \& 130.8 \& 90 \& 0.314 \& 2.8

\hline 90.00 to 109.9 \& 90 \& 370 \& 173.0 \& 44.37 \& 2.23 \& 18.47 \& 94.5 \& 0.69 \& 0.00 \& 2.00 \& 0.00 \& 90.7 \& 83.7 \& 69.0 \& 57.1 \& 44.9 \& 109.8 \& 121.7 \& 137.6 \& 164.1 \& 94 \& 0.311 \& 3.2

\hline 110.0 to 131.9 \& 110 \& 375 \& 206.0 \& 53.03 \& 2.14 \& 16.83 \& 108.8 \& 0.56 \& 0.44 \& 0.00 \& 0.00 \& 90.1 \& 82.6 \& 67.7 \& 56.3 \& 44.2 \& 109.0 \& 119.9 \& 133.1 \& 195.8 \& 93 \& 0.412 \& 3.5

\hline 132.0 to 159.9 \& 132 \& 375 \& 248.0 \& 62.05 \& 1.56 \& 17.21 \& 110.4 \& 0.48 \& 0.00 \& 0.39 \& 0.00 \& 90.1 \& 81.2 \& 67.7 \& 56.2 \& 45.9 \& 112.5 \& 125.6 \& 148.2 \& 237.3 \& 90 \& 0.438 \& 4.1

\hline 160.0 to 199.9 \& 160 \& 375 \& 297.0 \& 70.71 \& 1.15 \& 17.47 \& 100.0 \& 0.52 \& 0.00 \& 0.00 \& 0.00 \& 91.0 \& 84.3 \& 71.8 \& 59.1 \& 47.7 \& 108.4 \& 120.6 \& 136.5 \& 286.3 \& 88 \& 0.474 \& 4.5

\hline 200.0 to 219.9 \& 200 \& 369 \& 369.0 \& 107.7 \& 1.15 \& 14.98 \& 93.8 \& 0.47 \& 0.00 \& 2.50 \& 0.00 \& 93.8 \& 87.6 \& 74.8 \& 60.6 \& 48.2 \& 108.3 \& 117.9 \& 131.2 \& 341.5 \& 93 \& 0.447 \& \multirow[t]{2}{*}{4.7}

\hline 220.0 to 244.9 \& 220 \& 370 \& \multirow[t]{8}{*}{409.0} \& \multirow[t]{8}{*}{98.64} \& \multirow[t]{8}{*}{1.63} \& \multirow[t]{8}{*}{14.54} \& \multirow[t]{8}{*}{102.5} \& \multirow[t]{8}{*}{0.45} \& \multirow[t]{8}{*}{1.00} \& \multirow[t]{8}{*}{1.00} \& \multirow[t]{8}{*}{0.00} \& \multirow[t]{8}{*}{95.1} \& \multirow[t]{8}{*}{88.5} \& \multirow[t]{8}{*}{75.0} \& \multirow[t]{8}{*}{63.1} \& \multirow[t]{8}{*}{51.3} \& \multirow[t]{8}{*}{108.3} \& \multirow[t]{8}{*}{118.8} \& \multirow[t]{8}{*}{130.5} \& \multirow[t]{8}{*}{385.3} \& \multirow[t]{8}{*}{98} \& \multirow[t]{8}{*}{0.468} \&

\hline 250.0 to 279.9 \& 250 \& \multirow[t]{7}{*}{400} \& 5.0

\hline 280.0 to 314.9 \& 280 \& 5.5

\hline 315.0 to 354.9 \& 315 \& 5.6

\hline 355.0 to 399.0 \& 355 \&

\hline 400.0 to 449.0 \& 400 \& 7.5

\hline 450.0 to 529.9 \& 450 \&

\hline 530.0 to \& 530 \& 9.8

\hline
\end{tabular}

When HP rating motor is selected by motor selection（Function code P99／A39／b39／r39＝1）
－ 200 V series

	$\stackrel{\circ}{\text { ¹ }}$	\bigcirc						$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\circ}$	$\stackrel{+}{+}$	$\stackrel{\text { ヘ }}{\stackrel{-}{+}}$	$\stackrel{m}{\square}$		$\stackrel{\circ}{\circ}$		$\stackrel{\sim}{\mathrm{N}}$			$\stackrel{\oplus}{\stackrel{\circ}{*}}$	$\stackrel{\sim}{\sim}$	ल゙	$\stackrel{\sim}{0}$
		No	N	$\stackrel{\rightharpoonup}{\Delta}$	$\stackrel{\circ}{\stackrel{\circ}{0}}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \text { O- } \end{aligned}$	$\stackrel{N}{\underset{\sim}{\sim}}$	$\begin{aligned} & \stackrel{\pi}{6} \\ & \stackrel{0}{i} \end{aligned}$	$\underset{\substack{\text { No } \\ \hline}}{ }$		$\begin{aligned} & \text { Oin } \\ & \text { Nin } \end{aligned}$	$\begin{gathered} \text { No } \\ \text { Oi } \end{gathered}$		$\stackrel{0}{0}$	$\stackrel{\text { O}}{\dot{O}}$	$\stackrel{\varrho}{7}$	$\underset{\substack{\hat{\rho} \\ 0}}{ }$	\because	$\begin{aligned} & \text { Q } \\ & \stackrel{\text { R}}{\circ} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \\ & \hline \dot{~} \end{aligned}$	$\stackrel{\Gamma}{\infty}$
												¢										
		Nָ	Ņ	R	$\stackrel{\circ}{+}$	$\underset{\sim}{N}$	$\stackrel{\Im}{寸}$	$\begin{aligned} & \text { + } \\ & \hline \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\dot{~}}}{\stackrel{\rightharpoonup}{+}}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\ominus}{\circ} \end{aligned}$	$\stackrel{n}{\text { N }}$	$\begin{gathered} \underset{\sim}{N} \\ \hline \end{gathered}$	$\begin{aligned} & \text { O} \\ & \underset{寸}{\prime} \end{aligned}$	$\begin{aligned} & \hat{m} \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { \& } \\ & \stackrel{8}{8} \end{aligned}$	$\begin{aligned} & \circ \\ & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\hat{\circ}}{\stackrel{\circ}{+}}$		$\begin{aligned} & \bar{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\text { ® }}{\underset{\sim}{N}}$	$\stackrel{o}{\stackrel{0}{i}} \underset{\stackrel{y}{c}}{ }$	N
		$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{1}{\sim}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\dot{\sigma}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{\dot{q}} \end{gathered}$	$\begin{gathered} \dagger \\ \dot{\infty} \\ \underset{\sim}{\circ} \end{gathered}$	$\begin{aligned} & \dot{\oplus} \\ & \underset{\sim}{j} \end{aligned}$	$$	「্テ	$\begin{aligned} & \stackrel{\bullet}{\circ} \\ & \stackrel{\leftrightarrow}{\circ} \\ & \hline \end{aligned}$	$\begin{aligned} & \text { N } \\ & \underset{\sim}{j} \end{aligned}$	$\begin{aligned} & \AA \\ & \underset{J}{\prime} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\sim}{\mathrm{o}} \end{aligned}$	$\begin{gathered} \curvearrowleft \\ \stackrel{\circ}{\mathrm{J}} \end{gathered}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{i} \end{aligned}$	$\stackrel{\bigoplus}{\tilde{\sim}}$	$\begin{aligned} & \stackrel{(}{\tilde{F}} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\infty}{\dot{F}}$	$\stackrel{\infty}{\stackrel{\sim}{\sim}}$	$\begin{aligned} & \bullet \\ & \dot{G} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{\dot{j}} \\ & \underset{\sim}{2} \end{aligned}$	$\underset{\sim}{\underset{\sim}{\sim}}$
		$\stackrel{\sim}{\stackrel{N}{\mathrm{~N}}}$	$\begin{aligned} & \widehat{\infty} \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \stackrel{y}{2} \end{gathered}$	$\begin{aligned} & \text { N } \\ & \stackrel{\circ}{\mathrm{N}} \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \hline \end{aligned}$	$\begin{gathered} \underset{\sim}{\circ} \\ \end{gathered}$	$\begin{aligned} & \text { ח } \\ & \underset{\sim}{m} \end{aligned}$	$\begin{aligned} & \text { м } \\ & \stackrel{m}{c} \end{aligned}$	$\underset{\sim}{\text { ¢ }}$	$\begin{aligned} & \underset{\sim}{\infty} \\ & \underset{\sim}{n} \end{aligned}$	$\begin{aligned} & \text { Nö } \\ & \stackrel{\sim}{-} \end{aligned}$	$\stackrel{m}{N}$	$\stackrel{\varrho}{N}$	$\begin{aligned} & \text { N. } \\ & \text { ल్ర } \end{aligned}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \underset{\oplus}{\circ} \\ & \stackrel{\sim}{\circ} \end{aligned}$	$\begin{aligned} & \text { O. } \\ & \stackrel{\text { N}}{2} \end{aligned}$	$\stackrel{\stackrel{N}{\mathrm{~N}}}{\stackrel{\sim}{m}}$	$\begin{aligned} & \stackrel{\infty}{\underset{\sim}{~}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{\circ}} \\ & \stackrel{\text { N }}{ } \end{aligned}$	$\stackrel{\text { ¢ }}{\stackrel{\circ}{\mathrm{o}}}$
		$\begin{aligned} & \text { O. } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{\stackrel{O}{E}}{\underset{~}{\prime}}$	$\begin{gathered} \stackrel{\rightharpoonup}{\mathrm{N}} \end{gathered}$	$\begin{aligned} & \underset{\text { N }}{+} \end{aligned}$	$\stackrel{\text { J }}{\underset{~}{2}}$	$\stackrel{\stackrel{N}{\stackrel{\omega}{j}}}{\stackrel{2}{2}}$	$\begin{array}{\|l} \stackrel{\circ}{\stackrel{\circ}{~}} \\ \hline \end{array}$	$\stackrel{m}{\stackrel{~}{\dot{~}}}$	$\stackrel{\underset{F}{E}}{\stackrel{1}{E}}$	$\underset{\underset{F}{J}}{\underset{J}{\prime}}$	$\begin{aligned} & \text { ㅇ․ } \\ & \stackrel{\circ}{-} \end{aligned}$	$\stackrel{\grave{N}}{\stackrel{N}{\Sigma}}$	$\underset{\underset{\sim}{\dot{~}}}{\stackrel{-}{\prime}}$	$\stackrel{\infty}{\stackrel{+}{\dot{~}}}$	$\underset{\text { Ni }}{ }$	$\stackrel{\text { N }}{\stackrel{\text { N}}{+}}$	$\stackrel{\text { N }}{\underset{\sim}{\sim}}$	$\begin{aligned} & \stackrel{\varrho}{\dot{J}} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{j}} \\ & \stackrel{i}{2} \end{aligned}$	$\stackrel{\text { N }}{\stackrel{\text { N }}{+}}$
		Bi.	$\begin{aligned} & \hat{i} \end{aligned}$	$\begin{aligned} & \text { m } \\ & \dot{\gamma} \end{aligned}$	$\stackrel{\infty}{\substack{j}}$	$\underset{子}{\dot{J}}$	$$	$\underset{\sim}{\infty}$	্ㅣ	$\stackrel{\infty}{\mp}$	$\stackrel{\bullet}{\text { é }}$	$\stackrel{\underset{j}{2}}{2}$	ீ ீ	$\stackrel{\widehat{\infty}}{\substack{\alpha}}$	$\underset{\substack{+\infty}}{ }$	$\underset{\sim}{\infty}$	$\underset{\sim}{\dot{G}}$	$\underset{寸}{\dot{F}}$	$\overline{\underset{\sim}{\gamma}}$	$\stackrel{ণ}{\mathrm{j}}$	$\stackrel{O}{\dot{G}}$	$\stackrel{\infty}{\sim}$
		$$		$\begin{aligned} & \text { 毋 } \\ & \dot{心} \end{aligned}$	Niٌ	$\stackrel{\infty}{\dot{n}}$	$\bar{\infty}$	Mi	$\begin{aligned} & \text { ® } \\ & \dot{子} \end{aligned}$	\widehat{N}	$\bar{\circ}$	0	$\hat{8}$	ஆ்	$\underset{\sim}{\circ}$	Ñ	$\begin{gathered} \text { N } \\ \text { ² } \end{gathered}$	葆	$\begin{array}{\|c} \mathscr{\circ} \\ \hline \end{array}$	$\begin{gathered} \text { N゙ } \\ \text { Ȟ } \end{gathered}$	$\begin{aligned} & \circ \\ & \dot{心} \end{aligned}$	$\stackrel{\sim}{\infty}$
		م૦	$\underset{\sim}{\text { J }}$	$\stackrel{9}{8}$	$\stackrel{0}{\mathrm{e}}$	$\stackrel{\bullet}{\mathrm{i}}$	$\underset{\Gamma}{\stackrel{\rightharpoonup}{\Sigma}}$	$\stackrel{\stackrel{\rightharpoonup}{E}}{2}$	$\stackrel{m}{6}$	$\begin{aligned} & \circ \\ & \dot{G} \end{aligned}$	$\stackrel{\Gamma}{\hat{6}}$	இ்	$\overline{\mathrm{N}}$	\hat{i}	∞	$\widehat{\infty}$	$\underset{6}{4}$	$\stackrel{\infty}{\oplus(}$	$\widehat{\dot{G}}$	$\stackrel{\substack{\text { © } \\ \hline}}{ }$	Oig	$\stackrel{\text { 人 }}{\text { 人 }}$
		$\stackrel{\stackrel{\infty}{\infty}}{\stackrel{\circ}{0}}$	$\bar{\infty}$	$\frac{9}{\infty}$	$\stackrel{m}{\infty}$	$\stackrel{\lambda}{\mathrm{N}}$	$\underset{\infty}{\infty}$	$\stackrel{\ominus}{\underset{J}{\prime}}$	$\begin{aligned} & 9 \\ & \stackrel{0}{1} \end{aligned}$	$\underset{\sim}{N}$	O.	$\underset{\infty}{\infty}$	®	$\underset{\infty}{\infty}$	$\stackrel{m}{\infty}$	$\stackrel{\bullet}{\infty}$	\propto	\hat{X}	$\stackrel{\infty}{\dot{\beta}}$	\circ	$\stackrel{O}{\mathrm{~N}}$	$\stackrel{\sim}{\infty}$
		$\stackrel{\infty}{\infty}$	ભু	$\widehat{\infty}$	$\widehat{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	칙	$\bar{\infty}$	$\stackrel{\circ}{\infty}$	$\stackrel{\odot}{\infty}$	$\stackrel{\wedge}{\infty}$	$\stackrel{m}{幺}$	®o	$\hat{\circ}$	$\hat{\infty}$	No	$\stackrel{\sim}{\infty}$	O.	$\underset{\infty}{\text { Ni }}$	$\bar{\infty}$	$\begin{gathered} \infty \\ \infty \\ \infty \end{gathered}$	¢8
	$\begin{aligned} & \hat{y} \\ & \stackrel{y}{N} \\ & \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{+}} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{1}} \\ & \dot{7} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{i}} \\ & \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\circ}{4}$	$\stackrel{\infty}{\infty}$	市	$\underset{\substack{\text { Ni }}}{ }$	$\stackrel{n}{\underset{\sigma}{2}}$	$\stackrel{0}{\dot{\sigma}}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \underset{\sim}{\sim} \\ & \text { N } \end{aligned}$	$\underset{\sim}{\underset{\sim}{m}}$	$\stackrel{\sim}{M}$	$\stackrel{\circ}{\mathrm{m}}$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\stackrel{\infty}{\stackrel{N}{\mathrm{~N}}}$	$\underset{\sim}{\text { N }}$	$\stackrel{\sim}{\mathrm{N}}$	$\bar{\sim}$	$\stackrel{\sim}{\stackrel{\sim}{\sim}}$
$\begin{aligned} & \frac{\stackrel{\rightharpoonup}{0}}{\stackrel{0}{\tilde{c}}} \\ & \stackrel{\circ}{\bar{\omega}} \end{aligned}$		$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\circ}{\mathrm{O}}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\circ}{\mathrm{N}}$	$\underset{\underset{~}{~}}{7}$		$\underset{7}{\mathrm{~N}}$	$\underset{\underset{7}{7}}{ }$	$\stackrel{\circ}{+}$	$\stackrel{\otimes}{-}$	$\stackrel{\circ}{+}$	$\stackrel{\circ}{+}$	\hat{O}	مٌ	$\stackrel{\sim}{0}$	$\stackrel{\sim}{0}$	N్N	$\stackrel{\sim}{0}$	$\stackrel{\text { O．}}{\text { O．}}$
¢ ¢	$\begin{aligned} & \underset{N}{N} \\ & \underset{\infty}{\infty} \\ & \underset{\sim}{N} \end{aligned}$	$\stackrel{\stackrel{N}{\stackrel{N}{+}} \underset{\Gamma}{+}}{ }$	$\begin{aligned} & \stackrel{\stackrel{N}{\mathrm{~N}}}{ } \end{aligned}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{y}{+} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\underset{\star}{\star}$	$\begin{array}{\|c} \bar{\infty} \\ \stackrel{\sim}{\sim} \end{array}$	$\begin{aligned} & \text { No } \\ & \underset{\sim}{\sim} \end{aligned}$	$\underset{\sim}{\dot{\sim}}$	$\stackrel{\infty}{\stackrel{\infty}{\dot{p}}}$	$\stackrel{m}{\stackrel{\sim}{\sim}}$	$\stackrel{N}{\stackrel{N}{\sim}} \underset{\sim}{\dot{N}}$	$\frac{\stackrel{7}{2}}{\stackrel{\rightharpoonup}{m}}$	$\begin{aligned} & \text { R } \\ & \underset{\sim}{\mathrm{N}} \end{aligned}$	$\stackrel{N}{\sim}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\stackrel{\circ}{\dot{\sim}}}{\stackrel{\text { ® }}{2}}$	$\stackrel{\circ}{\mathrm{N}}$	$\begin{aligned} & \circ \\ & \underset{\sim}{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{8}{\dot{N}} \end{aligned}$	$\stackrel{\bar{⿺}}{\stackrel{-}{\sim}}$
등		$\begin{aligned} & \stackrel{g}{9} \\ & \stackrel{j}{2} \end{aligned}$	$\begin{aligned} & \stackrel{\otimes}{\mathrm{N}} \end{aligned}$		$\stackrel{\varrho}{6}$	$\stackrel{\varrho}{\circ}$	$\underset{\sim}{\stackrel{\rightharpoonup}{\sim}}$	$\stackrel{n}{m}$	$\stackrel{\stackrel{\sim}{\mathrm{N}}}{\mathbf{N}}$	$\stackrel{\stackrel{\Omega}{\mathrm{O}}}{\stackrel{1}{2}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\rightharpoonup}{\mathrm{N}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{O}}}{\mathbf{N}}$	$\stackrel{\text { N }}{\stackrel{n}{+}}$	$\stackrel{\text { ® }}{\stackrel{\circ}{-}}$	$\stackrel{\infty}{\stackrel{\infty}{+}}$	$\stackrel{\sim}{\underset{\sim}{\sim}}$	$\underset{~+~}{\text { º }}$	$\stackrel{\widehat{c}}{\stackrel{1}{2}}$	$\stackrel{\otimes}{+}$	$\stackrel{\text { ® }}{+}$	$\stackrel{\circ}{\circ}$
		名	$\stackrel{\sim}{n}$	$\underset{\underset{\sim}{N}}{ }$	$\underset{\sim}{\sim}$	范	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{N}{\mathrm{~N}}$	$\stackrel{\infty}{\sim}$	$\stackrel{\cong}{c}$	$\underset{\infty}{\infty}$	$\stackrel{\wedge}{N}$	N్ఞ	$\begin{aligned} & \ell \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \propto \\ & \stackrel{\infty}{\circ} \\ & \stackrel{1}{2} \end{aligned}$	$\stackrel{\stackrel{\circ}{+}}{\stackrel{+}{+}}$	$\begin{aligned} & \stackrel{\circ}{\infty} \\ & \propto \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\sim} \end{aligned}$	$\stackrel{\circ}{\infty}$	$\stackrel{\stackrel{y}{\mathrm{q}}}{\underset{\sim}{c}}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\mathrm{N}} \end{aligned}$	¢
		$\stackrel{J}{J}$	$\stackrel{\infty}{\circ}$	$\stackrel{\overbrace{}}{7}$	$\stackrel{\circ}{\mathrm{i}}$	$\stackrel{\circ}{\mathrm{M}}$	$\stackrel{\infty}{\circ}$	$\stackrel{8}{\mathrm{Q}}$	$\stackrel{\circ}{\underset{\sim}{\mathrm{N}}}$	$\stackrel{\varrho}{\propto}$	Nి	$\stackrel{m}{ल}$	$\overline{\dot{\sigma}}$	O웅	$\underset{\text { N }}{\substack{2}}$	$\begin{aligned} & \circ \\ & \dot{\sigma} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{\rho}{7}} \\ & \end{aligned}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\stackrel{1}{2}}$	$\begin{aligned} & \circ \\ & \stackrel{\text { j }}{\Sigma} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{N}} \\ & \text {. } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\infty}{\infty} \\ & \underset{\sim}{2} \end{aligned}$	$\stackrel{\text { 응 }}{\text { ¢ }}$
		$\bar{\sigma}$	$\underset{\sim}{\mathrm{N}}$	Nị	$\stackrel{0}{0}$	－	～	m	\sim	$\stackrel{\varrho}{\sim}$		$\stackrel{\square}{\square}$	$\stackrel{\sim}{1}$	ฝ	¢	\％	is	8	$\stackrel{1}{\sim}$	음	$\stackrel{\text { N゙ }}{ }$	$\stackrel{\circ}{\square}$
	눈 능	$\begin{aligned} & \underset{0}{5} \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & \text { T} \\ & \text { O } \\ & \underset{\sim}{N} \\ & \underset{~ N}{0} \end{aligned}$	$\begin{aligned} & \text { git } \\ & 0 . \\ & \stackrel{g}{0} \\ & \text { Ni } \\ & \hline 0 \end{aligned}$	$\begin{gathered} \stackrel{8}{6} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$	$\begin{array}{\|c\|} \hline \stackrel{\circ}{+} \\ \stackrel{-}{\circ} \\ \stackrel{\circ}{\circ} \\ \stackrel{-}{+} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{o}} \\ & \stackrel{0}{0} \\ & \stackrel{\rightharpoonup}{\mathrm{O}} \end{aligned}$			$\begin{array}{\|l\|} \hline \stackrel{\circ}{\dot{j}} \\ \dot{\circ} \\ 0 \\ \hline 0 \\ \stackrel{0}{\circ} \\ \hline \end{array}$	\circ $\stackrel{\circ}{+}$ $\stackrel{\circ}{\circ}$ $\stackrel{O}{\circ}$ \vdots -										$\begin{aligned} & \hline \stackrel{o}{\dot{j}} \\ & \stackrel{\dot{j}}{ } \\ & \stackrel{\rightharpoonup}{2} \\ & \stackrel{\rightharpoonup}{\dot{N}} \end{aligned}$	

	$\stackrel{\text { ¢ }}{\text {＋}}$				\bigcirc			$\stackrel{\circ}{\circ}$	$\stackrel{\infty}{\circ}$	\bigcirc	$\stackrel{\sim}{\sim}$	$\stackrel{?}{\square}$		$\stackrel{\circ}{\text { ® }}$		$\stackrel{\sim}{i}$		$\stackrel{\sim}{\sim}$	$\stackrel{\circ}{\mathrm{i}}$	$\stackrel{\sim}{\sim}$	N	$\stackrel{\sim}{0}$	$\overline{-}$	$\stackrel{\circ}{\square}$	J	¢	if	คٌ			$\stackrel{\sim}{\sim}$		$\stackrel{\infty}{\circ}$		
		$\begin{gathered} \hat{0} \\ 0 \\ 0 \end{gathered}$	$\left\|\begin{array}{c} \text { din } \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \frac{\pi}{t} \\ \vdots \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \circ \\ \stackrel{\circ}{\circ} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 . \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \text { n } \\ 0 \\ 0 \end{array}\right\|$	$\frac{\tilde{N}}{\stackrel{N}{0}}$	$\frac{\tilde{n}}{\dot{0}}$	$\left\|\begin{array}{c} \underset{\sim}{N} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{0} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{0} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \stackrel{心}{c} \\ o \end{array}\right\|$	$\underset{\substack{\infty \\ 0 \\ \hline}}{ }$	$\left\lvert\, \begin{gathered} \hat{g} \\ \underset{O}{0} \end{gathered}\right.$		$\stackrel{N}{n}$	$\stackrel{\square}{\circ}$	$\begin{aligned} & \stackrel{\circ}{\stackrel{1}{2}} \\ & \stackrel{i}{2} \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}$		$\stackrel{\bar{\infty}}{\substack{\infty \\ \hline}}$	$\underset{\sim}{\lambda}$			\bar{n}	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\stackrel{\text { ¢ }}{\stackrel{\circ}{8}}$	$\stackrel{\stackrel{\rightharpoonup}{+}}{\stackrel{-}{-}}$	$\stackrel{\sim}{\stackrel{0}{+}}$	\％	¢		$\stackrel{\text { ¢ }}{\substack{\text { ¢ }}}$
												®																	8						
		\div	$\stackrel{m}{\grave{O}} \mid$	$\left\|\begin{array}{c} \hat{N} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} n \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\underset{\sim}{\underset{\sim}{r}}$	$\underset{\sim}{\underset{\sim}{N}}$	$\left\|\begin{array}{c} \underset{\sim}{\mathbf{m}} \\ \mathrm{m} \end{array}\right\|$	$\left\|\begin{array}{c} \mathbf{~} \\ \dot{心} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \infty \\ \infty \end{array}\right\|$	$\left\lvert\, \begin{gathered} \hat{\rightharpoonup} \\ \stackrel{\rightharpoonup}{\dot{E}} \end{gathered}\right.$	$\begin{aligned} & \bar{\oplus} \\ & \stackrel{\oplus}{\circ} \end{aligned}$	$\left\lvert\, \begin{aligned} & \stackrel{n}{\dot{N}} \\ & \hline \end{aligned}\right.$	$\stackrel{\stackrel{8}{\circ}}{\stackrel{\rightharpoonup}{i}} \mid$	$\begin{array}{\|c} \underset{\sim}{\tilde{m}} \end{array}$	$\begin{gathered} o \\ \dot{q} \end{gathered}$	$\left\lvert\, \begin{gathered} \hat{m} \\ \underset{i n}{0} \end{gathered}\right.$	$\begin{aligned} & \stackrel{8}{f} \\ & \stackrel{y}{*} \end{aligned}$	$\begin{array}{\|c} \hline \\ \hline \infty \\ \hline \end{array}$	$\stackrel{\hat{\circ}}{\stackrel{\rightharpoonup}{+}}$	$\begin{gathered} \stackrel{+}{\infty} \\ \stackrel{\sim}{m} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{+}{\circ} \end{aligned}$	$\begin{gathered} \stackrel{\circ}{\dot{\infty}} \\ \stackrel{\infty}{c} \end{gathered}$	$\underset{\sim}{\dot{\sim}}$	$\left\|\begin{array}{c} \stackrel{\sim}{\circ} \\ \stackrel{\sim}{\sim} \end{array}\right\|$	$\begin{aligned} & \infty \\ & \stackrel{m}{m} \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \dot{e} \\ \dot{ల} \\ \mid \end{array}\right\|$	$\left\|\begin{array}{l} \dot{\circ} \\ \stackrel{e}{e} \end{array}\right\|$	$\stackrel{+}{\infty}$	$\left\|\begin{array}{l} \hat{O} \\ \hat{\gamma} \end{array}\right\|$	$\begin{aligned} & 0 \\ & \underset{N}{N} \\ & \hline \end{aligned}$	$\stackrel{\bullet}{\stackrel{\circ}{\mathrm{U}}}$	$\begin{gathered} \underset{\sim}{\sim} \\ \underset{\sim}{n} \end{gathered}$		
		\mathfrak{c}	$\left\|\begin{array}{l} \stackrel{0}{\underset{\sim}{\mathrm{D}}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\substack{2 \\ \underset{\sim}{2}}}{ } \mid \end{gathered}\right.$	$\left.\begin{gathered} o \\ \dot{寸} \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \underset{\sim}{\dot{\alpha}} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \dot{\sim} \\ \underset{\sim}{4} \end{gathered}\right.$	$\begin{aligned} & 0 \\ & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{2} \end{aligned}$	$\underset{\underset{\sim}{\dot{W}}}{\underset{\sim}{6}} \mid$	$\left\|\begin{array}{c} \stackrel{\bullet}{\dot{H}} \\ \stackrel{\leftrightarrow}{c} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{\dot{G}} \\ \underset{寸}{ } \end{gathered}\right.$	$\begin{aligned} & \stackrel{9}{\dot{J}} \\ & \dot{f} \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\mathrm{m}} \\ & \stackrel{\sim}{m} \end{aligned}$	$\begin{aligned} & \stackrel{n}{\mathrm{O}} \\ & \hat{J} \end{aligned}$		$\begin{gathered} \dot{\sim} \\ \underset{\sim}{\circ} \end{gathered}$	$\begin{array}{\|c} \bullet \\ \underset{\sim}{\dot{j}} \end{array}$	$\stackrel{\infty}{\dot{\mp}} \underset{\dot{\square}}{ }$	$\stackrel{\infty}{\stackrel{\infty}{\stackrel{1}{n}}}$	$\begin{aligned} & 0 \\ & \dot{f} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{j} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \underset{\sim}{\dot{\sim}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{f} \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & \dot{̣} \\ & \underset{\sim}{2} \end{aligned}$	$\left\|\begin{array}{c} \underset{\dot{e}}{\dot{\sim}} \\ \end{array}\right\|$	$\begin{aligned} & 0 \\ & \dot{\sim} \\ & \dot{\sim} \end{aligned}$	$\stackrel{\substack{\infty \\ \stackrel{m}{c}}}{ }$								
		$\stackrel{B}{3}$	$\left\|\begin{array}{c} \hat{\infty} \\ \underset{\sim}{c} \end{array}\right\|$	$\left\|\begin{array}{c} ⿳ 亠 丷 厂 犬 \\ \stackrel{\rightharpoonup}{\mathrm{~N}} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\sim}{\dot{j}} \\ \stackrel{\rightharpoonup}{\hat{}} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\underset{\sim}{N}} \\ \hline \end{array}\right\|$	$\begin{gathered} \underset{\dot{\circ}}{\underset{\sim}{2}} \end{gathered}$	$\left\|\begin{array}{l} \stackrel{\sim}{0} \\ \stackrel{m}{m} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{m} \\ \stackrel{y}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{m} \\ \stackrel{y}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\infty} \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{n} \\ \underset{\sim}{p} \end{array}\right\|$	$\stackrel{m}{\stackrel{m}{\underset{~}{2}}}$	$\begin{gathered} \stackrel{9}{\mathrm{~N}} \\ \stackrel{y}{2} \end{gathered}$	$\begin{gathered} \underset{\sim}{n} \\ \text { p} \\ \text { en } \end{gathered}$	$\left\lvert\, \begin{gathered} \underset{\sim}{j} \\ \underset{\sim}{2} \end{gathered}\right.$	$\begin{gathered} \underset{\dot{\circ}}{\stackrel{\rightharpoonup}{c}} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\dot{\circ}} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{array}{\|l\|l} \underset{\sim}{n} \\ \text { è } \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\sim} \\ & \stackrel{\sim}{2} \end{aligned}$	$\begin{gathered} \stackrel{\circ}{\dot{\circ}} \\ \stackrel{y}{2} \end{gathered}$	$\begin{gathered} -\dot{o} \\ \stackrel{\circ}{\sim} \end{gathered}$	$\underset{\underset{\sim}{\mathrm{N}}}{\stackrel{0}{2}}$	$\begin{array}{\|l\|l} \stackrel{n}{0} \\ \stackrel{\sim}{\mathrm{p}} \end{array}$	$\underset{\underset{\sim}{\mathrm{N}}}{\mathrm{~N}} \mid$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \stackrel{\infty}{2} \end{aligned}$	$\begin{gathered} \underset{\sim}{\sim} \\ \end{gathered}$								
		\underbrace{n}_{n}	$\left\lvert\, \begin{aligned} & \infty \\ & \infty \\ & \infty \\ & \end{aligned}\right.$	$\left\lvert\, \begin{gathered} \underset{\dot{\dot{E}}}{\mid} \end{gathered}\right.$	$\left\|\begin{array}{c} \underset{\mathrm{N}}{\mathrm{~J}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{\dot{N}} \\ \hline \end{gathered}\right.$	$\stackrel{\underset{\sim}{\dot{F}}}{\stackrel{\rightharpoonup}{\prime}}$	$\underset{\stackrel{\stackrel{\omega}{j}}{\stackrel{~}{2}}}{ }$	$\left\|\begin{array}{c} \stackrel{\circ}{\stackrel{j}{\circ}} \\ \stackrel{2}{2} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{\dot{j}} \\ \underset{\sim}{2} \end{gathered}\right.$	$\mid \stackrel{\underset{\dot{\prime}}{\dot{j}}}{ }$	$\mid \underset{\underset{\sim}{\dot{J}}}{ }$		$\left\|\begin{array}{c} \stackrel{\rightharpoonup}{\mathrm{V}} \end{array}\right\|$	$\left\lvert\, \begin{array}{r} \underset{\dot{f}}{\prime} \\ \hline \end{array}\right.$	$\left\lvert\, \begin{aligned} & \infty \\ & \stackrel{+}{\dot{f}} \end{aligned}\right.$	$\underset{\underset{\sim}{\sim}}{\underset{\sim}{n}}$	$\stackrel{\sim}{\stackrel{\sim}{\mathrm{N}}}$	$\stackrel{\underset{\sim}{N}}{\underset{\sim}{2}}$	$\begin{aligned} & \dot{\dot{j}} \\ & \stackrel{\dot{7}}{ } \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{i}} \stackrel{+}{\rightleftharpoons}$	$\stackrel{\underset{\sim}{\mathrm{N}}}{\mathrm{~N}}$	$\underset{\underset{\sim}{\underset{\sim}{\sim}}}{\substack{2}}$	$\begin{aligned} & \stackrel{0}{\dot{~}} \\ & \stackrel{\rightharpoonup}{\tau} \end{aligned}$	$\begin{aligned} & \infty \\ & \stackrel{\infty}{\dot{O}} \end{aligned}$	$\begin{gathered} \mathrm{N} \\ \mathrm{o} \\ \stackrel{1}{2} \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\dot{\circ}} \\ & \stackrel{\circ}{\circ} \end{aligned}$								
		0	$\left\|\begin{array}{c} \hat{i} \\ \dot{i} \end{array}\right\|$	$\left\|\begin{array}{c} m \\ \underset{\sim}{c} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \underset{\sim}{q} \end{array}\right\|$	$\stackrel{\Gamma}{\dot{子}}$	$\left\lvert\, \begin{gathered} \underset{G}{\dot{G}} \end{gathered}\right.$	$\stackrel{\infty}{\dot{\sim}}$	$\underset{\underset{M}{\mid}}{ }$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{\sigma} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{array}{l\|} \hline \stackrel{\circ}{\dot{g}} \\ \mid \end{array}\right.$	$\begin{gathered} 0 \\ \stackrel{\dot{G}}{ } \end{gathered}$	$\begin{array}{\|l\|l\|} \hline \stackrel{\text { ® }}{ } \\ \hline \dot{y} \end{array}$	$\left.\begin{array}{\|c\|} \hat{o} \\ \dot{q} \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} \underset{\infty}{\dot{\infty}} \\ 寸 \end{gathered}\right.$	$\left\|\begin{array}{l\|l\|} \infty \\ \dot{\sim} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\dot{\sigma}} \end{array}\right\|$	$\underset{寸}{\dot{f}}$	$\overline{\dot{g}}$	$\stackrel{\underset{\sim}{\dot{\sim}}}{ }$	$\begin{aligned} & \circ \\ & \dot{G} \end{aligned}$	$\stackrel{\infty}{\stackrel{\infty}{\sigma}}$	$\stackrel{\bullet}{\dot{\varphi}}$	$\begin{aligned} & 9 \\ & \dot{\sigma} \\ & \hline 8 \end{aligned}$	$\begin{aligned} & \stackrel{O}{\dot{\sigma}} \\ & \stackrel{1}{2} \end{aligned}$	$\begin{array}{\|c\|c\|} \hline \\ \dot{\infty} \\ \hline \end{array}$					$\stackrel{\infty}{\square}$				
			$\left\|\begin{array}{l\|l\|} \hline 0 \\ \end{array}\right\|$	$\left\|\begin{array}{c} \text { n } \\ \dot{心} \end{array}\right\|$	$\left\|\begin{array}{c} N \\ i \\ i \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{n} \\ & \hline \end{aligned}\right.$	$\underset{\infty}{i}$	$\begin{aligned} & \text { m } \\ & \text { in } \end{aligned}$	$\left\|\begin{array}{c} \stackrel{n}{\mathrm{q}} \end{array}\right\|$	$\left\|\begin{array}{\|c\|} \widehat{\mathrm{j}} \end{array}\right\|$	$\bar{i} \mid$	$\left\lvert\, \begin{gathered} 0 \\ \infty \\ \infty \end{gathered}\right.$	\hat{i}	$\left.\begin{array}{\|c\|} \dot{8} \\ \dot{B} \end{array} \right\rvert\,$	$\overline{8}$	$\underset{\sim}{n}$	$\left\|\begin{array}{c} \text { N } \\ \dot{心} \end{array}\right\|$	$\stackrel{H}{i}$	$\begin{array}{\|c} \bullet \\ \stackrel{\sim}{\circ} \end{array}$	$\stackrel{N}{\tilde{W}} \mid$	$\stackrel{0}{\dot{W}} \mid$	$\stackrel{\hat{\infty}}{\hat{\circ}}$	$\stackrel{\infty}{\infty}$	$\begin{array}{\|c} 0 \\ \infty \\ \infty \end{array}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{8} \\ & \hline \end{aligned}\right.$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$								
		Six	$\left\|\begin{array}{c} \mathrm{J} \\ \text { I } \end{array}\right\|$	$\left\|\begin{array}{l} 9 \\ \dot{\theta} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\dot{e}} \\ \mid \end{gathered}\right.$	$\left\|\begin{array}{c} \stackrel{0}{\mathrm{O}} \end{array}\right\|$	$\stackrel{\Gamma}{\Sigma}$	$\stackrel{\hat{\rightharpoonup}}{\dot{\omega}}$	$\stackrel{m}{\stackrel{m}{6}} \mid$	$\left\|\begin{array}{c} \dot{G} \\ \dot{6} \end{array}\right\|$	$\stackrel{\rightharpoonup}{\dot{0}} \mid$	$\left\|\begin{array}{l\|} \dot{9} \\ \dot{9} \end{array}\right\|$	$\stackrel{\mathrm{N}}{\mathrm{~N}}$	$\hat{\dot{Q}} \mid$	$\left\|\begin{array}{c} \infty \\ \infty \\ e \end{array}\right\|$	$\hat{\infty}$		$\begin{aligned} & \infty \\ & \oplus \\ & \hline \end{aligned}$	$\hat{\dot{G}}$	$\stackrel{\infty}{\dot{\oplus}}$	$\stackrel{\circ}{\dot{\ominus}}$	\hat{i}	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{0} \\ & \hline \end{aligned}\right.$	$\underset{\sim}{\Sigma}$	$\stackrel{\sim}{\mathrm{N}}$	$\underset{\sim}{\sim}$	$\stackrel{\widehat{N}}{\mathrm{~N}}$								
		c_{n}^{n}	$\mid \underset{\infty}{\infty}$	$\left\|\frac{9}{\infty}\right\|$	$\stackrel{m}{\infty} \mid$	$\stackrel{\wedge}{\lambda}$	$\left\|\begin{array}{c} \infty \\ \underset{\infty}{\infty} \end{array}\right\|$	$\mid \stackrel{\bullet}{\mathrm{I}}$	$\left\|\begin{array}{c} 9 \\ \stackrel{0}{r} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\alpha}{\alpha} \\ \dot{\alpha} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ \infty \end{array}\right\|$	$\stackrel{m}{\infty}$	$\|\stackrel{0}{\dot{\infty}}\|$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	\hat{o}	$\stackrel{m}{\mathrm{~m}}$	$\begin{gathered} 0 \\ \sim \\ \sim \end{gathered}$	$\stackrel{\circ}{\sim}$	$\stackrel{\oplus}{\infty}$	$\frac{9}{\infty}$	$\left\lvert\, \begin{aligned} & \infty \\ & \dot{\infty} \\ & \infty \end{aligned}\right.$	$\left\|\begin{array}{l\|l\|} \infty \\ \infty \\ \infty \end{array}\right\|$	$\underset{\infty}{\mathbf{\infty}}$	$\stackrel{\oplus}{\infty}$								
		\mathfrak{c}	$\left\|\begin{array}{c} m \\ \tilde{m} \end{array}\right\|$	$\left.\begin{array}{\|c\|} \hat{\infty} \\ \infty \end{array} \right\rvert\,$	$\left.\begin{array}{\|c\|} \hat{\infty} \\ \infty \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} \infty \\ \infty \\ \infty \end{gathered}\right.$	\bar{j}	$\underset{\infty}{\infty}$	$\left\|\begin{array}{c} 0 \\ \dot{\infty} \\ \infty \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ \infty \\ \infty \end{array}\right\|$	$\begin{array}{\|c\|} \hat{+} \\ \stackrel{\infty}{2} \end{array}$	$\left\|\begin{array}{c} m \\ \dot{\sigma} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & 0 \\ & 8 \\ & 8 \end{aligned}\right.$	$\hat{\dot{Q}} \mid$	$\left\lvert\, \begin{array}{\|c\|} \hat{\infty} \\ \mid \end{array}\right.$	$\begin{gathered} \mathrm{N} \\ 8 \end{gathered}$	$\underset{\infty}{\hat{\infty}}$	$\stackrel{\circ}{\infty}$	$\left\lvert\, \begin{gathered} \underset{\infty}{\infty} \\ \hline \end{gathered}\right.$	$\underset{\infty}{\dot{\infty}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{gathered} \circ \\ 8 \\ \hline 8 \end{gathered}$	$\stackrel{m}{\circ}$	$\underset{\sim}{\text { Ň }}$	$\left.\frac{9}{\dot{\sigma}} \right\rvert\,$	$\underset{\sim}{\dot{ু}}$	$\left\|\begin{array}{c} \underset{\sim}{\mathrm{N}} \end{array}\right\|$								
	$\begin{aligned} & \hat{y} \\ & \stackrel{y}{4} \\ & \\ & \\ & \hline \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{j} \\ & \hline \end{aligned}$	$\left\|\begin{array}{c} \mathbf{O} \\ \dot{j} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\circ}{\dot{~}} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \infty \\ \dot{o} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathfrak{g} \\ \end{gathered}\right.$	$\left.\begin{gathered} \infty \\ \infty \\ \dot{\infty} \end{gathered} \right\rvert\,$	$\begin{aligned} & \overline{\sigma_{i}} \\ & \dot{n} \end{aligned}$	$\left\|\begin{array}{c} \text { I } \\ \text { in } \end{array}\right\|$	$\left\|\begin{array}{c} \stackrel{\varrho}{\mathrm{o}} \\ \dot{寸} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \substack{\dot{子} \\ \dot{子}} \end{gathered}\right.$	$\left\|\begin{array}{c} \underset{\sim}{\sim} \\ \end{array}\right\|$	$\left\|\begin{array}{c} \tilde{m} \\ \underset{\sim}{2} \end{array}\right\|$	$\left\|\begin{array}{c} \mathbf{~} \\ \underset{\sim}{c} \end{array}\right\|$	$\stackrel{\substack{\infty \\ \\ \hline}}{ }$	$\stackrel{O}{\dot{m}}$	$\underset{\sim}{\mathrm{N}}$	$\stackrel{\infty}{\stackrel{\infty}{\mathrm{N}}}$	$\left\lvert\, \begin{gathered} \substack{⿱ ㇒ ⿲ 丶 丶 ㇒ 子 \\ \mathrm{~N}} \end{gathered}\right.$	$\stackrel{\mathscr{N}}{\stackrel{1}{i}}$	$\bar{\sim}$	$\stackrel{\substack{\mathrm{N}}}{(}$	$\stackrel{\infty}{\infty}$	$\stackrel{8}{\circ}$	$\stackrel{\leftrightarrow}{\oplus}$	$\mid \stackrel{\sim}{\sim}$	$\stackrel{\mathscr{N}}{\stackrel{1}{c}}$	$\stackrel{\text { N}}{\substack{~}}$	$\stackrel{-}{\infty}$	$\stackrel{\text { N }}{+}$	$\stackrel{\sim}{\circ}$	$\stackrel{\text {＋}}{+}$			
		No	$\left\|\begin{array}{l} \circ \stackrel{0}{\mathrm{~N}} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{\circ}{\mathrm{N}} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{0}{\mathrm{~N}} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \stackrel{O}{\mathrm{~N}} \\ & \hline \end{aligned}\right.$	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{\mathrm{i}} \\ & \\ & \hline \end{aligned}\right.$	$\underset{\sim}{\rightleftharpoons}$	$\|\stackrel{0}{0}\|$	$\underset{\sim}{\underset{r}{\prime}}$	$\underset{\sim}{\underset{r}{\prime}}$	$\stackrel{8}{-}$	$\stackrel{\circ}{-}$	$\stackrel{+}{-}$	$\stackrel{\text { O}}{+}$	$\left\lvert\, \begin{gathered} \hat{y} \end{gathered}\right.$	$\underset{\substack{\infty \\ 0 \\ 0}}{ }$	$\stackrel{\curvearrowleft}{0}$	$\stackrel{\leftrightarrow}{\circ}$	$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\circ}$	$\stackrel{(0}{0}$	$\stackrel{\infty}{0}$	$\underset{\substack{0 \\ \hline}}{ }$	$\stackrel{\sim}{\infty}$	$\underset{\substack{9}}{ }$	$\left\|\begin{array}{c} \\ \hline \end{array}\right\|$	\overbrace{i}°	$\stackrel{\circ}{0}$	$\stackrel{\sim}{0}$	$\stackrel{0}{0}$		¢		
증		$\stackrel{n}{n}$	$\left\|\begin{array}{l} \stackrel{\rightharpoonup}{\dot{\rightharpoonup}} \\ \stackrel{\rightharpoonup}{2} \end{array}\right\|$	$\left\|\begin{array}{l} \dot{\infty} \\ \stackrel{+}{\dot{o}} \end{array}\right\|$	$\left\|\begin{array}{c\|c} \infty \\ \infty \\ \infty \end{array}\right\|$	$\left.\begin{gathered} \infty \\ \infty \\ \infty \\ \infty \end{gathered} \right\rvert\,$	$\stackrel{\pi}{\lambda}$	$\left\|\begin{array}{l} \bar{\infty} \\ \dot{\sim} \end{array}\right\|$	$\left\|\begin{array}{l} \hat{N} \\ \underset{\sim}{n} \end{array}\right\|$	$\left\|\begin{array}{l} \bar{\alpha} \\ \dot{N} \end{array}\right\|$	$\left\|\begin{array}{c} \infty \\ \stackrel{\infty}{\infty} \\ \dot{e} \end{array}\right\|$	$\stackrel{m}{\dot{\sim}} \mid$	$\left.\begin{array}{\|c} \underset{\sim}{0} \\ \dot{\sim} \end{array} \right\rvert\,$	$\left\|\begin{array}{c} \dot{g} \\ \stackrel{\rightharpoonup}{m} \end{array}\right\|$	$\left\lvert\, \begin{aligned} & \stackrel{\sim}{0} \\ & \underset{\sim}{\sim} \end{aligned}\right.$	$\left.\begin{array}{\|c} \underset{\sim}{N} \\ \stackrel{\sim}{n} \end{array} \right\rvert\,$	$\begin{gathered} \hat{\infty} \\ \dot{N} \end{gathered}$	$\begin{aligned} & \stackrel{\underset{\sim}{\circ}}{\dot{~}} \end{aligned}$	$\stackrel{\stackrel{8}{\mathrm{~N}}}{\stackrel{\rightharpoonup}{2}}$	$\begin{gathered} \infty \\ \underset{\sim}{\sim} \\ \hline \end{gathered}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \\ & \hline \end{aligned}$	$\begin{gathered} \stackrel{+}{\dot{N}} \\ \hline \end{gathered}$	$\stackrel{\bar{c}}{\stackrel{1}{N}}$	$\begin{aligned} & \dot{\infty} \\ & \stackrel{\infty}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \underset{\sim}{N} \\ & \underset{\infty}{\infty} \end{aligned}$	$\left\lvert\, \begin{gathered} \underset{\infty}{\mathcal{\infty}} \\ \underset{\sim}{2} \end{gathered}\right.$	$\left.\begin{array}{\|c} \underset{\sim}{\dot{\infty}} \\ \underset{\sim}{2} \end{array} \right\rvert\,$	$\left\|\begin{array}{c} \underset{\sim}{N} \\ \dot{\sim} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\infty} \\ \underset{\sim}{\infty} \end{array}\right\|$	$\begin{aligned} & \bar{\alpha} \\ & \dot{\alpha} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\infty}{\infty} \\ & \stackrel{\infty}{\infty} \end{aligned}$		∞ \sim \sim \sim		
등		$\begin{array}{\|c\|} \hline \underset{\sim}{2} \\ \underset{\sim}{2} \end{array}$	$\left\|\begin{array}{l} \AA \\ \underset{\sim}{\mathrm{i}} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \underset{\sim}{\underset{\sim}{\dot{C}}} \end{gathered}\right.$	$\left\lvert\, \begin{array}{\|c} \stackrel{n}{\dot{\omega}} \\ \hline \end{array}\right.$	$\left.\begin{array}{\|c} \circ \\ \end{array} \right\rvert\,$	$\left\lvert\, \begin{gathered} \underset{\sim}{\mathrm{q}} \\ \hline \end{gathered}\right.$	$\|\stackrel{n}{m}\|$	$\left\|\begin{array}{l} \mathbf{N} \\ \mathrm{m} \end{array}\right\|$	$\left\|\begin{array}{l} \stackrel{0}{0} \\ \stackrel{\rightharpoonup}{\mathrm{i}} \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\mathrm{N}} \end{array}\right\|$	$\left\|\begin{array}{c} \hat{o} \\ \dot{\sim} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \mathrm{O} \\ \mathbf{N} \end{gathered}\right.$	$\stackrel{\varrho}{\stackrel{N}{\underset{\sim}{2}}}$	$\stackrel{\stackrel{8}{\square}}{\square}$	$\stackrel{\sim}{\infty} \underset{\sim}{\infty} \mid$	$\stackrel{\underset{\sim}{\mathrm{O}}}{ }$	$\stackrel{\text { ¢ }}{\stackrel{-}{+}}$	$\stackrel{\hat{m}}{\stackrel{1}{r}}$	$\stackrel{\infty}{+}$	$\stackrel{\bullet}{\circ}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	$\underset{\sim}{N}$	$\underset{\mathrm{N}}{\mathrm{~K}}$	$\begin{array}{\|c} 0 \\ 0 \\ 0 \end{array}$	$\left\|\begin{array}{l} n \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} 8 \\ \hline \mathrm{O} \end{array}\right\|$	$\underset{\sim}{\dot{F}}$	¢ ¢	$\stackrel{\leftrightarrow}{\circ}$		$\stackrel{\sim}{\infty}$		
		$\mathbf{N}_{\substack{0}}^{\substack{0 \\ \hline \\ \hline}}$	$\left\|\begin{array}{c} \hat{N} \\ 0 \end{array}\right\|$	$\left\|\begin{array}{c} \circ \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \bar{\circ} \\ \stackrel{O}{\circ} \end{array}\right\|$	\hat{i}	$\stackrel{g}{9}$	$\stackrel{\stackrel{R}{2}}{\underset{\sim}{2}}$	$\|\underset{\sim}{\dot{N}}\|$	$\left\lvert\, \begin{gathered} \underset{m}{\mathrm{~m}} \\ \hline \end{gathered}\right.$	$\left\|\begin{array}{c} \hat{m} \\ \underset{子}{*} \end{array}\right\|$	$\left\|\begin{array}{c} 0 \\ 0 \\ 0 \end{array}\right\|$	$\left\|\begin{array}{l} \circ \\ \dot{-} \end{array}\right\|$	$\left.\begin{gathered} \infty \\ \infty \\ \infty \end{gathered} \right\rvert\,$	$\left\|\begin{array}{c} \infty \\ \infty \\ \dot{\infty} \end{array}\right\|$	$\begin{aligned} & \infty \\ & \infty \\ & 0 \end{aligned}$	$\underset{\substack{\infty \\ \hline \multirow{2}{c}{\hline}\\ \hline}}{ }$	$\stackrel{+}{\circ}$	$\left\lvert\, \begin{aligned} & \stackrel{m}{\dot{f}} \end{aligned}\right.$	$\stackrel{\text {－}}{\sim}$	$\stackrel{\sigma}{\dot{f}}$	ヘֻ̣	$\left\lvert\, \begin{gathered} \text { Ņ } \\ \text { ¢ } \end{gathered}\right.$	$\underset{\infty}{\infty}$	$\stackrel{\Gamma}{\dot{\tau}}$	守	$\overline{\dot{c}}$	¢	－	¢	N		¢		
		\tilde{N}_{0}	¢	$\left\lvert\, \begin{aligned} & \circ \\ & \\ & \hline \end{aligned}\right.$	$\stackrel{8}{-}$	$\stackrel{\circ}{\circ}$	$\stackrel{8}{\mathrm{i}}$	$\underset{\dot{r}}{8}$	$\begin{gathered} \underset{e}{0} \\ 0 \end{gathered}$	$\left\|\begin{array}{c} \mathbf{M} \\ \underset{o}{2} \end{array}\right\|$	$\|\underset{\mathrm{N}}{\mathrm{~N}}\|$	$\left\|\begin{array}{c} \hat{\infty} \\ \underset{\infty}{2} \end{array}\right\|$	$\left\lvert\, \begin{array}{\|c} \stackrel{\circ}{\sim} \\ \hline \end{array}\right.$	$\left\|\begin{array}{c} 0 \\ \dot{M} \end{array}\right\|$	$\left\lvert\, \begin{gathered} \text { N } \\ \text { en } \end{gathered}\right.$		$\left\|\begin{array}{c} n \\ i n \end{array}\right\|$	$\hat{\infty}$	$\begin{aligned} & \dot{\infty} \\ & \dot{\infty} \\ & \hline \end{aligned}$	$\begin{gathered} \stackrel{\circ}{\dot{~}} \\ \stackrel{1}{2} \end{gathered}$	$\begin{gathered} \stackrel{\circ}{\dot{m}} \\ \stackrel{y}{c} \end{gathered}$	$\begin{gathered} \circ \\ \stackrel{\circ}{\circ} \\ \stackrel{\circ}{2} \end{gathered}$	$\begin{gathered} \stackrel{\circ}{\dot{+}} \\ \stackrel{\circ}{\circ} \end{gathered}$	$\stackrel{\stackrel{0}{\tilde{N}}}{\stackrel{\rightharpoonup}{2}}$	$\begin{array}{\|c} \underset{\sim}{\mathrm{N}} \\ \hline \end{array}$	$\mid \underset{\sim}{\underset{\sim}{\sim}}$	$\left\lvert\, \begin{gathered} \underset{\sim}{2} \\ \underset{\sim}{2} \end{gathered}\right.$	$\left\|\begin{array}{c} \stackrel{0}{\stackrel{\rightharpoonup}{\mathrm{M}}} \\ \hline \end{array}\right\|$	$\left\|\begin{array}{c} \underset{\sim}{\dot{\sim}} \end{array}\right\|$	$\begin{aligned} & \stackrel{0}{\dot{\infty}} \\ & \underset{子}{\circ} \end{aligned}$	－		－		
		$\stackrel{\square}{\circ}$	$\underset{0}{\mathrm{~N}} \mid$	$\left\|\begin{array}{c} \mathrm{N} \\ 0 \end{array}\right\|$	$\stackrel{\sim}{\circ}$	－	\sim	m	\sim	$\stackrel{\sim}{\sim}$	\bigcirc	$\stackrel{\sim}{\square}$	～	$\stackrel{\sim}{\sim}$	－	O	is	8	$\stackrel{\sim}{\sim}$	안	$\stackrel{\sim}{2}$	은	$\stackrel{\wedge}{\stackrel{\circ}{\sim}}$	－	융	\％	L్ల్ల	융	악	\％	\％	8	$\stackrel{\text { ®}}{\wedge}$	윳	－
		0	$\left\|\begin{array}{c} \underset{\sim}{N} \\ \vdots \\ 0 \\ \underset{\sim}{c} \\ \dot{O} \end{array}\right\|$	$\left\|\begin{array}{c} \substack{\tilde{c} \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline} \end{array}\right\|$	$\left\|\begin{array}{l} 9 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$		$\left\|\begin{array}{c} \underset{\sim}{\mathrm{j}} \\ \underset{\sim}{0} \\ \underset{\sim}{O} \\ \dot{\sim} \end{array}\right\|$			$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \\ \end{array}\right\|$							$\begin{aligned} & \hline 8 \\ & \hline 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \hline 0 \end{aligned}$			$\begin{gathered} o \\ \dot{\sim} \\ \underset{\sim}{n} \\ \\ 0 \\ 0 \\ 0 \\ \hline \end{gathered}$		$\begin{gathered} o \\ \dot{j} \\ \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$		$\begin{array}{\|c\|} \hline 0 \\ \dot{0} \\ \dot{\sim} \\ 0 \\ 0 \\ 0 \\ 0 \\ \dot{Q} \end{array}$				$\begin{array}{\|c\|} \hline \dot{0} \\ \dot{9} \\ \hline \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{array}{\|c} \hline 0 \\ \dot{9} \\ \dot{j} \\ 0 \\ 0 \\ 0 \\ \dot{8} \\ \hline \end{array}$		O． ¢ 0 0 0 0 0 0 0		$\begin{array}{\|c\|} \hline 0 \\ \dot{d} \\ \underset{\sim}{0} \\ \dot{0} \\ \dot{o} \\ \hline \end{array}$	¢	－

When Fuji premium efficiency motor is selected by motor selection（Function code P99／A39／b39／r39＝5）
－Three－phase 200 V series

	尔	$\stackrel{\circ}{\circ}$					$\stackrel{\circ}{\circ}$		$\stackrel{\infty}{\circ}$	$\stackrel{-}{+}$	$\stackrel{\text { ¹ }}{ }$	$\stackrel{+}{\square}$	$\stackrel{\circ}{\text { i }}$			$\stackrel{\sim}{\sim}$	$\stackrel{\sim}{\sim}$		$\stackrel{\circ}{\sim}$	앙	N	¢
		$\begin{gathered} \hat{y} \\ 0 \end{gathered}$	$\begin{aligned} & \text { dit } \\ & \text { din } \end{aligned}$		$\begin{array}{\|c\|} \hat{0} \\ 0 \\ 0 \end{array}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & 0 \\ & 0 \end{aligned}$	$\left.\begin{array}{\|c\|} \hline \circ \infty \\ 0 \\ 0 \end{array} \right\rvert\,$	$\stackrel{\text { O. }}{\circ}$	$\stackrel{\mathrm{O}}{\mathrm{o}}$	$\stackrel{\stackrel{m}{\circ}}{\circ}$	$\begin{array}{\|c\|c} \infty \\ \stackrel{ٌ}{0} \\ \hline \end{array}$	N⿳亠丷⿵冂⿱八口口	$\underset{\substack{\text { İ } \\ \hline}}{ }$	$\underset{\substack{\text { Of } \\ \hline}}{ }$		哇	$\overline{\mathrm{m}}$	$\begin{array}{\|c\|c} \infty \\ \\ \hline \end{array}$	\％	$\begin{array}{\|l\|l\|l\|l} \tilde{y} \\ \hline \end{array}$	$\begin{aligned} & \circ \\ & \substack{9 \\ \hline} \end{aligned}$	N
		๕				๕													¢		\＆	®
		$\stackrel{\sim}{0}$		$\left\lvert\, \begin{aligned} & \circ \\ & \stackrel{\circ}{\circ} \end{aligned}\right.$	$\stackrel{\circ}{\square}$	$\stackrel{\sim}{\sim}$	$\begin{array}{\|l\|l} \hline 0 \\ \hline \end{array}$	$\stackrel{8}{\circ}$	$\left\lvert\, \begin{gathered} \text { Na } \\ \end{gathered}\right.$	$\begin{aligned} & \underset{\underset{\sim}{\circ}}{ } \end{aligned}$	$\underset{\sim}{\underset{\sim}{\sim}}$	$\begin{aligned} & \stackrel{y}{c} \\ & \underset{\sim}{c} \end{aligned}$		$\begin{aligned} & \text { Nu } \\ & \text { ein } \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{array}{\|l\|l} \stackrel{\circ}{\square} \\ \vdots \end{array}$	$\begin{gathered} \text { ٓ̇ } \\ \end{gathered}$	$\begin{array}{\|c} \stackrel{\rightharpoonup}{e} \\ \text { N } \end{array}$	$\stackrel{\circ}{\dot{\infty}}$	$\stackrel{\hat{\grave{N}}}{ }$	$\begin{array}{\|c\|c} \stackrel{\rightharpoonup}{e} \\ \hline \end{array}$	－
	$\begin{aligned} & \text { 㩊魚哀 } \end{aligned}$	$\begin{gathered} \infty \\ \infty \\ \underset{\sim}{\infty} \end{gathered}$	$\begin{array}{\|l\|l} \stackrel{0}{\underset{\sim}{2}} \end{array}$	$\begin{array}{\|l\|l} \substack{\dot{d} \\ \underset{寸}{2}} \end{array}$	$\begin{aligned} & \mathfrak{m} \\ & \ddagger \end{aligned}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{gathered} \ddagger \\ \underset{\sim}{\dot{W}} \end{gathered}$	$\left\lvert\, \begin{aligned} & \underset{\sim}{\dot{d}} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{aligned} & \text { I } \\ & \underset{y}{2} \end{aligned}$	$\stackrel{\bullet}{\dot{j}}$	$\left.\begin{array}{\|l\|l} \stackrel{0}{e} \\ \stackrel{e}{2} \end{array} \right\rvert\,$	$\begin{gathered} \stackrel{\circ}{\dot{\circ}} \\ \stackrel{y}{2} \end{gathered}$	$\begin{array}{\|l\|l} \underset{\sim}{\mathrm{m}} \\ \hline \end{array}$	$\begin{aligned} & \stackrel{0}{\dot{m}} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{aligned} & \text { N } \\ & \stackrel{\mu}{c} \end{aligned}$	$\underset{\sim}{\mathrm{e}}$	$\left\lvert\, \begin{gathered} \infty \\ \underset{\sim}{j} \end{gathered}\right.$	$\begin{array}{\|l\|l} \stackrel{\circ}{\infty} \\ \end{array}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\infty}{\infty}$
		$\stackrel{\circ}{\stackrel{\circ}{\tilde{j}}}$	$\stackrel{\wedge}{\stackrel{\infty}{\tau}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \end{aligned}$	$\begin{array}{\|l} \stackrel{\leftrightarrow}{\oplus} \\ \stackrel{\sim}{0} \end{array}$	$\stackrel{m}{\stackrel{m}{\rightleftharpoons}}$	$\stackrel{\overline{\mathrm{r}}}{\stackrel{-}{2}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{m}}}{\underline{-}}$	$\begin{array}{\|c} \circ \\ \stackrel{\circ}{\dot{N}} \end{array}$	$\underset{\sim}{\underset{\sim}{\circ}}$	$\begin{gathered} \underset{\sim}{\mathrm{N}} \\ \stackrel{y}{*} \end{gathered}$	$\overline{\mathrm{N}}$	$\stackrel{\bar{\infty}}{\underset{\sim}{m}}$	$\stackrel{\bar{\circ}}{\stackrel{\circ}{\underset{~}{2}}}$	$\stackrel{m}{\underset{N}{N}}$	$\underset{\sim}{\sim}$	$\begin{aligned} & \stackrel{\circ}{\ddagger} \\ & \stackrel{y}{2} \end{aligned}$	$\begin{aligned} & \text { é } \\ & \stackrel{e}{c} \end{aligned}$	$\begin{aligned} & \text { ñ } \\ & \end{aligned}$	$\begin{array}{\|c} \stackrel{N}{\tilde{N}} \\ \hline \end{array}$	$\left\|\begin{array}{c} \stackrel{\sim}{\mathrm{N}} \\ \underset{\sim}{2} \end{array}\right\|$	$\stackrel{\text { ® }}{\stackrel{\sim}{\mathrm{j}}}$
		$\begin{aligned} & \stackrel{m}{\circ} \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \\ & 0 \end{aligned}$	$\left\lvert\, \begin{aligned} & 0 \\ & \underset{\ddagger}{\dot{~}} \end{aligned}\right.$	$\begin{array}{\|} \overline{\mathrm{N}} \end{array}$	$\begin{array}{\|l\|l} \circ \\ \hline 0 \\ \hline \end{array}$		$\begin{array}{\|l\|l} \stackrel{\circ}{户} \\ \stackrel{~}{f} \end{array}$	$\left\lvert\, \begin{gathered} \infty \\ \stackrel{~}{\mathrm{j}} \end{gathered}\right.$	$\stackrel{\infty}{\underset{\sim}{\mathrm{N}}}$	$\begin{array}{\|l\|} \hline \stackrel{\rightharpoonup}{\dot{B}} \end{array}$	$\begin{array}{\|c} \hat{\dot{O}} \\ \dot{y} \end{array}$	$\begin{aligned} & \text { of } \\ & \text { od } \end{aligned}$	$\begin{aligned} & \text { di } \\ & \stackrel{\rightharpoonup}{8} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\circ}{\dot{C}} \end{aligned}$		$\stackrel{m}{\circ}$	$\begin{aligned} & \stackrel{9}{\circ} \\ & \stackrel{0}{2} \end{aligned}$	$\begin{aligned} & \text { 毋 } \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\begin{array}{\|l} \stackrel{\oplus}{\circ} \\ \stackrel{\rightharpoonup}{\circ} \end{array}$	$\begin{aligned} & \infty \\ & \stackrel{\circ}{\circ} \end{aligned}$	$\stackrel{\oplus}{\stackrel{\circ}{\circ}}$
		$\stackrel{\circ}{i}$	î	$\begin{aligned} & \mathrm{m} \\ & \underset{\sim}{c} \end{aligned}$		¢	$\underset{\sim}{\dot{\sim}}$	$\underset{\text { ju}}{ }$		$\overline{\mathrm{g}}$	$\left.\begin{array}{\|c\|} \hline \\ \dot{G} \\ \dot{G} \end{array} \right\rvert\,$	$\underset{\sim}{\text { ホ }}$	$\stackrel{9}{\mathrm{~g}}$	$\begin{aligned} & \infty \\ & \underset{\sim}{\infty} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\curvearrowleft}{\mathrm{g}} \mathrm{q} \end{aligned}$	$\stackrel{9}{\dot{q}}$	¢		$\left.\begin{array}{\|c\|} \circ \\ \dot{B} \end{array} \right\rvert\,$	$\begin{aligned} & \circ \\ & \hline 0 \\ & \hline 0 \end{aligned}$	荌	－
		\mid	$\left\lvert\,\right.$	$\left\lvert\, \begin{aligned} & \circ \\ & \mathbf{6} \\ & \hline \end{aligned}\right.$	$\underset{\dot{B}}{\underset{\sim}{n}} \mid$	\％	$\overline{\mathrm{G}}$	$\dot{\sim}$	$\underset{\sim}{\infty}$	$\underset{\sim}{\infty}$	$\begin{array}{\|c\|} \substack{\text { n } \\ \hline} \end{array}$	$\stackrel{\infty}{\infty} \underset{\sim}{\dot{0}}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \end{aligned}$	$\begin{aligned} & 0 \\ & \stackrel{\rightharpoonup}{5} \end{aligned}$	$\begin{aligned} & \circ \\ & 0 \\ & 0 \end{aligned}$	$\begin{gathered} \infty \\ \dot{B} \end{gathered}$	$\stackrel{\mathrm{O}}{\mathbf{O}}$	$\stackrel{\hat{1}}{\hat{6}}$	$\begin{aligned} & \stackrel{0}{\mathrm{O}} \end{aligned}$	$$	$\stackrel{\leftrightarrow}{6}$	N0
		$\stackrel{\circ}{\sim}$	先	$\begin{aligned} & \dot{\circ} \\ & \dot{8} \end{aligned}$	$\left\lvert\, \begin{gathered} \stackrel{\rightharpoonup}{\dot{0}} \\ \hline \end{gathered}\right.$	$\stackrel{\infty}{\stackrel{\infty}{\sim}} \mid$	厄্চ	$\begin{aligned} & \infty \\ & \dot{\theta} \end{aligned}$	$\hat{\mathrm{N}}$	$\stackrel{\curvearrowleft}{8}$	$\stackrel{\varrho 口}{\stackrel{n}{之}}$	$\underset{\sim}{N}$	$\stackrel{\infty}{\mathrm{N}}$	$\bar{\sim}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\infty}{\stackrel{\infty}{\perp}}$	$\stackrel{\substack{\underset{~}{2}}}{ }$	$\underset{\sim}{\infty}$	$\stackrel{\circ}{\mathrm{e}}$	$\stackrel{\circ}{i}$	$\left\|\begin{array}{l} \circ \\ \stackrel{i}{i} \end{array}\right\|$	$\stackrel{\circ}{\stackrel{\circ}{i}}$
		$\begin{gathered} \stackrel{\bullet}{\infty} \\ \underset{\infty}{2} \end{gathered}$	¢	$\frac{9}{\bar{\infty}}$	$\begin{aligned} & m \\ & \bar{\infty} \end{aligned}$	$\bar{¢}$	$\stackrel{\circ}{\dot{\sim}}$	$\begin{aligned} & \infty \\ & \dot{N} \end{aligned}$	$\underset{\infty}{\mathrm{m}}$	殸	$\stackrel{\infty}{\dot{\infty}}$	$\underset{\mathscr{\infty}}{ }$	$\stackrel{\rightharpoonup}{\dot{\infty}}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \curvearrowleft \\ & \infty \\ & \infty \end{aligned}$	$\begin{aligned} & \infty \\ & \dot{\infty} \\ & \hline \end{aligned}$	¢	$\begin{aligned} & \text { 毋 } \\ & \infty \\ & \hline \end{aligned}$	$\stackrel{n}{\infty}$	$\stackrel{\varrho}{\infty}$	$\begin{gathered} \curvearrowleft \\ \end{gathered}$	$\stackrel{\sim}{\infty}$
		$\stackrel{\infty}{\infty}$	¢	¢	¢	㳄	$\stackrel{\circ}{\infty}$	$\underset{\infty}{\dot{\infty}}$	呬	$\stackrel{\sim}{\mathrm{j}}$	$$	$\stackrel{\sim}{\sim}$	$\underset{\sim}{\infty}$	ふ்	へู่	$\underset{\sim}{\mathrm{o}}$	$\begin{aligned} & \text { ल } \\ & \end{aligned}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \infty \\ & \infty \\ & \hline \end{aligned}$	$\begin{aligned} & \infty \\ & \infty \\ & \infty \end{aligned}$	$\stackrel{\infty}{\infty}$	$\stackrel{\infty}{\text { ¢ }}$
	$\begin{aligned} & \hat{y} \\ & \text { y } \\ & \text { m Nㅡㅁ } \end{aligned}$	$\begin{aligned} & 8 \\ & \hline 0 \\ & \dot{c} \\ & \hline \end{aligned}$		$\begin{aligned} & \stackrel{\circ}{\mathrm{i}} \\ & \text { n } \end{aligned}$	$\left.\begin{array}{\|c\|} \infty \\ \infty \\ \infty \end{array} \right\rvert\,$	¢	$\bar{\sim}$	$\underset{\sim}{\mathrm{o}}$	$\begin{array}{\|l\|} \hline 0 \\ \hline 0 \end{array}$	$\underset{\sim}{\infty}$	$\begin{aligned} & \stackrel{\circ}{\mathrm{N}} \end{aligned}$	$\stackrel{\leftrightarrow}{\sim}$	$\underset{\sim}{\sim}$	$\stackrel{\square}{+}$	¢ֿ		$\stackrel{\square}{+}$	$\stackrel{\infty}{\stackrel{\infty}{+}}$	$\stackrel{\sim}{\sim}$	$\stackrel{\text { m }}{\stackrel{-}{+}}$	$\stackrel{ल}{\stackrel{m}{r}}$	N
		$\underset{\sim}{\mathrm{N}}$	N	$\stackrel{\sim}{\sim}$	$\stackrel{\text { g }}{\text { N }}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{j}}}{ }$	$\stackrel{\stackrel{\rightharpoonup}{+}}{ }$	$\stackrel{\text { eb }}{+}$	$\stackrel{\sim}{i}$	$\stackrel{\otimes}{-}$	$\stackrel{\circ}{+}$	$\stackrel{\circ}{+}$	${\underset{o}{\infty}}_{\infty}^{\infty}$	$\stackrel{\text { ¢0 }}{ }$	${\underset{o}{\infty}}_{\infty}^{\infty}$	$\begin{array}{\|c\|c} \infty \\ \hline \end{array}$	¢	厄仓．	\％	\％	$\begin{aligned} & \stackrel{\circ}{0} \\ & \stackrel{0}{0} \end{aligned}$	$\stackrel{\text { ¢ }}{0}$
ํ．อ®		$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{1}{5}}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{j}}}{ }$	$\left\|\begin{array}{c} \text { N} \\ \underset{\sim}{\mathrm{N}} \end{array}\right\|$	$\left\|\begin{array}{l} \circ \\ \stackrel{\circ}{\mathrm{m}} \end{array}\right\|$	$\underset{\underset{\sim}{\mathrm{j}}}{\stackrel{\mathrm{j}}{2}}$	$\underset{\sim}{\mathrm{p}}$	$\stackrel{\otimes}{\underset{\sim}{\mathrm{N}}}$	$\begin{array}{\|l\|l} \stackrel{n}{\dot{m}} \\ \hline \end{array}$	$\stackrel{\stackrel{\rightharpoonup}{\mathrm{J}}}{\underset{\tau}{2}}$	$\left\lvert\, \begin{aligned} & \stackrel{\circ}{\dot{\sim}} \\ & \underset{\sim}{2} \end{aligned}\right.$	$\begin{gathered} \stackrel{\infty}{\underset{~}{4}} \end{gathered}$	$\begin{aligned} & \text { 士⿱二⿲㇒丨丶⿰㇒⿻土一𧘇 } \end{aligned}$	$\begin{aligned} & \circ \\ & \stackrel{\rightharpoonup}{i} \end{aligned}$	$\begin{aligned} & \text { N్} \\ & \underset{\sim}{2} \end{aligned}$	$\begin{gathered} \stackrel{m}{2} \\ \stackrel{n}{2} \end{gathered}$	$\left\lvert\, \begin{aligned} & \stackrel{n}{6} \\ & \stackrel{6}{6} \end{aligned}\right.$	$\underset{\stackrel{\rightharpoonup}{\dot{\theta}}}{\stackrel{t}{2}}$	$\begin{array}{\|l\|} \hline \\ f \\ f \end{array}$	$\stackrel{\infty}{\stackrel{\infty}{\rightleftharpoons}}$		$\stackrel{\circ}{\square}$
둥		$\stackrel{\stackrel{Q}{\mathrm{~m}}}{\stackrel{\mathrm{c}}{2}}$	$\left\|\begin{array}{l} \circ \\ \underset{\sim}{\mathrm{O}} \end{array}\right\|$	$\begin{aligned} & \stackrel{\circ}{\mathrm{\sim}} \\ & \underset{\sim}{2} \end{aligned}$	$\left\|\begin{array}{c} 0 \\ \vdots \\ \vdots \end{array}\right\|$	$\begin{array}{\|c} \substack{g \\ 6 \\ \hline} \end{array}$	$\begin{gathered} \text { ot } \\ i \end{gathered}$	$\begin{aligned} & \hat{j} \\ & \dot{\sigma} \end{aligned}$	$\stackrel{\rightharpoonup}{\dot{\sigma}}$	$\underset{\sim}{\stackrel{N}{2}}$	$\begin{aligned} & \bar{\infty} \\ & \hline \end{aligned}$	$\overline{\mathrm{N}} \mid$	$\stackrel{\mathrm{t}}{\stackrel{\mathrm{c}}{2}}$	$\stackrel{\infty}{\stackrel{q}{\subsetneq}}$	$\stackrel{!}{\square}$	$\begin{array}{\|l\|} \hline \\ \end{array}$	$\stackrel{\text { ¢ }}{\sim}$	$\overline{\underset{~}{~ ָ}}$	$\stackrel{\%}{+}$	$\underset{\underset{~}{9}}{\stackrel{y}{4}}$	$\left\lvert\, \begin{gathered} \text { g } \\ \underset{\sim}{2} \end{gathered}\right.$	$\stackrel{\text { ¢ }}{\square}$
		$\stackrel{g}{\dot{O}}$	$\stackrel{\text { 吕 }}{0}$	$\stackrel{\circ}{\square}$	$\stackrel{\bullet}{+}$	$\stackrel{\text { ¢ }}{\stackrel{\text { ¢ }}{ }}$	$\stackrel{\otimes}{\oplus}$	$\begin{aligned} & 9 \\ & 6 \\ & 6 \end{aligned}$	$\stackrel{\circ}{\circ}$	$\stackrel{\stackrel{\circ}{\circ}}{\stackrel{\circ}{\circ}}$	$\stackrel{\otimes}{\underset{\sim}{\oplus}}$	$\begin{gathered} \stackrel{\circ}{寸} \\ \underset{f}{2} \end{gathered}$	$\begin{aligned} & \circ \\ & \\ & \underset{\sim}{\infty} \end{aligned}$	$\stackrel{\substack{\text { O} \\ \underset{\sim}{2}}}{ }$	$\stackrel{\circ}{\circ}$	$\begin{array}{\|l\|} \hline \stackrel{\circ}{6} \\ \hline \end{array}$	$\stackrel{\circ}{\mathrm{e}}$	$\begin{aligned} & \text { O} \\ & \stackrel{+}{6} \end{aligned}$	$\stackrel{\circ}{\infty}$	$\begin{array}{\|l} \hline 8 \\ \hline 8 \\ \hline \end{array}$	$\begin{aligned} & \text { 물 } \end{aligned}$	－
		$\stackrel{F}{\delta}$	$\stackrel{\circ}{\circ}$	$\stackrel{0}{+}$	$\stackrel{\circ}{\mathrm{N}}$	$\stackrel{\circ}{\circ}$	$\stackrel{\circ}{\circ}$	品	$\begin{aligned} & \stackrel{0}{0} \\ & \stackrel{i}{2} \end{aligned}$	$\stackrel{\circ}{\stackrel{\circ}{\dot{n}}} \mid$	$\begin{array}{\|c\|c} \stackrel{\circ}{\sim} \\ \underset{\sim}{2} \end{array}$	$\begin{aligned} & \circ \\ & \hline \dot{c} \\ & \hline \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\circ} \\ & \stackrel{\rightharpoonup}{6} \end{aligned}$	$\begin{aligned} & \circ \\ & \dot{\infty} \\ & \dot{o} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{W}} \\ & \dot{\sim} \end{aligned}$	$\begin{aligned} & \stackrel{\circ}{\dot{\theta}} \\ & \stackrel{y}{2} \end{aligned}$	$\stackrel{\stackrel{0}{\mathrm{~m}}}{\substack{2}}$	$\begin{aligned} & \dot{\theta} \\ & \underline{\theta} \end{aligned}$	oి	$\begin{gathered} \mathrm{i} \\ \underset{\sim}{\mathrm{~N}} \end{gathered}$	$\left\|\begin{array}{c} \underset{\sim}{\dot{~}} \end{array}\right\|$	号
		$\stackrel{\circ}{\circ}$	$\bar{\circ}$	N	$\stackrel{\square}{\circ}$	$\stackrel{\text { No }}{0}$	$\stackrel{\sim}{\square}$	～	$\widehat{\text { en }}$	$\stackrel{0}{6}$	$\stackrel{n}{\sim}$	F	$\stackrel{\square}{\square}$	$\stackrel{\varrho}{\infty}$	～	8	¢े	\＆	员	$\stackrel{1}{2}$	8	욱
		$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & 0 \\ & \hline \end{aligned}$	$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & \vdots \\ & \hline 0 \end{aligned}$	$\left\|\begin{array}{l} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array}\right\|$	$\begin{array}{\|c} \begin{array}{r} 2 \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{array} \\ \hline \end{array}$	$\begin{array}{\|l\|l} \hline g \\ \hline \\ \vdots \\ 0 \\ 0 \\ 0 \\ \hline \end{array}$	$\begin{aligned} & \stackrel{O}{\mathrm{~N}} \\ & \stackrel{0}{\mathrm{O}} \\ & \stackrel{0}{\mathrm{O}} \end{aligned}$	$\begin{aligned} & \circ \\ & \hline 0 \\ & 0 \\ & \vdots \\ & \underset{\sim}{\circ} \end{aligned}$	$\begin{array}{\|c} \substack{g \\ 0 \\ 0 \\ 0 \\ 0 \\ \vdots \\ \\ \hline} \\ \hline \end{array}$	$\left.\begin{array}{\|c} \underset{y}{2} \\ \stackrel{0}{0} \\ 0 \\ 0 \\ i \end{array} \right\rvert\,$	$\begin{array}{\|l\|l} \hline 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ \end{array}$		$\begin{array}{\|l\|} \hline 9 \\ \hline 0 \\ 0 \\ \hline 0 \\ \hline 0 \\ \hline 0 \\ \hline \end{array}$			¢						\bigcirc

■ Three-phase 400 V series

An 8-series motor provisional constant is set for motors with power output of $\mathbf{4 0 0} \mathbf{k W}$ or higher.

Motor rated capacity setting range (kW) P02/A16 b16/r16 .10	$\left\|\begin{array}{c} \text { Applicab\| } \\ \text { e motor } \\ \text { capacity } \\ (\mathrm{kW}) \end{array}\right\|$	Rated current (A) 	$\substack{\text { No-load } \\ \text { Current } \\ \text { (A) } \\ \\ \\ \text { P061/A20 } \\ \text { b201r20 }}$	$\%$ \%R1 (\%)	\%X (\%) 	Rated slip 	Iron loss factor 1 $\|$ P13/A27 b27/r27	Magnetic saturaion factor 1	Magnetic saturaion factor 2 P17/A31 b31/r31	$\|$Magnetic saturaion factor 3 P181/A32 b32 2 23	$\|$Magnetic factor 4 faction P19/A33 b33/r33		Magnetic saturation expansion coefficient a P21/A35 b35/r35$\|$	Magnetic saturation expansion coefficient b P22/A36 b36/36$\|$	Magnetic saturation expansion coefficient c P23/A37 b37/r37	$\|$Torque current for vector control P55/A55 b55/r55	Induced voltage factor for vector control$\left\|\begin{array}{c\|}\text { P56/A56 } \\ \text { b56/r56 }\end{array}\right\|$	For adjustment by manufacturerP57/A57b57/r57	Starting characteristic (Auto earch delay time 2) H46
0.01 to 0.09	0.06	0.22	0.20	13.19	11.75	1.77	14.00	93.8	87.5	75.0	62.5	50.0	106.3	112.5	118.8	10	85	027	0.5
0.10 to 0.19	0.1	0.35	0.27	12.96	12.67	1.77	14.00	93.3	86.1	74.4	63.6	50.7	108.8	118.7	129.6	0.17		0.024	
0.20 to 0.39	0.2	0.65	0.53	12.95	12.92	2.33	12.60	89.7	81.9	66.9	54.5	43.3	111.0	129.3	148.4.	0.34		0.023	
0.40 to 0.74	0.4	1.15	0.83	10.20	13.66	2.40	9.88	88.7	81.3	67.0	55.2	43.8	112.1	126.5	144.3	0.68		0.027	
0.75 to 1.49	0.75	1.80	0.94	5.49	13.71	2.00	4.31	92.5	85.1	71.8	59.1	46.7	108.6	117.3	128.3	1.14	95	0.050	
1.50 to 2.19	1.5	3.50	1.98	5.04	13.70	1.67	4.21	89.6	79.6	66.1	54.1	42.9	115.5	131.1	148.4	2.28		0.085	0.6
2.20 to 3.69	2.2	4.80	2.73	4.07	12.98	1.67	3.94	89.4	79.3	65.8	53.9	42.7	115.5	131.1	148.4	3.34		0.092	
3.70 to 5.49	3.7	7.80	4.25	4.07	13.15	1.17	3.59	92.0	84.2	70.7	58.2	45.9	112.8	126.0	141.4	5.62		0.102	0.8
5.50 to 7.49	5.5	10.50	5.28	3.17	11.47	1.00	2.86	92.0	84.2	70.5	58.3	46.1	112.8	126.2	144.6	8.36		0.137	1.0
7.50 to 10.99	7.5	13.50	5.84	3.01	12.56	1.00	2.36	92.4	84.8	71.5	59.2	46.8	110.1	120.9	136.5	11.40		0.158	1.2
11.00 to 14.99	11	20.00	7.45	2.21	14.28	1.00	2.56	92.5	85.2	72.2	59.8	47.4	110.7	122.1	139.0	16.71		0.207	1.4
15.00 to 18.49	15	27.00	9.25	1.94	14.34	0.83	2.32	92.8	85.7	72.8	60.3	47.9	108.7	118.1	132.8	22.79		0.242	
18.50 to 21.99	18.5	34.00	13.70	1.48	15.10	0.67	1.86	92.9	85.8	73.1	61.0	48.8	109.4	119.1	131.6	28.11		0.240	2.0
22.00 to 29.99	22	42.00	16.80	1.46	15.29	0.83	1.91	92.7	85.5	72.6	60.5	48.5	110.5	121.3	135.2	33.43		0.238	
30.00 to 36.99	30	58.00	22.80	1.40	15.38	0.83	1.91	92.3	84.8	71.8	59.8	47.9	111.4	123.2	139.0	45.58		0.244	2.3
37.00 to 44.99	37	69.00	27.50	1.20	15.75	0.67	1.61	93.3	86.7	74.3	62.0	49.7	107.3	114.9	124.8	56.22		0.321	2.5
45.00 to 54.99	45	83.00	32.45	1.21	16.14	0.67	1.58	93.2	86.5	73.9	61.7	49.5	107.9	116.3	128.6	68.37		0.318	
55.00 to 74.99	55	104.0	44.00	1.36	14.44	0.50	1.73	93.8	87.5	75.0	62.5	50.0	106.3	112.5	118.8	93.39	84	0.304	2.6
75.00 to 89.99	75	136.0	45.00	1.46	17.78	0.50	1.33									127.4		0.452	3.0
90.00 to 109.9	90	162.0	56.00	1.45	15.67	0.50	1.33									152.8	85	0.430	3.2
110.0 to 131.9	110	192.0	68.00	1.29	14.80	0.33	1.27									186.8	88	0.527	3.5
132.0 to 159.9	132	230.0	72.00	1.11	14.74	0.33	1.21									211.7	87	0.583	4.1
160.0 to 199.9	160	285.0	95.00	0.99	19.09	0.67	1.06									256.6	86	0.488	4.5
200.0 to 219.9	200	352.0	122.0	1.00	18.33	0.67	1.00									320.8	87	0.466	
220.0 to 249.9	220	390.0	144.0	0.82	18.14	0.67	1.14									352.8	88	0.451	
250.0 to 299.9	250	450.0	164.0	0.87	19.48	0.67	1.12									400.9		0.426	5.0
300.0 to 314.9	300	532.0	179.0	0.93	21.04	0.67	1.00									481.1		0.425	5.5
315.0 to 354.9	315	554.0	183.0	0.80	20.07	0.50	1.11									505.2		0.556	
355.0 to 374.9	355	620.0	200.0	0.78	19.59	0.50	1.07									569.3	87	0.570	5.6
375.0 to 399.9	375	660.0	223.0	0.74	19.10	0.50	1.15									601.4		0.565	
400.0 to 449.9	400	670.0	200.0	0.62	15.67	0.29	1.58	92.7	85.6	72.9	60.9	48.9	109.3	120.2	133.5	641.5	90	0.683	7.5
450.0 to 499.9	450	770.0	270.0	0.48	13.03	0.23	1.84									721.7		0.694	9.8
500.0 to 559.9	500	835.0		0.51	12.38	0.18	1.80									801.9		1.393	
560.0 to 629.9	560	940.0		0.57	13.94	0.20	1.61									898.1			
$\frac{630.0 \text { to } 709.9}{710.0 \text { to }}$	630	1050.0	355.0	0.46	11.77	0.17	1.29									1010		1.395 1.560	10.5
710.0 to	710	1150.0	290.0	0.54	14.62	0.21	0.97									1139		1.560	

5.3 Description of Function Codes

This section describes details of function code. In principle, explanation is given for each function code in order of group and numerical order. However, function codes that are strongly related to one function are explained together in the first paragraph.

5.3.1 F codes (Fundamental functions)

F00 Data protection

This is a function to protect currently set data by disabling to make changes in function code data (except F00) and all types of command values (frequency setting, PID command) by key operation from keypad.

F00 data	Function code change		Command value setting with keypad operation \circlearrowleft keys)
	Change at keypad	Change with communication	
0	Allowed	Allowed	Allowed
1	Not allowed*	Allowed	Allowed
2	Allowed	Allowed	Not allowed
3	Not allowed*	Allowed	Not allowed

* Function codes cannot be changed at the keypad, however, function code F00 can be changed.

F00 data can be changed using the "(500) key + \uparrow key", or " 500 key $+\odot$ key" double operation.
As a similar function related to data protection, "Allow function code editing (Data change enabled) 'WE-KP'" which can be assigned to a digital input terminal is available ($\mathbb{C l}$ Function code E01 to E09 data = 19).
By combining data protection F00, protection of function code functions as follows:

Input signal "WE-KP"	Function code change	
	Changes from the keypad	Change from communication
OFF	Not allowed	
ON	Allowed	

- If "enable data change with keypad" [WE-KP] is set to a digital input terminal by mistake, it is not possible to make changes in function codes. In this case, after shortening (ON) the terminal to which temporarily "WE-KP" function is assigned, and the terminal [CM], change to a different function.
- "WE-KP" is the change enable signal for function code, this is not the function to protect frequency setting and PID command by $-\odot$ key operation.

Frequency setting 1

Related function code:
F18 Bias (Frequency setting 1)
C30 Frequency setting 2
C31 to C35 Analog input adjustment (Terminal [12])
C36 to C40 Analog input adjustment (Terminal [C1] (C1 function))
C41 to C45 Analog input adjustment (Terminal [V2])
C55 to C56 Analog input adjustment (Terminal [12])
(Bias, Bias reference point)
C61 to C62 Analog input adjustment (Terminal [C1] (C1 function))
(Bias, Bias reference point)
C67 to C68 Analog input adjustment (Terminal [V2]]
(Bias, Bias reference point) C74 to C78 Analog input adjustment (Terminal [C1] (V3 function)) C82 to C83 Analog input adjustment (Terminal [C1] (V3 function))
(Bias, Bias reference point)
C50 Bias (Frequency setting 1) (Bias reference point) H61 UP/DOWN control - Initial value selection d59, d61 to d63 Command (Pulse train input)

Select setting method of frequency setting. Select Frequency setting 1 with function code F01, and Frequency setting 2 with C30. Frequency setting 1 and Frequency setting 2 are selected with "Frequency setting 2/Frequency setting 1 "Hz2/ Hz1"" assigned to the digital input terminal. (an Fonction code E01 to E09 data = 11).

F01, C30 data	Command source
0	Frequency setting with keypad (refer to the following descriptions to find the setting method)
1	Setting with voltage value to be input for terminal [12] (0 to ± 10 VDC, maximum output frequency/ ± 10 VDC)
2	Setting with current value (4 to 20 mADC , maximum output frequency/20 mA DC) input for terminal [C1] (C1 function) (Set slide switch SW8 on the PCB to the [C1] side (factory default).
3	Setting with result of adding the voltage value to be input for terminal [12] (0 to ± 10 VDC, maximum output frequency/ $\pm 10 \mathrm{VDC}$) and the current value to be input for terminal [C1] (4 to 20 mA DC , maximum output frequency/20 mA DC) (If the result of addition is equal to or higher than the maximum output frequency, frequency is restricted to the maximum output frequency.)
5	Setting with voltage value to be input for terminal [V2] (0 to ± 10 VDC, maximum output frequency/ ± 10 VDC) (Set slide switch SW5 on the PCB to the [V2] side (factory default)).
6	Setting with voltage value to be input for terminal [C1] (V3 function) (0 to $\pm 10 \mathrm{VDC}$, maximum output frequency/ ± 10 VDC) (Set slide switch SW8 on the PCB to the [V3] side).
7	Setting with UP command "UP" and DOWN command "DOWN" assigned to the digital input terminal It is necessary to assign the UP command (Data = 17) and DOWN command (Data = 18) to digital input terminal [X1] to [X9]. (E01 to E09)
8	Frequency setting with keypad (with balanceless/bumpless function)
10	Setting with pattern operation
11	Frequency setting with digital input interface card (option) (Refer to the Option Instruction Manual for details.)
12	Setting with pulse train input "PIN" (data $=48$) assigned to digital input terminal [X6] and [X7], or with PG interface card (option) Note: If using terminal [X6] and [X7] with pulse train input, they may be affected by noise from other wiring. Keep wiring to terminal $[\mathrm{X} 6]$ and $[\mathrm{X} 7]$ and other wiring as far apart as possible.

Setting method of reference frequency

[1] Setting the frequency with the keypad (F01 = 0 (factory default) or 8)

(1) Set the data of function code F01 to "0" or " 8 ". When the keypad is set to Programming or Alarm mode, the () keys are disabled to modify the reference frequency. You need to switch to Running mode to enable frequency setting with the \triangle keys.
(2) When keys are pressed, reference frequency is displayed and the least significant digit of the reference frequency flashes.
(3) By pressing the keys again, it is possible to change the reference frequency. The changed reference frequency is automatically saved (function code E64 $=0$: factory default). Saved setting values are reflected in function code C99, and are therefore copied with the keypad or FRENIC-Loader copy function.

- A manual saving method (function code E64 = 1) is available in addition to the above method for saving frequency setting data. After changing the reference frequency, press the key to save.
- While the data of function code F01 is set to " 0 " or " 8 ", when frequency setting method other than Frequency setting 1 (Frequency setting 2, communication, multistep frequency) is selected as frequency setting, it is not possible to change the reference setting with keys even if keypad is at operation mode. In this case, pressing $\triangle \checkmark$ keys displays the currently selected reference frequency.
- When frequency setting is performed with keys, the least significant digit displayed flashes and the data is changed from the least significant digit and the changing digit gradually shifts to the upper digit.
- In order to perform setting such as reference frequency, press once and when the least significant digit flashes, push down the key, and then, the flashing digit will move. Therefore, it is possible to change the large numerical number easily. This operation is called cursor movement.
- When the data of function code F 01 is set to " 8 ", balanceless/bumpless function becomes enabled. If changing to frequency setting with the keypad from a frequency setting method other than the keypad, initial values for the new method will be the frequency settings prior to changing. By using this function, even if frequency setting is switched, it is possible to perform operation without shock.

[2] Setting the frequency with analog input (F01 = 1 to $3,5,6$)

It is possible to arbitrarily specify a frequency setting from the analog inputs (voltage value to be input to terminal [12], [V2], and [C1] (V3 function), or current value to be input to terminal [C1] (C1 function)) by multiplying them with the gain and adding the bias. The polarity can be selected and the filter time constant and offset can be adjusted.

Table Adjustment constants of Frequency setting 1

F01 data	Input terminal	Input range	Bias		Gain		Polarity selection	Filter	Offset
			Bias	Base point	Gain	Base point			
1	[12]	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	F18	C50	C32	C34	C35	C33	C31
2	[C1] (C1 function)	$\begin{aligned} & 4 \text { to } 20 \mathrm{~mA} \\ & 0 \text { to } 20 \mathrm{~mA} \end{aligned}$	F18	C50	C37	C39	C40	C38	C36
3	$[12]+[C 1]$ (C1 function)	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	F18	C50	C32	C34	C35	C33	C31
	(Set by result of addition)	$\begin{aligned} & 4 \text { to } 20 \mathrm{~mA} \\ & 0 \text { to } 20 \mathrm{~mA} \end{aligned}$	F18	C50	C37	C39	C40	C38	C36
5	[V2]	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	F18	C50	C42	C44	C45	C43	C41
6	[C1] (V3 function)	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	F18	C50	C75	C77	C78	C76	C74

Table Adjustment constants of Frequency setting 2

$\begin{aligned} & \mathrm{C} 30 \\ & \text { data } \end{aligned}$	Input terminal	Input range	Bias		Gain		Polarity selection	Filter	Offset
			Bias	Base point	Gain	Base point			
1	[12]	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	C55	C56	C32	C34	C35	C33	C31
2	[C1] (C1 function)	$\begin{aligned} & 4 \text { to } 20 \mathrm{~mA} \\ & 0 \text { to } 20 \mathrm{~mA} \end{aligned}$	C61	C62	C37	C39	C40	C38	C36
3	$[12]+[C 1]$ (C1 function) (Set by result of addition)	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	C55	C56	C32	C34	C35	C33	C31
		$\begin{aligned} & 4 \text { to } 20 \mathrm{~mA} \\ & 0 \text { to } 20 \mathrm{~mA} \end{aligned}$	C61	C62	C37	C39	C40	C38	C36
5	[V2]	0 to +10 V	C67	C68	C42	C44	C45	C43	C41
6	[C1] (V3 function)	$\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$	C82	C83	C75	C77	C78	C76	C74

■ Offsets (C31, C36, C41, C74)

C31, C36, C41 or C74 configures an offset for an analog voltage/current input. The offset also applies to signals sent from the external equipment.

Filters (C33, C38, C43, C76)

C33, C38, C43 and C76 provide the filter time constants for the voltage and current of the analog input. The larger the time constant, the slower the response. Specify the proper filter time constant taking into account the response speed of the machine (load). If the input voltage fluctuates due to line noises, increase the time constant.

- Polarity selection for terminal (C35, C45, C78)

C35, C45 and C78 configures the polarity and therefore the input range for analog input voltage.

C35, C45, C78 data	Terminal [12], [V2], [C1] (V3 function) input specifications
0: Bipolar	-10 to +10 V (factory default)
1: Unipolar	0 to +10 V (Negative value of voltage is regarded as 0 V)

FUNCTION

F Codes
E Codes
C Codes
P Codes H Codes
A Codes
b Codes
r Codes
J Codes
d Codes
U Codes
y Codes
K Codes

■ Terminal [C1] (C1 function) range / polarity selection (C40)

C40 data	Terminal input range	Handling when bias value is set to minus
0: Unipolar	4 to 20 mA (factory default)	Limit below 0 point with 0
1: Unipolar	0 to 20 mA	
10: Bipolar	4 to 20 mA	Enable below 0 point as minus value.
11: Bipolar	0 to 20 mA	

In order to use terminal [C1] with the C1 function and V3 function, the following settings are necessary.

[C1] terminal	SW8	C40	C78
When using C1 function (4 to 20 mA)	C1 side (factory default)	0 (unipolar) (factory default) 10 (bipolar)	Not required
When using C1 function (0 to 20 mA)	C1 side	1 (unipolar) 11 (bipolar)	Not required
When using V3 function (0 to $\pm 10 \mathrm{~V}$)	V3 side	Not required	0 (factory default)
When using V3 function (0 to +10 V)	V3 side	Not required	1

Refer to "Chapter 2 2.2.7" for details on SW8.

Gain and bias

Terminal	<Frequency setting 1: F01>	<Frequency setting 2: C30>
[12]		
$\begin{aligned} & {[\mathrm{C} 1]} \\ & \text { (C1 } \end{aligned}$ function)		
[V2]		
$\begin{aligned} & \text { [C1] } \\ & \text { (V3 } \end{aligned}$ function)		

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
d Codes
U Codes
y Codes
K Codes

For [12] + [C1] (C1 function) (setting by the result of addition), bias and gain are reflected to [12] and [C1] (C1 function) individually, and added by frequency command value of the result.

If unipolar (terminal [12] $(C 35=1)$, terminal [V2] $(C 45=1)$, terminal [C1] $(C 1$ function) $(C 40=0,1)$, terminal [C1] (V3 function) (C78 = 1))

For reference frequency and analog input of Frequency setting 1, it is possible to set arbitrary relationship by A point (determined by bias (F18) and bias reference point (C50)) and point B (determined by the gain corresponding to each analog input and the gain reference point (C32 and C34, C37 and C39, C42 and C44, and C75 and C77)).
For reference frequency and analog input of Frequency setting 2 (C30), it is possible to set arbitrary relationship by point A (determined by bias and bias reference point (C55 and C56, C61 and C62, C67 and C68, and C82 and C83) and point B (determined by the gain corresponding to each analog input and the gain reference point (C32 and C34, C 37 and C39, C42 and C44, and C75 and C77).

Both data of bias and gain are set with 100% as the maximum frequency. The data of bias reference point and gain reference point are set up with full scale of analog input (10 V or 20 mA) as 100%.

Note

<Frequency setting 1: F01>

- Analog input at or below bias reference point (C50) is restricted by bias value (F18).
- When the value set in bias reference point (C50) \geq each gain reference point (C34, C39, C44, C77), it is judged as incorrect setting and reference point becomes 0 Hz .
<Frequency setting 2: C30>
- Analog input at or below bias reference point (C56, C62, C68, C83) is restricted by bias value (C55, C61 C67, and C82).
- When the value set in bias reference point (C56, C62, C68, C83) \geq each gain reference point (C34, C39, C44, C77), it is judged as incorrect setting and reference point becomes 0 Hz .

Example) When setting reference frequency to 0 to 60 Hz by analog input (terminal [12]) 1 to 5 V (When maximum frequency is $\mathrm{FO}=60 \mathrm{~Hz}$)

(Point A)

In order to set reference frequency to 0 Hz when analog input is 1 V , set bias (F 18) to 0%. At this point, 1 V has to become the bias reference point and 1 V is equivalent to 10% against full scale 10 V of terminal [12], therefore, set the bias reference point (C50) to 10%.
(Point B)
In order to set reference frequency so that the frequency becomes the highest when analog input is 5 V , set the gain (C32) to 100%. At this point, 5 V has to become the gain reference point and 5 V is equivalent to 50% against full scale 10 V of terminal [12], therefore, set the gain reference point (C34) to 50%.

[^8]
FUNCTION

If bipolar (terminal [12] $(C 35=0)$, terminal $[V 2](C 45=0)$, terminal [C1] (V3 function) $(C 78=0)$)

For terminal [12], [V2], and [C1] (V3 function), by setting function codes C35, C45, and C78 to " 0 ", it is possible to use bipolar input (-10 to +10 V).
When both bias (F18) and bias reference point (C50) are set to " 0 ", command becomes forward and reverse symmetric as shown in the diagram below.

[^9]

- To input bipolar (0 to $\pm 10 \mathrm{VDC}$) analog voltage by analog input, set function codes $\mathrm{C} 35, \mathrm{C} 45$, and C 78 to " 0 ". When the C35, C45, and C78 data is " 1 ", only 0 to +10 VDC effective and negative polar input 0 to -10 VDC regarded as 0 (Zero) V.
- When setting reference frequency by display other than frequency (Hz), please change the speed monitor unit in E48.

When operating unipolar analog input as bipolar
(terminal [12] $(C 35=0)$, terminal [V2] $(C 45=0)$, terminal [C1] (C1 function) $(C 40=10,11)$, terminal [C1] (V3 function) $(\mathbf{C 7 8}=0)$)
By setting the bias value to a minus value, it is possible to obtain a negative reference frequency.
Example of frequency setting with terminal [V2] when -100 \% is set to the bias value is shown in the diagram below.

[3] Frequency setting by digital input signal "UP"/"DOWN" (F01=7)

As frequency setting, UP/DOWN control is selected, and when the terminal command UP or DOWN is turned on with Run command ON, the output frequency increases or decreases accordingly, within the range from 0 Hz to the maximum frequency.
To perform frequency setting by UP/DOWN control, it is necessary to set the data of function code F01 to " 7 " and assign "UP command [UP], down command [DOWN]" to the digital input terminals. (Mal Function code E01 to E09 data $=17,18$)

Input signal "UP"	Input signal "DOWN"	Enable
Data $=17$	Data $=18$	
OFF	OFF	
ON	OFF	Increase output frequency by currently selected acceleration time
OFF	ON	Decrease output frequency by currently selected deceleration time
ON	ON	The output frequency will be held

UP/DOWN control initial value selection

In addition to the reference frequency initial value when starting control, select the following operations.
$\left.\begin{array}{|c|l|l|l|}\hline \text { H61 data } & \begin{array}{l}\text { Initial value of frequency setting when starting } \\ \text { UP/DOWN control }\end{array} & \begin{array}{l}\text { UP/DOWN }\end{array} \\ \hline & \begin{array}{l}\text { Mode to fix to "0" [Compatible with previous } \\ \text { models] } \\ \text { When restarting operation (including when the } \\ \text { power to the inverter is turned ON), initial value of } \\ \text { setting frequency by UP/DOWN control is cleared } \\ \text { with "0". } \\ \text { Increase speed by UP command. }\end{array} & \begin{array}{l}\text { UP/DOWN based on selected } \\ \text { inverter is stopped }\end{array} \\ \text { acceleration/deceleration time }\end{array} \quad \begin{array}{c}\text { Not possible } \\ \text { (fixed at 0) }\end{array}\right\}$

The H 61 factory default for this model is " 3 ".
If using the UP/DOWN control function on previous models, operation corresponds to that of previous models by setting " 0 " or " 1 " when replacing the inverter.
＜Initial value of UP／DOWN control when setting method of frequency setting is switched＞
The initial value when setting method of frequency setting is set to UP／DOWN control is shown in the following table．

Setting method prior to switching	Switching signal		Initial value of UP／DOWN control	
	H61 $=0,2$ Frequency setting 2／ Frequency setting 1		Reference frequency by setting method prior to switching	
Setting UP／DOWN（F01，C30）				
PID control	PID Cancel	Reference frequency by PID control（PID output）		
Multistep frequency	Multistep frequency selection	Reference frequency by setting method prior to switching	Reference frequency by previous UP／DOWN control	
Communication	Link operation selection			

［ 4 ］Frequency setting using digital input（option DIO interface card）（F01＝11）

The frequency setting with binary（ 8,12 bits）or BCD code via option DIO interface card（OPC－DI）is also available to be selected．Refer to the Digital Input Output Interface Card Instruction Manual．

[5] Frequency setting using pulse train input (F01 = 12)

Selecting the pulse train input format (d59)

By inputting serial pulses to PG interface card (OPC-PG, OPC-PG22) terminal [XA] and [XB], or to inverter control circuit terminal [X6] and [X7], a frequency proportional to the pulse frequency can be set. Specify the pulse train input method with d59. The pulse train sign/pulse train input, the forward rotation pulse/reverse rotation pulse, and the A and B phases with 90 degree phase difference (B phase lead, A phase lead). If the inverter is equipped with a PG interface card, the pulse train input function with terminal [X6] and [X7] is disabled.

With PG interface cards equipped with dual system pulse input, the pulse train input terminal can be switched between PG interface card terminal [YA] and [YB]/terminal [XA] and [XB], allowing the frequency to be set with the "PG input switching "PG-SEL"" signal assigned to the digital input terminal.

Refer to function code E01 to E09 (data $=83$) for details on "PG-SEL".
The table below lists pulse train formats and their operations.

Pulse train input format selected by d59	Operation overview	PG interface card terminals	Terminal [X6], [X7]
0: Frequency and direction	The speed command is given to the inverter unit based on the pulse train input frequency, and the speed command polarity can be set with a pulse train sign.	[XA]: - polarity when ON + polarity when OFF [XB]: Pulse train	Input the pulse train by assigning "PIN" (E07 = 48) to terminal [X7]. The polarity will be positive when OFF, and negative when ON by assigning "SIGN" (E01 to 06, E08, E09 = 49) to other than terminal [X7]. The polarity will be positive if "SIGN" is not assigned. Terminal [X6] will be invalid if "PIN" is assigned to terminal [X6].
1: Forward and reverse pulse	Frequency/speed command according to the pulse train rate is given to the inverter. The forward rotation pulse gives a frequency/speed command with positive polarity, and a reverse rotation pulse, with negative polarity.	[XA]: Reverse rotation pulse [XB]: Forward rotation pulse	Input the pulse train by assigning "PIN" (E06, E07 = 48) to both terminal [X6] and [X7]. Terminal [X6] will be the reverse rotation pulse (A phase), and terminal [X 7] will be the forward rotation pulse (B phase). The setting frequency will always be 0 Hz if "PIN" is not assigned to both terminal [X 6$]$ and [X 7].
2: A, B phase 90° phase difference (B phase lead forward rotation)	Pulse trains generated by A and B phases with 90 degree	[XA]: A phase pulse [XB]: B phase pulse	Input the 90° phase difference pulse train by assigning "PIN" (E06, E07 = 48) to both terminal [X6] and [X7].
3: A, B phase 90° phase difference (A phase lead forward rotation)	phase difference give a frequency/speed command to the inverter based on their pulse rate and the phase difference (B phase advanced).		Terminal [X 6] will be the A phase, and terminal [X 7] will be the B phase. The setting frequency will always be 0 Hz if "PIN" is not assigned to both terminal [X6] and [X7].

Data 0：Pulse train sign／pulse train input

Data 1：Forward pulse／reverse pulse

Data 2：A，B phase 90° phase difference（ B phase lead）
－Pulse scaling factor 1 （d62），pulse scaling factor 2 （d63）
For pulse train input，set the relationship between input pulse frequency and frequency setting value by function code d62（Command（pulse train input）pulse scaling factor 1）and d63（command（pulse train input）pulse scaling factor 2）．

Relationship between input pulse frequency and frequency setting value
As shown in the above diagram，set input pulse frequency［kp／s］to function code d62（command（pulse train input） pulse scaling factor 1 ）and set frequency setting value［Hz］（when the input pulse frequency becomes the value set to function code d62）to function code d63（command（pulse train input）pulse scaling factor 2）．At this time，the relationship formula of input pulse frequency to be entered and frequency setting value f^{\star}（or speed command value） is as follows：

$$
\mathrm{f}^{*}[\mathrm{~Hz}]=\mathrm{Np}[\mathrm{kp} / \mathrm{s}] \mathrm{x} \quad \begin{aligned}
& \text { Pulse scaling factor } 2(\mathrm{~d} 63) \\
& \text { Pulse scaling factor } 1(\mathrm{~d} 62)
\end{aligned}
$$

Input pulse frequency
Np ［kp／s］

FUNCTION
F Codes
E Codes
$\mathrm{f}^{*}[\mathrm{~Hz}]$ ：Frequency setting value
$\mathrm{Np}[\mathrm{kp} / \mathrm{s}]$ ：Input pulse frequency to be input

Depending on the pulse train sign, polarity of the command is determined. Rotation direction of the motor is determined by the polarity of pulse train input and "FWD"/"REV" command. Table Relationship between pulse train input polarity and rotation direction is shown in the following table.
Table Relationship between pulse train input polarity and rotation direction

Polarity according to the pulse train input	Run command source	Rotational direction
+	"FWD" (Forward rotation command)	Forward
+	"REV" (Reverse rotation command)	Reverse rotation
-	"FWD" (Forward rotation command)	Reverse rotation
-	"REV" (Reverse rotation command)	Forward

- Filter time constant (d61)

Set filter time constant for pulse train input. The larger the time constant, the slower the response. Specify the proper filter time constant taking into account the response speed of the machine (load). If the pulse is lower and frequency command fluctuates, set larger time constant.

- Switching frequency setting

Switch Frequency setting 1 (F01) and Frequency setting 2 (C30) by the signal "Frequency setting 2/Frequency setting 1 " "Hz2/ Hz 1 ", which was assigned to the external digital input terminal.
(1) (Refer to Function code E01 to E09 (Data = 11) to find the details of "Hz2/ Hz1".

Input signal "Hz2/ Hz1"	Frequency setting method to be selected
OFF	Frequency setting 1 (F01)
ON	Frequency setting 2 (C30)

F02
 Operation method

Select the operation command setting method. Indicate instruction method of run/stop and rotation direction (forward/reverse rotation) for each setting method.

F02 data	Operation command setting method	
	Run/stop	

Digital input signal, "FWD", "REV" needs to be assigned to terminals [FWD], [REV].
([10] Function code E98, E99 data $=98,99$)

Note
 - F02 cannot be changed when "FWD" or "REV" is ON.

- If $\mathrm{F} 02=1$ and when assignment of terminal [FWD] or [REV] is changed from other function to "FWD" function or "REV" function, turn the terminal [FWD] and [REV] off in advance (motor may rotate due to change in the setting).
- Forward rotation/reverse rotation selection "DIR"

Only when F02 = 1 external signal, it is possible to change the run command direction with the "forward rotation/reverse rotation "DIR" signal assigned to the digital input terminal.

Input signal "DIR"	"FWD"	"REV"	Run command direction
OFF	ON	OFF	Forward rotation
ON	ON	OFF	Reverse rotation
OFF	OFF	ON	Reverse rotation
ON	OFF	ON	Forward rotation
Not required	ON	ON	Stop command

- Self-hold selection "HLD"

Self-hold can be applied to "FWD" and "REV" with the "Self-hold selection "HLD"" signal assigned to the digital input terminal. When "HLD" is ON, the inverter self-holds the "FWD" or "REV" signal, and when OFF, the hold state is released.

- 2-wire operation

Two types of 2-wire operation can be configured regardless of whether "DIR" is used.

FUNCTION
F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
d Codes
U Codes
y Codes

- 3-wire operation

Two types of 3-wire operation can be configured regardless of whether "HLD" or "DIR" are used.

3 -wire operation (1)	3 -wire operation (2)
Forward rotation: [FWD] Reverse rotation: [REV] Stop: [HLD]	Run: [FWD] Forward rotation/reverse rotation: [DIR] Stop: [HLD]

Refer to Function code E01 to E09 (data = 6) for details on "HLD".

As a setting method of run command, high-priority setting methods (remote/local switch (refer to Chapter 3, Section 3.3.7), communication, etc.) are available in addition to the above mentioned settings.

F03
 Maximum output frequency 1

F03 specifies the maximum frequency that the inverter outputs. When the device to be driven is set to rated or higher, the device may be damaged. Make sure to make an adjustment to design mode value of the machinery.

- Data setting range: 5.0 to $599.0(\mathrm{~Hz})$

Control method	Maximum setting range	Remarks
V/f control (incl. dynamic torque vector control, V/f control with speed sensor)	599 Hz	Speed sensor upper limit: 100 kHz
Vector control with sensor (induction motors, permanent magnet synchronous motors)	599 Hz	Speed sensor upper limit: 100 kHz
Speed sensorless vector control (induction motors, permanent magnet synchronous motors)	599 Hz	

The speed sensor pulse frequency is limited to 100 kHz or less, and therefore it is not possible to output frequencies higher than this.
\square
\triangle WARNING
Inverter high-speed operation settings can be specified easily. If settings are changed, use the product after sufficiently checking the motor and machine specification.
Failure to observe this could result in injury or damage.

[^10]```
F04, F05
F06
```


## Base frequency 1, rated voltage at base frequency 1 Maximum output voltage 1

```
Related function codes: H50, H51 Non-linear V/f 1 (Frequency, Voltage) H52, H53 Non-linear V/f 2 (Frequency, Voltage) H65, H66 Non-linear V/f 3 (Frequency, Voltage)
```

Set the base frequency and base frequency voltage that are essential to operation of the motor. By combining related function codes H 50 to $\mathrm{H} 53, \mathrm{H} 65$, and H 66 , it is possible to set non-linear V/f pattern (weak or strong voltage by arbitrary point) and perform setting of V/f characteristics that is suitable for the load.

Impedance of the motor becomes larger with high frequency, and when output voltage becomes less, output torque may be reduced. In order to prevent this, increase the voltage at high frequency by setting function code F06 (maximum output voltage 1). However, it is not possible to output voltage at or higher than the input power voltage of the inverter.

| V/f point | Function code |  | Remarks |
| :--- | :---: | :---: | :---: |
|  | Frequency | Voltage |  |
| Maximum output <br> frequency | F03 | F06 | Enabled only when V/f control selected <br> (F42 $=0$ and F37 $=0,1$ ) |
| Base frequency | F04 | F05 |  |
| Non-linear V/f 3 | H65 | H66 | Enabled only when V/f control selected |
| Non-linear V/f 2 | H52 | H53 |  |
| Non-linear V/f 1 | H50 | H51 |  |

## <Setting example>

## Normal V/f pattern setting



Non-linear V/f pattern setting (3 points)


## Base frequency (F04)

Set the data in accordance with rated frequency of the motor (given on the nameplate of the motor).

- Data setting range 5.0 to $599.0(\mathrm{~Hz})$


## - Rated voltage at base frequency (F05)

Set the data to " 0 " in accordance with rated voltage of the motor (given on the nameplate of the motor).

- Data setting range: $0 \quad$ : AVR disable

80 to $240(\mathrm{~V})$ : AVR operation (at 200 V series)
160 to 500 (V) : AVR operation (at 400 V series)

- When data is set to " 0 ", the base frequency voltage becomes equivalent to inverter input voltage. When input voltage fluctuates, output voltage fluctuates as well (no AVR operation).
- When data is set to arbitrary voltage other than " 0 ", automatically keeps the output voltage constant (AVR operation). When control function such as auto torque boost, auto energy-saving operation, and slip compensation is used, it is necessary to adjust to the rated voltage (given on the nameplate of the motor) of the motor.
- By turning ON digital input AVR cancel "AVR-CCL" (E01 to E09 = 116)", AVR is canceled, and the same operation as $\mathrm{F} 05=0$ is performed.

The voltage that the inverter can output is lower than the input voltage of the inverter. Appropriately set the voltage in accordance with the motor.
With vector control, current feedback control is performed. Current feedback control is used to control the current based on the difference between the motor induced voltage and the inverter output voltage. Consequently, if the inverter output voltage is not set to ensure that a higher voltage than the motor induced voltage is output, it will not be possible to perform control correctly. Generally speaking, the voltage difference is 20 V for the 200 V series, and 40 V for the 400 V series. The voltage that the inverter can output is equivalent to the input voltage of the inverter. Set the voltage appropriately based on the motor. When using a dedicated Fuji motor for vector control (VG motor), by setting VG motor (capacity: P02, motor type: P99), F04 and F05 are set automatically. If using a general-purpose motor to perform speed sensorless vector control, set the rated voltage for base frequency voltage 1 (F05). The above voltage difference is set with an induced voltage coefficient for vector control (P56). (Generally speaking, the initial value may be used.)

- Non-linear V/f 1, 2, 3 (Frequency) (H50, H52, H65)

Set frequency at the arbitrary point of non-linear V/f pattern.

- Data setting range: 0.0 (Cancel), 0.1 to $599.00(\mathrm{~Hz})$

Note When 0.0 is set, the setting becomes the pattern without using non-linear V/f pattern.

Non-linear V/f 1, 2, 3 (Voltage) (H51, H53, H66)
Set voltage at the arbitrary point of non-linear V/f pattern.

$$
\begin{aligned}
\text { - Data setting range: } 0 \text { to } 240(\mathrm{~V}) & \text { : AVR operation (at } 200 \mathrm{~V} \text { series) } \\
0 \text { to } 500(\mathrm{~V}) & \text { : AVR operation (at } 400 \mathrm{~V} \text { series) }
\end{aligned}
$$

## Maximum output voltage 1 (F06)

Set the voltage at maximum output frequency 1 (F03).

- Data setting range: 80 to $240(\mathrm{~V}) \quad$ : AVR operation (at 200 V series)

160 to $500(\mathrm{~V}) \quad$ : AVR operation (at 400 V series)

[^11]F07, F08

```
Acceleration time 1, Deceleration time 1
Related function codes:
E10, E12, E14 Acceleration time 2, 3, 4
E11, E13, E15 Deceleration time 2, 3, 4
H07 Curve acceleration/deceleration
H56 Deceleration time for forced stop
H54, H55 Acceleration/deceleration time (Jogging)
H57 to H60 Acceleration/deceleration range No. 1, No. 2 S-curve range
E61 to E63, E66 Analog input (Extension function selection)
d86 Acceleration/deceleration time filter time constant
```

Acceleration time sets the time taken by the output frequency to reach the maximum output frequency from OHz , and deceleration time sets the time taken by the output frequency to reach 0 Hz from the maximum frequency.

- Data setting range: 0.00 to 6000 (s)



## Speed sensorless vector control



## Vector control with speed sensor



## - Acceleration/deceleration time

| Type of acceleration/decel eration time | Function code |  | Select ACC/DEC time Function code E01 to E09) |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Acceleration time | Deceleration time |  |  |  |
| ACC/DEC time 1 | F07 | F08 | "RT2" | "RT1" | Changes are made with acceleration/deceleration selection "RT1" and "RT2" (data = 4, 5). |
|  |  |  | OFF | OFF |  |
| ACC/DEC time 2 | E10 | E11 | OFF | ON |  |
| ACC/DEC time 3 | E12 | E13 | ON | OFF | acceleration/deceleration time 1 (F07, F08) |
| ACC/DEC time 4 | E14 | E15 | ON | ON |  |
| When performing jogging | H54 | H55 | When ready for jogging "JOG" is ON, switch to the mode with which jogging operation is possible (data =10) ( $\mathbb{D}$ function code C20). |  |  |
| When performing forced stop | - | H56 | Turning the forced stop "STOP" command OFF causes the motor to decelerate to a stop in accordance with the deceleration time for forced stop (H56). <br> After the motor stops, the inverter enters the alarm state with the alarm Erb displayed (data $=30$ ). |  |  |

## Curve acceleration/deceleration (H07)

Select acceleration/deceleration pattern (change pattern of frequency) at acceleration/deceleration.

| H07 <br> data | Curve acceleration/ <br> deceleration |  | Enable | Function <br> code |
| :---: | :--- | :--- | :--- | :---: |
| 0 | Disable (Linear <br> acceleration/deceleration) | Acceleration/deceleration with constant acceleration | - |  |
| 1 | S-curve <br> acceleration/deceleration <br> (Weak) | Smoothen the speed <br> change and reduce shock <br> when starting acceleration <br> and right before the speed <br> becomes constant, as well <br> as when starting <br> deceleration and right before <br> the deceleration stops. | Weak: Fix acceleration/deceleration <br> change rate to 5\% of the maximum output <br> frequency within each S-curve range. | Arbitrary: It is possible to set <br> acceleration/deceleration change rate <br> arbitrarily within each S-curve range. |
| 2 | S-curve <br> acceleration/deceleration <br> (Arbitrary) | Linear acceleration/deceleration (constant torque) at or below base <br> frequency and acceleration becomes gradually slower at or higher than <br> the base frequency, and acceleration/deceleration with constant load rate <br> (rated output). <br> It is possible to accelerate/decelerate with the maximum capability. | - H58, H60 |  |
| 3 | Curve <br> acceleration/deceleration |  |  |  |

## S-curve acceleration/deceleration

For the purpose of decreasing the shock on the load machine side, smoothen the speed change at the start of acceleration and right before it becomes constant speed, and at the start of deceleration and right before the stop of deceleration. As for s-curve acceleration/deceleration values, fix with $5 \%$ for S-curve acceleration/deceleration (weak), and for S-curve acceleration/deceleration (arbitrary), it is possible to set individually for each 4 locations by function codes H 57 to 60 . The specified acceleration/deceleration time determines acceleration of linear part and the actual acceleration/deceleration time becomes longer than the specified acceleration /deceleration time.


|  | At the start of <br> acceleration | At the end of <br> acceleration | At the start of <br> deceleration | At the end of <br> deceleration |
| :--- | :--- | :--- | :--- | :--- |
| S-curve (weak) | $5 \%$ | $5 \%$ | $5 \%$ | $5 \%$ |
| S-curve (arbitrary) <br> Setting range: <br> 0 to $100 \%$H57When accelerating <br> No. 1 S-curve <br> range <br> (when starting) | H58 <br> When accelerating <br> No. 2 S-curve <br> range <br> (when finished) | H59 <br> When decelerating <br> No. 1 S-curve <br> range <br> (when starting) | H60 <br> When decelerating <br> No. 2 S-curve <br> range <br> (when finished) |  |

## Acceleration/deceleration time

<S-curve acceleration/deceleration (Weak): When frequency change is $10 \%$ or higher than the maximum frequency>

$$
\begin{aligned}
\text { Acceleration or deceleration time }(s)= & (2 \times 5 / 100+90 / 100+2 \times 5 / 100) \times \text { reference acceleration or } \\
& \text { deceleration time } \\
= & 1.1 \times \text { reference acceleration or deceleration time }
\end{aligned}
$$

<S-curve acceleration/deceleration (Arbitrary: When $10 \%$ at the start, $20 \%$ at the end): When frequency change is $30 \%$ or higher than the maximum frequency.>

$$
\begin{aligned}
\text { Acceleration or deceleration time }(s)= & (2 \times 10 / 100+70 / 100+2 \times 20 / 100) \times(\text { reference acceleration or } \\
& \text { deceleration time }) \\
= & 1.3 \times \text { (reference acceleration or deceleration time })
\end{aligned}
$$

## Curve acceleration/deceleration

This is a pattern to perform linear acceleration/deceleration (rated torque) at or below base frequency and acceleration becomes gradually slower at or higher than the base frequency, and acceleration/deceleration with constant load rate (rated output).
It is possible to accelerate/decelerate with the maximum capability of the motor to be driven by the inverter.


The diagram on the left shows pattern at acceleration. This is the same as at deceleration.

[^12]
## Acceleration/deceleration filter time constant (d86) (dedicated setting for V/f control)

Sets the primary delay filter time constant for outputting the output frequency lamp function when accelerating and decelerating. Specify this setting if mechanical problems arise due to overshoot or undershoot when reaching the target frequency or when stopping. By setting a large value, the rate of output frequency change stabilizes, but responsiveness deteriorates.
This setting is effective only under $\mathrm{V} / \mathrm{f}$ control ( $\mathrm{F} 42=0$ to 2 ). If performing other than $\mathrm{V} / \mathrm{f}$ control ( $\mathrm{F} 42=0$ to 2 ), use a speed control speed command filter (d01, A43, b43, r43).

- Data setting range: 0.000 (filter disabled): 0.001 to 5.000 (s)


## - Acceleration/deceleration time ratio setting with analog input (E61 to E63, E66)

By setting "12: Acceleration/deceleration time ratio" for analog input terminal [12], [C1] (C1 function) (V3 function), or [V2], the applicable analog input ( 0 to $100 \%$ ) is multiplied by the selected acceleration/deceleration time in real time to set the acceleration/deceleration time ratio. This is also valid for S -curve acceleration/deceleration and curve acceleration/deceleration. This setting is reflected immediately even during acceleration and deceleration. The data range is limited to plus polarity, and the minus side is recognized as 0 . This setting is not reflected when performing jogging operation or when performing a forced stop.

For details of torque boost 1 setting, refer to the section of function code F37.

```
F10 to F12 Electronic thermal overload protection for motor 1 (motor characteristics selection,
 operation level, thermal time constant)
```

Sets the motor temperature characteristics (characteristic selection (F10), thermal time constant (F12)) and the operation level (F11) for motor overload detection (electronic thermal overload relay function based on inverter output current).
If a motor overload is detected, the inverter is shut off to protect the motor, and motor overload alarm in il occurs.

[^13][^14]Motor characteristics selection (F10)
F10 selects characteristics of cooling system of the motor.

| F10 data | Function |
| :---: | :--- |
| 1 | Self-cooling fan of general-purpose motor (Self-cooling) <br> (When operating with low frequency, cooling performance decreases.) |
| 2 | Inverter-driven motor, High-speed motor with separately powered cooling fan <br> (Keep constant cooling capability irrespective to output frequency) |

The electronic thermal operation characteristics diagram when $\mathrm{F} 10=1$ is set is shown below. The characteristics coefficient $\alpha 1$ to $\alpha 3$ and the switch coefficient $£ 2, \mathrm{f} 3$ differ depending on the characteristics of the motor.

Each coefficient that is set by motor characteristics that is selected by motor capacitance and motor selection (P99) is shown in the tables.


Characteristics diagram of motor cooling system

Table
When P99 $=0,4$, or 5 (motor characteristics 0 , other, motor characteristics 5 )

| Motor capacity | Thermal time constant $\mathbf{T}$ <br> (Factory default) | Thermal time constant setting Standard current value Imax | Characteristics coefficient switch frequency |  | Characteristics coefficient |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{f}_{2}$ | $f_{3}$ | $\alpha 1$ | $\alpha 2$ | $\alpha 3$ |
| $0.4,0.75 \mathrm{~kW}$ | 5 min | Continuous allowance current value x 150 \% | 5 Hz | 7 Hz | 75 \% | 85 \% | 100 \% |
| 1.5 to 3.7 kW |  |  |  |  | 85 \% | 85 \% | 100 \% |
| 5.5 to 11 kW |  |  |  | 6 Hz | 90 \% | 95 \% | 100 \% |
| 15 kW |  |  |  | 7 Hz | 85 \% | 85 \% | 100 \% |
| 18.5, 22 kW |  |  |  | 5 Hz | 92 \% | 100 \% | 100 \% |
| 30 to 45 kW | 10 min |  | Base frequency $x$ 33 \% | Base <br> frequency $x$ $83 \text { \% }$ | 54 \% | 85 \% | 95 \% |
| 55 to 90 kW |  |  |  |  | 51 \% | 95 \% | 95 \% |
| 110 kW or more |  |  |  |  | 53 \% | 85 \% | 90 \% |

Table When P99 = 1 or 3 (motor characteristic 1, 3)

| Motor capacity | Thermal time constant $\mathbf{T}$ <br> (factory default) | Thermal time constant setting Standard current value Imax | Characteristics coefficient switch frequency |  | Characteristics coefficient |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{f}_{2}$ | $f_{3}$ | $\alpha 1$ | $\alpha 2$ | $\alpha 3$ |
| 0.2 to 22 kW | 5 min | Continuous allowance current value x 150 \% | Base frequency $x$ 33 \% | Base <br> frequency $x$ $33 \%$ | 69 \% | 90 \% | 90 \% |
| 30 to 45 kW | 10 min |  |  | Base frequency $x$ 83 \% | 54 \% | 85 \% | 95 \% |
| 55 to 90 kW |  |  |  |  | 51 \% | 95 \% | $95 \%$ |
| 110 kW or more |  |  |  |  | 53 \% | 85 \% | $90 \%$ |

When $\mathrm{F} 10=2$ is set, cooling effect by output frequency will not decrease, therefore, overload detection level becomes constant value (F11) without decrease.

Table If P99 =20,21,22, or 23 (permanent magnet synchronous motor)

| Motor capacity | Thermal time constant $\mathbf{T}$ <br> (Factory default) | Thermal time constant setting Standard current value Imax | Characteristics coefficient switch frequency |  | Characteristics coefficient |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{f}_{2}$ | $\mathrm{f}_{3}$ | 人1 | $\alpha 2$ | 人3 |
| 90 kW or lower | 5 min | Continuous allowance current value x $150 \%$ | Base frequency F04 x 33\% | Base frequency F04 x 83\% | 53\% | 85\% | 95\% |
| 110 kW or more | 10 min |  |  |  | 53\% | 85\% | 90\% |

## - Operation level (F11)

F11 sets operation level of electronic thermal.
Normally, set the motor continuous allowance current (in general, about 1.0 to 1.1 times of motor rated current) when operating at base frequency in ampere units.

For disabling electronic thermal as disable, set F11 = 0.00: Disable.

## Thermal time constant (F12)

F12 sets thermal time constant of the motor. For overload detection level that is set by F11, set the electronic thermal operation time when $150 \%$ of current is flowing continuously. Thermal time constant of general-purpose motor of Fuji Electric and general motors is 5 minutes for 22 kW or lower, and 10 minutes (factory default state) for 30 kW or higher.

- Data setting range: 0.5 to 75.0 (min)
(Example) When the data of function code F12 is set to " 5 " (5 minutes).
As shown in the figure below, when $150 \%$ of current of operation level that was set flows for 5 minutes, motor overload (alarm illili) protection function will operate. In addition, with $120 \%$, it operates after 12.5 minutes.

The time when alarm actually occurs is shorter than the set data because the time until the current reaches 150 \% level after exceeding the continuous allowance current ( $100 \%$ ) is considered.


Fig. Example of current-operation time characteristics

F14

```
Restart mode after momentary power failure (operation selection)
 Related function codes:
 H13 (Restart timer)
 H14 (frequency lowering rate)
 H15 (Continuous running level)
 H16 (Allowable momentary power failure time)
 H92 Continuous running at the momentary power failure (P)
 H93 Continuous running at the momentary power failure (I)
```

Sets the operation (trip operation or restart operation method, etc. following power restoration) when a momentary power failure occurs.

Restart mode after momentary power failure (Mode selection) (F14)
V/f control (F42 = 0, 1, 2), speed sensorless vector control (motor) (F42 = 5)

| F14 data | Operation details |  |
| :---: | :---: | :---: |
|  | Without auto search | With auto search |
| 0: Trip immediately | When momentary power failure occurs while operating the inverter, and at the time when undervoltage is detected by the DC link bus voltage of the inverter, undervoltage alarm $i, i l$ is outputted, the inverter output shuts down, and the motor coasts to a stop. |  |
| 1: Trip after a recovery from power failure | When momentary power failure occurs while operating the inverter, and at the time when undervoltage is detected by the DC link bus voltage of the inverter, the inverter output shuts down and the motor coasts to stop, but the undervoltage alarm will not be output. When auto-started from momentary power failure, undervoltage alarm $i=i j$ is output. |  |
| 2: Trip after momentary deceleration is stopped | As soon as the DC link bus voltage drops below the continuous running level due to a momentary power failure, decelerate-to-stop control is invoked. <br> Decelerate-to-stop control regenerates kinetic energy from the load's moment of inertia, slowing down the motor and continuing the deceleration operation. <br> After decelerate-to-stop operation, an undervoltage alarm i iil is issued. |  |
| 3: Continue to run (for heavy inertia load or general load) | As soon as the DC link bus voltage drops below the continuous running level due to a momentary power failure, decelerate-to-stop control is invoked. <br> Decelerate-to-stop control regenerates kinetic energy from the load's moment of inertia, slowing down the motor, and operation is continued to wait for auto-restarting. <br> If there is not enough energy for regeneration and when undervoltage is detected, the inverter output shuts down and the motor coasts to a stop. |  |
|  | If run command is entered at auto-restarting, restart from the frequency of when undervoltage is detected. | If run command is entered at auto-restarting, auto search is performed, motor speed is estimated, and restart from the frequency. |
|  | This setting is most suitable for the fan with large inertia moment of load. |  |
| 4: Restart from frequency at power failure (for general load) | When momentary power failure occurs while operating the inverter, and at the time when undervoltage is detected by the DC link bus voltage of the inverter, the inverter output shuts down, and the motor coasts to a stop. |  |
|  | If run command is entered at auto-restarting, restart from the frequency of when undervoltage is detected. | If run command is entered at auto-restarting, auto search is performed, motor speed is estimated, and restart from the frequency. |
|  | This setting is most suitable for cases where the load moment of inertia is large, and the motor speed drop is minimal even when the motor coasts to a stop following a momentary power failure (fans, etc.) |  |
| 5: Restart from starting frequency | When momentary power failure occurs while operating the inverter, and at the time when undervoltage is detected by the DC link bus voltage of the inverter, the inverter output shuts down, and the motor coasts to a stop. |  |
|  | If run command is entered at auto-restarting, restart from the starting frequency that was set by function code F23. | If run command is entered at auto-restarting, auto search is performed, motor speed is estimated, and restart from the frequency. |
|  | This setting is most suitable for the case (pump etc.) when load inertia moment is small, when the load is heavy, and motor speed decreases up to 0 in a short time after the motor coasts to a stop due to momentary power failure. |  |
| With auto search: Auto search is selected by starting mode selection "STM" ON or H09 (d67) = 1 or 2 . Refer to function code H09 and d67 (Starting mode) to find the detail of starting mode selection "STM" ON auto search. |  |  |

## $\triangle$ WARNING

When momentary power failure restart operation ( $\mathrm{F} 14=3$ to 5 ) is selected, operation will resume automatically at auto-restarting. Design your machinery so that safety is ensured even at restarting.
Failure to observe this could result in an accident.

Speed sensorless vector control (permanent magnet synchronous motor) (F42 = 15)
Table 5.3-1

| F14 data |  |
| :--- | :--- |
| 0: Trip immediately | $\begin{array}{l}\text { When momentary power failure occurs while operating the inverter, and at the time when } \\ \text { undervoltage is detected by the DC link bus voltage of the inverter, undervoltage alarm íl is } \\ \text { outputted, the inverter output shuts down, and the motor coasts to a stop. }\end{array}$ |
| $\begin{array}{l}\text { 1: Trip after a recovery } \\ \text { from power failure }\end{array}$ | $\begin{array}{l}\text { When momentary power failure occurs while operating the inverter, and at the time when } \\ \text { undervoltage is detected by the DC link bus voltage of the inverter, the inverter output shuts down } \\ \text { and the motor coasts to stop, but the undervoltage alarm will not be output. } \\ \text { Undervoltage alarm íI is output when the power is restored following a momentary power failure. }\end{array}$ |
| $\begin{array}{l}\text { 2: Trip after momentary } \\ \text { deceleration is } \\ \text { stopped }\end{array}$ | $\begin{array}{l}\text { As soon as the DC link bus voltage drops below the continuous running level due to a momentary } \\ \text { power failure, decelerate-to-stop control is started. } \\ \text { Decelerate-to-stop control regenerates kinetic energy from the load's moment of inertia, slowing } \\ \text { down the motor and continuing the deceleration operation. } \\ \text { An íl alarm is output after the motor decelerates and stops. }\end{array}$ |
| 3: Continue to run (for |  |
| heavy inertia load or |  |
| general load) | $\begin{array}{l}\text { Continue to run control is started the moment a momentary power failure occurs while the inverter } \\ \text { is running, and the inverter DC intermediate circuit voltage drops to or below the continue to run } \\ \text { level. } \\ \text { With continue to run control, kinetic energy for the load moment of inertia is regenerated as the } \\ \text { motor decelerates in order to continue operation while waiting for power to be restored. } \\ \text { If the regenerated energy is low and undervoltage is detected, inverter output is shut off, and the }\end{array}$ |
| m: Restart from starting |  |
| frequency |  |\(\left.\quad \begin{array}{l}motor coasts to a stop. <br>

If a run command has been input when the power is restored, auto search is performed to <br>
estimate the motor speed, and operation resumes from that frequency. <br>

This setting is most suited to applications such as large fans with large load moment of inertia.\end{array}\right\}\)| If run command is entered at auto-restarting, auto search is performed, motor speed is estimated, |
| :--- |
| and restart from the frequency. |

V/f control with speed sensor ( $\mathrm{F} 42=3$ ), dynamic torque vector control with speed sensor ( $\mathrm{F} 42=4$ ), vector control with speed sensor (F42 = 6, 16)

| F14 data | Operation details |
| :---: | :---: |
| 0: Trip immediately | When momentary power failure occurs while operating the inverter, and at the time when undervoltage is detected by the DC link bus voltage of the inverter, undervoltage alarm ill is outputted, the inverter output shuts down, and the motor coasts to a stop. |
| 1: Trip after a recovery from power failure | When momentary power failure occurs while operating the inverter, and at the time when undervoltage is detected by the DC link bus voltage of the inverter, the inverter output shuts down and the motor coasts to stop, but the undervoltage alarm will not be output. <br> When auto-started from momentary power failure, undervoltage alarm $\hat{L}_{\mathrm{L}} \mathrm{i}$ Is output. |
| 2: Trip after momentary deceleration is stopped | As soon as the DC link bus voltage drops below the continuous running level due to a momentary power failure, decelerate-to-stop control is invoked. <br> Decelerate-to-stop control regenerates kinetic energy from the load's moment of inertia, slowing down the motor and continuing the deceleration operation. <br> After decelerate-to-stop operation, an undervoltage alarm it is issued. |
| 3: Continue to run | As soon as the DC link bus voltage drops below the continuous running level due to a momentary power failure, decelerate-to-stop control is invoked. <br> Decelerate-to-stop control regenerates kinetic energy from the load's moment of inertia, slowing down the motor, and operation is continued to wait for auto-restarting. <br> If there is not enough energy for regeneration and when undervoltage is detected, the inverter output shuts down and the motor coasts to a stop. <br> If run command is entered at recovery from power failure, restart from the motor speed detected with the speed sensor. |
| 4: Restart from frequency at power failure <br> 5: Restart from starting frequency | The operation is the same for either F14 $=4$ or 5 . <br> When momentary power failure occurs while operating the inverter, and at the time when undervoltage is detected by the DC link bus voltage of the inverter, the inverter output shuts down, and the motor coasts to a stop. <br> If run command is entered at recovery from power failure, restart from the motor speed detected with the speed sensor. |

## Restart mode after momentary power failure (Basic operation: Without auto search setting)

When inverter detected that DC link bus voltage becomes at or drops below undervoltage level while operating, it is judged as a momentary power failure. When load is light and momentary power failure is very short, momentary power failure may not be detected and motor operation might be continued because DC link bus voltage does not drop so much.

When inverter judges the state as momentary power failure, returns to momentary power failure restart mode and prepares for restart. After power is auto-restarted, the inverter becomes at inverter ready to run state after elapse of initial charging time. At momentary power failure, power of external circuit (relay circuit etc.), which controls the inverter, decreases as well, and run command may be turned off. Therefore, when the inverter becomes at inverter ready to run state, wait 2 seconds for input of run command. When input of run command is confirmed within 2 seconds, initiate restarting according to F14 (mode selection). When there is no input of run command at run command input waiting state, momentary power failure restart mode will be released and start from normal starting frequency. Therefore, input run command within 2 seconds after auto-restarting or hold run command by off-delay timer or mechanical latch relay.
In case of $\mathrm{F} 02=0$ (run command from keypad and rotation direction command determined by terminal), it operates in the same way as above. For rotation direction fixed mode ( $\mathrm{FO} 2=2,3$ ), run command is held within the inverter, therefore, it restarts immediately at inverter ready to run state.


Note

- At auto-restarting, inverters waits 2 seconds for input of run command, however, if allowable momentary power failure time $(\mathrm{H} 16)$ is elapsed after the state is judged as power failure, the state of run command input waiting for 2 seconds will be canceled and normal starting operation is performed.
- When coast to stop command "BX" is entered during power failure, momentary power failure restart waiting state is released and return to normal run mode, and when run command is inputted, start from normal starting frequency.
- Detection of momentary power failure within the inverter is performed by detecting DC link bus voltage drop of the inverter. With the structure in which a magnetic contactor is equipped on the output side of the inverter, there will be no operation power of the magnetic contactor at momentary power failure and the magnetic contactor becomes at open state. When the magnetic contactor becomes open, connection of inverter and motor is released and load of the inverter is shutdown. Therefore, it becomes difficult to decrease DC link bus voltage of the inverter and it may not be judged as a momentary power failure. If this is the case, momentary power failure restart will not be performed normal. As a countermeasure against this case, by connecting auxiliary contact signal of the magnetic contactor to the interlock signal "IL" it is possible to detect momentary power failure without fail.
Function code E01 to E09 (data = 22)

| Terminal command "IL" | Meaning |
| :---: | :--- |
| OFF | No momentary power failure has occurred. |
| ON | A momentary power failure has occurred. <br> (Restart after a momentary power failure enabled) <br> Restart mode after momentary power failure (mode selection) |

When motor speed decreases during momentary power failure, and when restarting from frequency of before momentary power failure after power is recovered (auto-restarting), current limiter becomes active and output frequency of the inverter decreases automatically. When output frequency and motor rotation speed synchronize, the speed is accelerated up to the original output frequency. Refer to the figure below. However, it is necessary to enable instantaneous overcurrent limiting $(\mathrm{H} 12=1)$ to bring in synchronization of the motor.


- Auto-restarting after momentary power failure "IPF"

During momentary power failure auto-restarting "IPF" signal is turned on until returning to original frequency after auto-restarting after momentary power failure occurred. When "IPF": is turned ON, motor speed decreases, therefore, take necessary measures. ( $\mathbb{C D}$ Function codes E20 to E24, E27 (data = 6))

## Restart mode after momentary power failure (Basic operation: With auto search setting)

Auto search is not performed normally if there is residual voltage of the motor.
Therefore, it is necessary to secure the time until residual voltage runs out.
Restart mode after momentary power failure secures the necessary time with function code H 46 starting mode (auto search delay time 2). Even if starting conditions are satisfied, the inverter does not start unless auto-search delay time elapses after inverter goes into OFF state. The inverter starts after elapse of auto search delay time. ([a] Function codes H09, d67)


- When operating auto search, it is necessary to perform auto-tuning in advance.
- When the estimated speed exceeds the maximum frequency or the upper limit frequency, the inverter disables auto search and starts running the motor with the maximum frequency or the upper limit frequency, whichever is lower.
- During auto search, if an overcurrent or overvoltage trip occurs, the inverter will restart the auto search.
- Use 60 Hz or below for auto search
- Note that auto search may not fully provide the performance depending on load conditions, motor parameters, wiring length, and other external factors.
- When output circuit filter OFL-पाप-2, -4 is equipped on the output side of the inverter, auto search

- Do not set d67 to 0 if using a permanent magnet synchronous motor.


## Restart mode after momentary power failure (Allowable momentary power failure time) (H16)

Sets the maximum time from when momentary power failure (undervoltage level) occurs until restart (setting range: 0.0 to 30.0 s). Set coast to stop time which is allowable for machine and equipment. Momentary power failure restart operation should be performed within the specified time, however, if the set time is exceeded, the inverter judges the state as a power shut down, and then operates as powering on again without performing momentary power failure restart operation.


When allowable momentary power failure time (H16) is set to " 999 ", momentary power failure restart is performed until DC link bus voltage decreases by momentary power failure restart allowance voltage ( 50 V for 200 V series, 100 V for 400 V series), however, if the voltage becomes at or below the momentary power failure allowance voltage, the state is judged as a power shut down. As a result, the inverter operates as powering ON again without performing momentary power failure restart operating.

| Power supply voltage | Allowance voltage of momentary power failure restart |
| :---: | :---: |
| 200 V | 50 V |
| 400 V | 100 V |

[^15]
## Restart mode after momentary power failure (Restart timer) (H13) (Exclusive to V/f control for IM)

H13 set the time until restart is performed after momentary power failure occurred. (At auto search setting, use H46 (auto search holding time 2)).
Restarting at the state when residual voltage of the motor is high, inrush current becomes greater or temporarily becomes at regeneration state, and overcurrent alarm may occur. For security reason, in order to restart after residual voltage is reduced to some extent, adjust H 13 . Even if auto-restarted, restart cannot be performed until the holding time (H13) elapses.


Factory default: At the factory default state, setting is performed so that it is appropriate to the standard motor (refer to Table 5.2-1 Factory default settings by inverter capacity). Basically, there is no need to modify the default setting. However, when problems occur due to the long holding time or decrease in flow rate of pump becomes significant, change to about half of the standard value and make sure that alarm etc. will not occur.

## - Restart Mode after Momentary Power Failure (H14) (frequency lowering rate in $\mathrm{Hz} / \mathrm{s}$ )

At momentary power failure restart operation, when inverter output frequency and motor rotation speed does not synchronize, overcurrent occurs and current limiter will operate. When current limit is detected, automatically decrease the output frequency and synchronize with the motor rotation speed. H14 sets the slope of lowering output frequency (frequency lowering rate in $\mathrm{Hz} / \mathrm{s}$ ).

| H14 data | Output frequency lowering operation |
| :--- | :--- |
| 0.00 | Decrease by the selected deceleration time. |
| 0.01 to $100.00(\mathrm{~Hz} / \mathrm{s})$ | Decrease by the lowering rate that is set by H14. |
| 999 | Depending on the PI regulator of current limiting processing (PI constant is <br> fixed value within the inverter), the rate will decrease. |

When frequency lowering rate is increased, regeneration operation is performed at the moment when output frequency of the inverter and rotation speed of motor synchronize, and overvoltage trip may occur. When frequency lowering rate is reduced, the time until output frequency of the inverter and motor rotation speed synchronize (current limiting operation) becomes longer, and protection operation of inverter overload may be activated.

## - Restart mode after momentary power failure (Continuous running level) (H15) Continued operation at the momentary power failure ( $\mathrm{P}, \mathrm{I}$ ) $(\mathrm{H} 92, \mathrm{H} 93)$

- Trip after momentary deceleration is stopped

When trip after deceleration stopped is selected (F14 = 2), at momentary power failure restart operation (Mode selection), momentary power failure occurs while operating the inverter, and deceleration stop control starts when DC link bus voltage of the inverter becomes at or drops below the continuous running level.

Adjust voltage level of DC link bus to start deceleration stop control by H15.
Under decelerate-to-stop control, the inverter decelerates its output frequency keeping the DC link bus voltage constant using a PI regulator.
P (proportional) and I (integral) components of the PI regulator are specified by H 92 and H 93 , respectively.
For normal inverter operation, it is not necessary to modify data of $\mathrm{H} 15, \mathrm{H} 92$ or H 93 .

## - Continue to run

When momentary power failure restart operation (Continue to run) is selected ( $\mathrm{F} 14=3$ ) at momentary power failure restart (operation selection), momentary power failure occurs while operating the inverter and continue to run control starts when DC link bus voltage of the inverter becomes at or drops below the continue to run level.

Adjust continue to run level to start continue to run control by H 15 .
Under the continue to run control, the inverter continues to run keeping the DC link bus voltage constant using the PI regulator.
P (proportional) and I (integral) components of the PI regulator are specified by H 92 and H 93 , respectively.
For normal inverter operation, it is not necessary to modify data of $\mathrm{H} 15, \mathrm{H} 92$ or H 93 .


| Power supply voltage | $\alpha$ |  |
| :---: | :---: | :---: |
|  | FRN0115G2S-2G/FRN0060G2 $\square-4 G$ or lower | FRN0146G2S-2G/FRN0075G2 $\square-4 G$ or more |
| 200 V | 5 V | 10 V |
| 400 V | 10 V | 20 V |

Even if "Deceleration stop control" or "Continue to run", is selected, the inverter may not be able to perform the function when the inertia of the load is small or the load is heavy, due to undervoltage caused by the control delay. In such a case, when "Deceleration stop control" is selected, the inverter allows the motor to coast to a stop; when "Continue to run" is selected, the inverter saves the output frequency being applied when the undervoltage alarm occurs and perform momentary power failure restart operation.
When the input power voltage for the inverter is high, setting the continue to run level high makes the control more stable even if the inertia of the load is relatively small. Raising the continuous running level too high, however, might cause the continue to run control activated even during normal operation.
When the input power voltage for the inverter is extremely low, continue to run control might be activated even during normal operation, at the beginning of acceleration or at an abrupt change in load. To avoid this, lower the continuous running level. Lowering it too low, however, might cause undervoltage that results from voltage drop due to the control delay.
Before you change the continuous running level, make sure that the continuous running control will be performed properly, by considering the fluctuations of the load and the input voltage.

F15, F16 Frequency limiter (Upper limit), Frequency limiter (Lower limit)
Related function code: H63 Lower limit limiter (Mode selection)

## Frequency limiter (Upper limit) (Lower limit) (F15, F16)

F15 and F16 specify the upper and lower limits of the output frequency or reference frequency, respectively.

| Frequency limiter |  |  |
| :--- | :---: | :---: |
| Frequency limiter (upper limit) | F15 | Object to which the limit is applied |
| Frequency limiter (lower limit) | F16 | Output frequency |
| When the limit is applied to the reference frequency or reference speed, delayed responses of <br> control may cause an overshoot or undershoot, and the frequency may temporarily go beyond the <br> limit level. |  |  |

- Data setting range: 0.0 to $599.0(\mathrm{~Hz})$
- Low Limiter (Mode selection) (H63)

H63 specifies the operation to be carried out when the reference frequency drops below the low level specified by F16, as follows:

| H63 data | Enable |
| :---: | :--- |
| 0 | The output frequency will be held at the low level specified by F16. |
| 1 | Decelerate to stop |

Refer to the figure below.


## ■ Upper/lower limit limiter with analog input (E61 to E63, E66)

By setting analog input terminal [12], [C1] (C1 function) (V3 function), or [V2] to "13: Frequency limiter (upper limit)" or "14: Frequency limiter (lower limit)", the frequency obtained by multiplying the applicable analog input ( 0 to $100 \%$ ) by the maximum frequency in real time is used as the frequency limiter. The data range is limited to plus polarity, and the minus side is recognized as 0 . The same operation is performed for both the F15 and F16 settings.

Note

- When changing the frequency limiter (Upper) (F15) in order to raise the operation frequency, be sure to change the maximum frequency (F03) accordingly.
- Set each function code related to operation frequency so that the relationship among data becomes the following magnitude relationship.
- F15>F16, F15>F23, F15>F25
- F03>F16

However, F23 is the starting frequency, and F25 is stop frequency
If any wrong data is specified for these function codes, the inverter may not run the motor at the desired speed, or cannot start it normally.

Refer to the description of function code F01 to find the details of bias (Frequency setting 1) setting.

```
|F20 to F22
H95
H195
DC braking (Braking response mode)
DC braking (Braking timer at the startup)
```

These function codes specify the DC braking that prevents motor 1 from running by inertia during decelerate-tostop operation.
If the motor enters a decelerate-to-stop operation by turning OFF the run command or by decreasing the reference frequency below the stop frequency, the DC braking starts when output frequency reached the DC braking starting frequency. Set braking starting frequency (F20), braking level (F21), and braking time (F22) to start DC braking when deceleration is stopped.
Setting the braking time to " 0.00 " ( $\mathrm{F} 22=0$ ) disables the DC braking.
By H 195 , it is possible to perform DC braking when starting up inverter. By doing so, it is efficient for preventing from falling down when the brake is released, and prompt torque startup when starting up.

## Braking starting frequency (F20)

F20 specifies the frequency at which the DC braking starts its operation during motor decelerate-to-stop state.

- Data setting range: 0.0 to $60.0(\mathrm{~Hz})$
- Braking level (F21)

F21 specifies the output current level to be applied when the DC braking is activated. The function code data should be set, assuming the rated output current of the inverter as $100 \%$, in increments of $1 \%$.

- Data setting range HHD: 0 to 100\%, HND: 0 to 80\%

Note The inverter rated output current differs between the HHD/HND specification.

- Braking time (F22)

F22 specifies the braking period that activates DC braking.

- Data setting range: 0.00 (Disable), 0.01 to 30.00 (s)


## Braking response mode (H95)

H95 specifies the DC braking response mode.

| H95 data | Characteristics | Note |
| :---: | :--- | :--- |
| 0 | Slow response. Slows the rising edge of <br> the current, thereby preventing reverse <br> rotation at the start of DC braking. | Insufficient braking torque may result at the <br> start of DC braking. |
| 1 | Quick response. Quickens the rising edge <br> of the current, thereby accelerating the <br> build-up of the braking torque. | Reverse rotation may result depending on <br> the moment of inertia of the mechanical <br> load and the coupling mechanism. |



## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
$J$ Codes
d Codes
U Codes
y Codes

## Braking timer at the startup ( H 195 )

When starting up inverter by run command, it is possible to start by operating DC braking.
This is particularly useful in applications such as hoists and elevators where the inverter runs at low speed braking mode after starting up, preventing loads from falling.

- Data setting range: 0.00 : No DC braking at the start up 0.01 to 30.00 (s)


Starting frequency 1, Starting frequency 1 (Holding time) and Stop frequency
Related function codes: F38 and F39 (Stop frequency, Detection mode and Holding time) d24 (Zero speed control)


## Under V/f control

At the startup of an inverter, the initial output frequency is equal to the starting frequency. The inverter stops its output when the output frequency reaches the stop frequency. Set the starting frequency to a level at which the motor can generate enough torque for startup. Generally speaking, set the rated slip frequency of the motor as the starting frequency.
Specifying the holding time for the starting frequency compensates for the delay time for the establishment of a magnetic flux in the motor; specifying that for the stop frequency stabilizes the motor speed at the stop of the inverter.


## - Starting frequency 1 (F23)

F23 specifies the starting frequency at the startup of an inverter.

- Data setting range: 0.0 to $60.0(\mathrm{~Hz})$

Under V/f control, even if the start frequency is set at 0.0 Hz , the inverter starts its output at 0.1 Hz .

- Starting frequency 1 (Holding time) (F24)

F24 specifies the holding time for the starting frequency 1.

- Data setting range: 0.00 to 10.00 (s)


## - Stop frequency (F25)

F25 specifies the stop frequency at the stop of the inverter.

- Data setting range: 0.0 to $60.0(\mathrm{~Hz})$

Under V/f control, even if the stop frequency is set at 0.0 Hz , the inverter stops its output at 0.1 Hz .

## - Stop frequency (Holding time) (F39)

F39 specifies the holding time for the stop frequency.

- Data setting range: 0.00 to 10.00 (s)

If the starting frequency is lower than the stop frequency, the inverter does not output any power as long as the reference frequency does not exceed the stop frequency.

## Speed sensorless vector control/Vector control with speed sensor

At the startup, the inverter first starts at the " 0 " speed and accelerates to the starting frequency according to the specified acceleration time. After holding the starting frequency for the specified period, the inverter again accelerates to the reference speed according to the specified acceleration time. The inverter stops its output when the reference speed or actual speed (specified by F38 under vector control with speed sensor only) reaches the stop frequency specified by F25.
Specifying the holding time for the starting frequency compensates for the delay time for the establishment of a magnetic flux in the motor; specifying that for the stop frequency stabilizes the motor speed at the stop of the inverter. If using a configuration for which it is necessary to pull in the magnetic pole position under vector control with speed sensor (permanent magnet synchronous motors), an operation different from this operation is performed. It is not possible to ensure sufficient torque when the motor starts at this time. Refer to the description for function code P30.


## - Starting frequency 1 (F23)

F23 specifies the starting frequency at the startup of an inverter.

- Data setting range: 0.0 to $60.0(\mathrm{~Hz})$
- Starting frequency 1 (Holding time) (F24)

F24 specifies the holding time for the starting frequency 1.

- Data setting range: 0.00 to 10.00 (s)
- Stop frequency (F25)

F25 specifies the stop frequency at the stop of the inverter.

- Data setting range: 0.0 to $60.0(\mathrm{~Hz})$
- Stop frequency (Holding time) (F39)

F39 specifies the holding time for the stop frequency.

- Data setting range: 0.00 to 10.00 (s)


## - Zero speed control (d24) (Under vector control with speed sensor and speed sensorless vector control (induction motors only))

To perform zero speed control, it is necessary to set the speed command (frequency command) below the starting and stop frequencies. If the starting and stop frequencies are 0.0 Hz , however, zero speed control is enabled only when the speed command is 0.00 Hz . d24 specifies the operation for zero speed control when inverter starts and stops.

| d24 <br> data | Zero <br> speed <br> control at <br> startup | Zero <br> speed <br> control <br> when <br> stopping | Description |
| :---: | :---: | :---: | :--- |
| 0 | Not <br> possible | Allowed | When it is smaller than the stop frequency and start frequency the <br> speed command, zero speed control does not work even ON the <br> operation command. <br> Zero speed control to work once you have started once it is set to <br> higher than the starting frequency the speed command. |
| 1 | Allowed | Allowed | Setting the speed command at below the starting and stop frequencies <br> and turning a run command ON enables zero speed control. |
| 2 | Not <br> possible | Not <br> possible | Zero speed control is not performed either when starting or stopping, <br> regardless of the speed command. |

The table below shows the conditions for enabling and disabling zero speed control when starting.

|  | Speed command | Run command | Enable |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | $\mathrm{d} 24=0$ | d24 $=1$ | d24 $=2$ |
| When starting | Below the starting and stop frequencies | OFF | Stop (Gate OFF) |  |  |
|  |  | ON | Stop (Gate OFF) | Zero speed control | Stop (Gate OFF) |
| At stop | Below the stop | ON | Zero speed control | Zero speed control | Stop (Gate OFF) |
|  |  | OFF |  | p (Gate OFF) |  |



## Stop Frequency (Detection mode) (F38) (Under vector control with speed sensor only)

F38 specifies whether to use the actual speed or reference one as a decision criterion to shut down the inverter output. Usually the inverter uses the detected speed. However, if the inverter undergoes a load exceeding its capability, e.g., an excessive load, it cannot stop because the motor cannot stop so that the detected speed may not reach the stop frequency level. If this happens, the inverter will be unable to stop. By specifying a setting that allows judgment to made based on the speed command value, the command value is reached even if the detection value is not, and therefore the inverter will come to a complete stop. If such a situation could arise, select the reference speed that can reach the stop frequency level even if the detected speed does not, in order to stop the inverter without fail achieving a fail-safe operation.

- Data setting range: 0 (Detected speed)

1 (Reference speed)

F26, F27
Motor sound (Carrier frequency, Tone )
Related function code: H98 Protection/Maintenance function (Mode selection)

## Motor Sound (Carrier frequency) (F26)

Adjusts the carrier frequency. By changing carrier frequency, it is possible to reduce an audible noise generated by the motor or electromagnetic noise from the inverter itself, and to decrease a leakage current from the main output (secondary) wiring.
Setting frequency of carrier frequency differs depending on each model overload rating (HHD/HND).

| Item | Characteristics |
| :--- | :---: |
| Carrier frequency | Low to High |
| Motor sound noise emission | High $\leftrightarrow$ Low |
| Motor temperature (harmonics component) | High $\leftrightarrow$ |
| Lipples in output current waveform | Large $\leftrightarrow$ |
| Leakage current | Low $\quad \leftrightarrow$ |
| Electromagnetic noise emission | Low $\leftrightarrow$ |
| Inverter loss | Low $\quad \leftrightarrow$ |

Setting range of carrier frequency is as follows.

| F26: Setting range | HHD specification |  | HND specification |  |
| :---: | :---: | :---: | :---: | :---: |
|  | FRN $^{* * * *}$ G2S-2G | FRN ${ }^{* * * *}$ G2 $\square-4 G$ | FRN $^{* * * *}$ G2S-2G | FRN****G2 $\square-4 G$ |
| 0.75 to 16 kHz | 0003 to 0288 | 0002 to 0150 | 0032 to 0075 | 0018 to 0038 |
| 0.75 to 10 kHz | 0346 to 0432 | 0180 to 1386 | 0082 to 0215 | 0045 to 0150 |
| 0.75 to 6 kHz | - | - | 0288 to 0432 | 0180 to 1386 |

Specifying a carrier frequency that is too low will cause the output current waveform to have a large amount of ripple. As a result, the motor loss increases, causing the motor temperature to rise. Furthermore, the large amount of ripple tends to cause a current limiting alarm. When the carrier frequency is set to 1 kHz or lower, therefore, reduce the load so that the inverter output current comes to be $80 \%$ or less of the rated current.
When a high carrier frequency is specified, the temperature of the inverter may rise due to the ambient temperature rise or an increase of the load. If it happens, the inverter automatically decreases the carrier
 reduction of carrier frequency can be disabled. Refer to the description of H98.
It is recommended to set the carrier frequency at 5 kHz or above under vector control with speed sensor. DO NOT set it at 1 kHz or below.
Running a permanent magnet synchronous motor at low carrier frequency may overheat the permanent magnet due to the output current harmonics, resulting in demagnetization. When decreasing the carrier frequency setting, therefore, be sure to check the allowable carrier frequency of the motor.
When using a Fuji standard permanent magnet synchronous motor at rated load, set the carrier frequency to 2 kHz or higher.

## Motor sound (tone) (F27)

F27 changes the motor running sound tone (only for motors under V/f control). This setting is effective when the carrier frequency specified by function code F26 is 7 kHz or lower. Changing the tone level may reduce the high and harsh running noise from the motor.

Note
If the tone level is set too high, the output current may become unstable, or mechanical vibration and noise may increase. Also, this function code may not be very effective for certain types of motor.

| F27 data | Function |
| :---: | :---: |
| 0 | Disable (Level 0) |
| 1 | Enable (Level 1) |
| 2 | Enable (Level 2) |
| 3 | Enable (Level 3) |

## F29 to F31, F58, F59

```
Terminal [FM1]
(Operation selection, Output gain, Function selection, Filter, Bias)
Terminal [FM2]
(Operation selection, Output gain, Function selection, Filter, Bias)
```

F32, F60 to F63

These function codes allow outputting monitor data such as output frequency and output current to terminals [FM1] and [FM2] as analog DC voltage, current, and pulse. In addition, voltage and current output level on terminals [FM1] and [FM2] is adjustable.
Note When switching voltage, current, and pulse, it is necessary to switch both mode selection function code and switch on the PCB.

| Terminal | Mode selection | Gain | Bias | Function | Filter | Switch |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [FM1] | F29 | F30 | F59 | F31 | F58 | SW4 |
| [FM2] | F32 | F60 | F63 | F61 | F62 | SW6 |

## - Operation selection (F29, F32)

Selects the output form for terminal [FM1] and [FM2]. Also change switches SW4 and SW6 on the PCB.
(D) For details of the switches on the control PCB, refer to Chapter 12 "SPECIFICATIONS."

| F29, F32 data | Terminal [FM1], [FM2] output form | Control PCB switch |  |
| :---: | :---: | :---: | :---: |
|  |  | [FM1]: SW4 | [FM2]: SW6 |
| 0 | Voltage output (0 to +10 VDC) (unipolar) | VO1 | VO2 |
| 1 | Current output (4 to 20 mA DC) | 101 | 102 |
| 2 | Current output (0 to 20mA DC) |  |  |
| 4 | Voltage output (0 to $\pm 10$ VDC) (bipolar) | VO1 | VO2 |

Note
The output current is not isolated from analog input, and does not have an isolated power supply. Therefore, if an electrical potential relationship between the inverter and peripheral equipment has been established, e.g., by connecting an analog input, cascade connection of a current output device is not available.

Keep the optimum connection wire length.

## Gain (F30, F60)

F30, and F60 allow you to adjust the output voltage and current within the range of 0 to $300 \%$.


## Bias (F59, F63)

F59 and F63 allow you to adjust the bias for the output voltage value and current value within the - 100 to 0 to $100 \%$ range.
The bias is applied after multiplying the gain.
The figure below shows the effect of setting a gain of $200 \%$ and bias of $-100 \%$ with bipolar voltage output of 0 to $\pm 10 \mathrm{~V}$ from terminal [FM1].


FUNCTION
F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
d Codes
U Codes
y Codes
K Codes

## Function selection (F31, F61)

F31 and F61 specify which data is monitored at output terminals [FM1] and [FM2]. An absolute value is output when unipolar.

| $\begin{aligned} & \text { F31, F61 } \\ & \text { data } \end{aligned}$ | Subject of monitoring | Content | Definition of monitor amount 100 \% |
| :---: | :---: | :---: | :---: |
| 0 | Output frequency 1 (before slip compensation) | Output frequency of the inverter (Equivalent to the motor synchronous speed) | Maximum frequency 1 (F03) <br> Bipolar output possible at reverse side minus |
| 1 | Output frequency 2 <br> (after slip <br> compensation) | Output frequency of the inverter | Maximum frequency 1 (F03) <br> Bipolar output possible at reverse side minus |
| 2 | Output current | Output current (RMS) of the inverter | Twice the inverter rated current |
| 3 | Output voltage | Output voltage (RMS) of the inverter | 200V series: 250 V <br> 400V series: 500 V |
| 4 | Output torque | Motor shaft torque | Twice the rated motor load Bipolar output possible |
| 5 | Load factor | Motor load factor | Twice the rated motor load |
| 6 | Power consumption | Input power of the inverter | Twice the rated output power (Inverter rated output power depending on F80) |
| 7 | PID feedback value (PV) | Feedback value under PID control | 100\% of the feedback amount |
| 8 | PG feedback value (speed) | Speed detected with the PG interface, or estimated speed (under speed sensorless vector control) | Maximum speed as $100 \%$ <br> Bipolar output possible at reverse side minus |
| 9 | DC link bus voltage | DC link bus voltage of the inverter | 200 V series: 500 V 400 V series: 1000 V |
| 10 | Universal AO | Command from communication (凹⿺ See "RS-485 Communication User's Manual") | $\pm 20,000$ <br> Bipolar output possible |
| 11 | Calibration (-) | For analog meter (bipolar) calibration <br> Minus full scale output | Always full scale (-10 V) output |
| 13 | Motor output | Motor output (kW) | Twice the rated motor output (P02/A16 setting value) |
| 14 | Calibration (+) | For meter calibration Full scale output | Always full scale (equivalent to 100\%) output |
| 15 | PID command (SV) | Command value under PID control | PID command 100 \% |
| 16 | PID output (MV) | Output level of the PID processor under PID control (Frequency command) | Maximum output frequency (F03) <br> Bipolar output possible |
| 17 | Master-follower angle deviation | Position deviation when performing master-follower operation | $0 \%$ to $50 \%$ to $100 \%$, representing a deviation of $-180^{\circ}$ to $0^{\circ}$ to $+180^{\circ}$ respectively |
| 18 | Inverter heat sink temperature | Heat sink detection temperature of inverter | $200{ }^{\circ} \mathrm{C}$ |


| F31, F61 <br> data | Subject of monitoring | Content | Definition of monitor amount 100 \% |
| :---: | :---: | :---: | :---: |
| 21 | PG feedback value | Actual speed (When PG interface option card is mounted, the speed is always calculated and output regardless of the control method.) | Maximum speed as 100 \% Bipolar output possible at reverse side minus |
| 22 | Torque current command | Torque current command (bipolar) under vector control with speed sensor, speed sensorless vector control | Twice the motor rated torque current <br> Bipolar output possible |
| 23 | PID deviation | PID command and PID feedback value deviation | PID command 100\% <br> Bipolar output possible |
| 24 | Reference line speed | Line speed setting | Maximum line speed 100\% Bipolar output possible |
| 25 | Winding diameter ratio calculation value | Current winding diameter ratio corresponding to minimum winding diameter (d163) | d166: winding diameter calculation (FM output gain) sets how many times winding diameter ratio equals monitor amount of 100\% ( $10 \mathrm{~V} / 20 \mathrm{~mA} / 255$, etc.) (when d166 = 20, monitor amount of $100 \%$ is 20 times winding diameter ratio) |
| 26 | Setting frequency (before acceleration/decelerati on calculation) | Setting frequency immediately before acceleration/deceleration arithmetic unit | Maximum frequency 100\% <br> Bipolar output possible |
| 111 | Customizable logic output signal 1 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |
| 112 | Customizable logic output signal 2 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |
| 113 | Customizable logic output signal 3 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |
| 114 | Customizable logic output signal 4 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |
| 115 | Customizable logic output signal 5 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |
| 116 | Customizable logic output signal 6 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |
| 117 | Customizable logic output signal 7 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |
| 118 | Customizable logic output signal 8 | Enable only at analog output | $\begin{aligned} & \pm 100 \% \\ & \text { Bipolar output possible } \end{aligned}$ |
| 119 | Customizable logic output signal 9 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |
| 120 | Customizable logic output signal 10 | Enable only at analog output | $\begin{aligned} & \pm 100 \% \\ & \text { Bipolar output possible } \end{aligned}$ |
| 121 | Customizable logic output signal 11 | Enable only at analog output | $\begin{aligned} & \pm 100 \% \\ & \text { Bipolar output possible } \end{aligned}$ |
| 122 | Customizable logic output signal 12 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |
| 123 | Customizable logic output signal 13 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |


| F31, F61 <br> data | Subject of monitoring | Content | Definition of monitor amount <br> $100 \%$ |
| :---: | :--- | :--- | :--- |
| 124 | Customizable logic <br> output signal 14 | Enable only at analog output | $\pm 100 \%$ <br> Bipolar output possible |

Note
If F31 and F61 = 16 (PID output), J01 $=3$ (Dancer control), and J62 $=2$ or 3 (Ratio compensation enabled), the PID output is equivalent to the ratio against the primary reference frequency and may vary within $300 \%$ of the frequency. To indicate the value up to the full-scale of $300 \%$, set F30 and F60 data to "33" (\%).

## Filter (F58, F62)

F58 and F62 set filter time constants for the analog DC voltage and current. The larger the time constant, the slower the response. Specify the proper filter time constant taking into account the response speed of the receiving side. If fluctuation occurs due to noise, increase the time constant.

- Data setting range: 0.00 to 5.00 (s)


## F33 to F35, F64

Terminal [FMP] (Pulse rate, Output gain, Function selection, Filter)
Monitor data such as output frequency and output current can be output to terminal [FMP] with a pulse signal. Furthermore, the analog meter can also be driven with the pulse signal average voltage as the average voltage output.
Output pulse specifications can be set for each item.
If using the pulse signal average voltage as the pulse output, set function code F33, and set F34 to 0 .
If using as the average voltage output, set F34 to between 1 and $300 \%$. By doing so, the F33 setting is ignored.

| Output type | F33 data | F34 data | Pulse duty | Pulse count |
| :--- | :--- | :--- | :--- | :--- |
| Pulse output | 25 to $6000 \mathrm{p} / \mathrm{s}$ | 0 | Approx. $50 \%$ <br> (fixed) | Variable <br> (monitor) |
| Average <br> voltage output | - | 1 to $300 \%$ | Variable (monitor) | $2000 \mathrm{p} / \mathrm{s}$ (fixed) |

## Pulse rate (F33)

F33 specifies the pulse rate at which the output of the monitored item selected reaches $100 \%$, in accordance with the modes of the pulse counter to be connected.

- Data setting range: 25 to 6000 (pulse/s)
- Output gain (F34)

F34 allows you to adjust the monitor output voltage value (average voltage value) in the 0 to $300 \%$ range.
Refer to the explanation of control terminal [FMP] in Chapter 2 for details on the pulse signal electrical specifications.

- Function selection (F35)

F35 specifies what data is monitored at output terminal [FMP]. The subject of monitoring is the same as that for function code F31. See F31.

- Filter (F64)

Sets the filter time constant when using terminal [FMP] with average voltage output. The larger the time constant, the slower the response. Specify the proper filter time constant taking into account the response speed of the receiving side. If fluctuation occurs due to noise, increase the time constant.

- Data setting range: 0.00 to 5.00 (s)

F37
Load Selection/Auto Torque Boost/Auto Energy Saving Operation 1
Related function codes: F09 Torque boost 1
H67 Auto energy saving operation (mode selection)
F37 specifies V/f pattern, torque boost type, and auto energy saving operation in accordance with the characteristics of the load.

| $\begin{aligned} & \text { F37 } \\ & \text { data } \end{aligned}$ | V/f characteristics | Torque boost | Auto energy-saving operation | Applicable load |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Quadratic-torque characteristics | By F09 torque boost | Disable | Quadratic-torque load (generally the fan and pump load) |
| 1 | Linear V/f pattern |  |  | Constant torque load |
| 2 |  | Auto torque boost |  | Constant torque load (to be selected if a motor may be over-excited at no load) |
| 3 | Quadratic-torque characteristics | By F09 torque boost | Enable | Quadratic-torque load (generally the fan and pump load) |
| 4 | Linear V/f pattern |  |  | Constant torque load |
| 5 |  | Auto torque boost |  | Constant torque load (to be selected if a motor may be over-excited at no load) |

If a required "load torque + acceleration torque" is $50 \%$ or more of the rated torque, it is recommended to select the linear V/f pattern. Factory defaults are set to linear V/f pattern.

If quadratic-torque characteristics are selected with $\mathrm{F} 37=0$ or 3 , non-linear V/f H50 and H51 are automatically set.
Adjustment may be necessary depending on the motor and load characteristics.

- When under vector control with speed sensor, function code F37 is used with the auto energy saving operation enable/disable selection (V/f characteristics and torque boost will be disabled.)

| F37 data | Enable |
| :---: | :--- |
| 0 to 2 | Auto energy saving operation <br> OFF |
| 3 to 5 | Auto energy saving operation <br> ON |

- Under speed sensorless vector control, both function code F37 and F09 are disabled. Auto energy saving operation is also impossible.


## - V/f characteristics

Fuji inverters offer a variety of V/f patterns and torque boosts, which include V/f patterns suitable for variable torque load such as general fans and pumps and for constant torque load (including special pumps requiring high starting torque). Two types of torque boosts are available: manual and automatic.


Quadratic-torque characteristics (F37 = 0)


Linear V/f pattern (F37 = 1)

If quadratic-torque characteristics are selected with function code F37, non-linear V/f H 50 and H 51 are automatically set. Adjustment may be necessary depending on the motor and load characteristics. On the other hand, in the event that other than quadratic-torque characteristics are selected with function code F37, non-linear V/f is automatically disabled.
Recommended value: $\quad \mathrm{H} 50=1 / 10$ of the base frequency $H 51=1 / 10$ of the voltage at base frequency


## - Torque boost

## - Manual torque boost by F09 (Manual adjustment)

- Data setting range: 0.0 to 20.0 (\%), ( $100 \% /$ base frequency voltage)

In torque boost using F09, constant voltage is added to the basic V/f pattern, regardless of the load. To secure a sufficient starting torque, manually adjust the output voltage to optimally match the motor and its load by using F09. Specify an appropriate level that guarantees smooth Startup and yet does not cause over-excitation at no or light load. Generally speaking, torque boost is unnecessary $(0.0 \%)$ with motors of 30 kW or higher.

Torque boost using F09 ensures high driving stability since the output voltage remains constant regardless of the load fluctuation.
Specify the function code F09 data in percentage to the base frequency voltage.

- Precautions when driving an old model IE1 motor

With the 0.75 kW to 22 kW factory default value, a boost amount that ensures a starting torque of approximately $100 \%$ is set for high-efficiency premium motors (IE3), but with the IE1 motor, starting torque may be insufficient because the boost amount is low. If starting torque is insufficient during the test run, either adjust the torque manually, or check the appropriate torque boost value with the motor manufacturer, and set that value. If using a Fuji Electric motor (IE1), by selecting Fuji Electric motor 8series by setting P99 to 0 , and initializing the motor constants with H 03 , the torque boost is reset to an appropriate value.

- Specifying a high torque boost level will generate a high torque, but may cause overcurrent due to over-excitation at no load. If you continue to drive the motor, it may overheat. To avoid such a situation, adjust torque boost to an appropriate level.
- When the non-linear V/f pattern and the torque boost are used together, the torque boost takes effect below the frequency on the non-linear V/f pattern's point.

Non-linear V/f pattern 1 (voltage) (H51)

Torque boost 1 (F09)


## - Auto torque boost

This function automatically optimizes the output voltage to fit the motor with its load. Under light load, auto torque boost decreases the output voltage to prevent the motor from over-excitation. Under heavy load, it increases the output voltage to increase the output torque of the motor.

- This function controls in accordance with motor characteristics. Therefore, set the base frequency 1 (F04), rated voltage at base frequency 1 (F05), and other pertinent motor parameters (P01 through P03 and P06 through P99) in line with the motor capacity and characteristics, or else perform autotuning (P04).
- When a special motor is driven or the load does not have sufficient rigidity, the maximum torque might decrease or the motor operation might become unstable. In such cases, do not use auto torque boost but choose manual torque boost using F09 ( $\mathrm{F} 37=0$ or 1 ).
- Auto energy saving operation (mode selection) (H67)

Automatically controls the output voltage to the motor in order to minimize the total motor and inverter loss. (Depending on the motor and load characteristics, this may not be effective. Verify the benefits of using auto energy saving operation for the actual application.)
Auto energy saving control can be selected from that applied when performing constant speed operation only, and when performing constant speed operation and acceleration/deceleration.

| H67 data | Auto energy saving operation |
| :---: | :--- |
| 0 | When performing constant speed operation only (when accelerating and <br> decelerating, torque boost or auto torque boost is applied with F09 based on <br> the F37 setting) |
| 1 | When performing constant speed operation and acceleration/deceleration <br> (Note: This should be restricted to acceleration/deceleration operation with a <br> light load.) |

If using auto energy saving operation, the response when changing the speed from constant speed operation will be slow. If sudden acceleration/deceleration is necessary, use after canceling auto energy saving operation beforehand.

[^16]For details about the setting of the stop frequency (detection mode and holding time), refer to the description in the function code F23 section.

F40, F41
Torque limiter 1-1/Torque limiter 1-2
Related function codes: E16, E17 Torque limiter 2-1, 2-2 H73 Torque limiter (Operating conditions selection)
H74 Torque limiter (Control target)
H75 Torque limiter (Applicable quadrant) H76 Torque limiter (Braking) (Frequency rising limit for braking)

## Under V/f control (F42 = 0, 1, 2, 3, 4)

If the inverter output torque exceeds the specified levels of the torque limiters, the inverter controls the output frequency and limits the output torque for preventing a stall.

> Note In braking, the inverter increases the output frequency to limit the output torque. Depending on the conditions during operation, the output frequency could dangerously increase. H76 (Frequency rising limit for braking) is provided to limit the increasing frequency component.

Table Related function codes

| Function code | Name | V/f control | Remarks |
| :---: | :--- | :---: | :---: |
| F40 | Torque limiter 1-1 | Y |  |
| F41 | Torque limiter 1-2 | Y |  |
| E16 | Torque limiter 2-1 | Y |  |
| E17 | Torque limiter 2-2 | Y |  |
| H73 | Torque limiter (Operating conditions <br> selection) | Y |  |
| H74 | Torque limiter (Control target) | N |  |
| H75 | Torque limit (Applicable quadrant) | N |  |
| H76 | Torque limiter (frequency rising limit for <br> braking) | Y |  |
| E61 to E63, E66 | Terminal [12], [V2], [C1] (C1 function) (V3 <br> function) Extension function selection | Y | 7: Analog torque limiter A <br> 8: Analog torque limiter B |

## - Torque limit control mode

Under V/f control, torque limiting is performed by limiting torque current flowing across the motor.
The graph below shows the relationship between the torque and the output frequency at the constant torque current limit.


FUNCTION
F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
$J$ Codes
d Codes
U Codes
y Codes
K Code

## Torque limiter (F40, F41, E16, E17) Data setting range: - $\mathbf{3 0 0}$ to $\mathbf{3 0 0}(\%) .999$ (Disable)

These function codes specify the operation level at which the torque limiters become activated, as the percentage of the motor rated torque. Switching between motor 1 and 2 is possible using the control terminals (described later).

| Function code | Name | Torque limit feature |
| :---: | :--- | :--- |
| F40 | Torque limiter 1-1 | Driving torque current limiter 1 |
| F41 | Torque limiter 1-2 | Braking torque current limiter 1 |
| E16 | Torque limiter 2-1 | Driving torque current limiter 2 |
| E17 | Torque limiter 2-2 | Braking torque current limiter 2 |

Note
The setting range is the plus/minus range, but a plus value should be set. Operation will be performed with an absolute value if a minus value is set.

Although the setting range of the torque is $300 \%$, the torque limiter determined by the overload current of the unit internally limits the torque current output. Therefore, the torque current output is automatically limited at a value lower than $300 \%$, the maximum setting value.

## - Analog torque limiter (E61 to E63, E66)

The torque limit value can be specified by analog inputs (voltage or current) through terminals [12], [V2], [C1] (C1 function), and [C1] (V3 function). Assign as follows with function codes E61, E62, E63, and E66.

| E61, E62, E63, E66 data | Name | Function | Description |
| :---: | :---: | :---: | :--- |
| 7 | Analog torque limit value A | Driving torque current limiter | Input modes: <br> $100 \% / 10 \mathrm{~V}$ or 20 <br> 8 |
| Analog torque limit value B | Braking torque current limiter | mA |  |

If these terminals have been set up to have the same data, the operation priority is given in the following order: E61 > E62 > E63 > E66

## - Torque limiter levels specified via communications link (S10, S11)

The torque limiter levels can be changed via the communications link. Communication dedicated codes S10, S11 interlock with the function codes F40, F41.

## - Switching torque limiters

The torque limiters can be switched by the function code setting and the terminal command "TL2/TL1" (Select torque limiter level $2 / 1$ ) assigned to any of the digital input terminals. To assign the Torque limiter 2/Torque limiter 1, "TL2/TL1" set Data = 14 in function codes from E01 to E09. If no "TL2/TL1" is assigned, torque limiter levels 1-1 and 1-2 (F40 and F41) take effect by default.

- Torque limiter (Braking) (Frequency rising limit for braking) (H76) Data setting range: 0.0 to $\mathbf{5 9 9 . 0}$ (Hz)

H 76 specifies the rising limit of the frequency in limiting torque for braking. The factory default is 5.0 Hz . If the increasing frequency during braking reaches the limit value, the torque limiters no longer function, resulting in an overvoltage trip. Such a problem may be avoided by increasing the setting value of H 76 .

Note
The torque limiter and current limiter are very similar in function. If both are activated concurrently, they may conflict with each other and cause hunting. Avoid concurrent activation of these limiters.


- Torque limiter (Operating conditions selection) (H73)
- It is possible to set whether to enable or disable torque limiting while the motor is accelerating or decelerating, or while it is running at constant speed.

| H73 data | During acceleration/deceleration | During constant speed running |
| :---: | :---: | :---: |
| 0 | Enable | Enable |
| 1 | Disable | Enable |
| 2 | Enable | Disable |

Under speed sensorless vector control/vector control with sensor (induction motors, permanent magnet synchronous motors) ( $\mathbf{F 4 2}=5,6,15,16$ )

If the inverter's output torque exceeds the specified levels of the torque limiters, the inverter controls the speed regulator's output (torque command) in speed control or a torque command in torque control in order to limit the motor-generating torque.
Related function code

| Function <br> code | Name | Vector control | Remarks |
| :---: | :--- | :---: | :---: |
| F40 | Torque limiter 1-1 |  |  |
| F41 | Torque limiter 1-2 | Y |  |
| E16 | Torque limiter 2-1 | Y |  |
| E17 | Torque limiter 2-2 | Y |  |
| H73 | Torque limiter (Operating conditions selection) | Y |  |
| H74 | Torque limiter (Control target) | Y |  |
| H75 | Torque limit (Applicable quadrant) | Y |  |
| H76 | Torque limiter (Frequency rising limit for <br> braking) | Y |  |
| E61 to E63, <br> E66 | Terminal [12], [C1] (C1 function), [V2], [C1] <br> (V3 function), extension function selection | Y | 7: Analog torque limiter A <br> 8: Analog torque limiter B |

## - Torque limiter (Control target) (H74)

Under vector control, the inverter can limit motor-generating torque or output power, as well as a torque current (default).

| H74 data | Control target |
| :---: | :--- |
| 0 | Keeps torque constant. |
| 1 (factory default) | Keeps torque current constant. |
| 2 | Keeps power constant. |



## Torque limiter (Applicable quadrant) (H75)

The settings for each quadrant (forward rotation drive/braking, reverse rotation drive/braking) for which torque limiter $A$ and $B$ are enabled can be selected from "Drive/braking torque limiter", " 4 identical quadrants torque limiter", and "Upper limit/lower limit torque limiter" shown below.



| H75 | Applicable quadrant |  |  |
| :---: | :---: | :---: | :---: |
| 3: <br> 4 independent quadrants | With the following assignments, limiting values are applied for the 4 quadrants independently. <br> Table 5.3-3 |  |  |
|  |  | Name | Assignment |
|  | F40 | Torque limiter 1-1 | Quadrant I (forward rotation drive) |
|  | F41 | Torque limiter 1-2 | Quadrant IV (forward rotation braking) |
|  | E16 | Torque limiter 2-1 | Quadrant III (reverse rotation drive) |
|  | E17 | Torque limiter 2-2 | Quadrant II (reverse rotation braking) |
|  |  |  | First quadrant: Forward driving <br> F40: Torque limitter 1-1 |

Torque limiters (F40, F41, E16, E17) Data setting range: - $\mathbf{3 0 0}$ to 300\%; 999 (Disable)
These function codes specify the operation level at which the torque limiters become activated, as the percentage of the motor rated torque.

| Function code | Name | Function |
| :---: | :--- | :--- |
| F40 | Torque limiter 1-1 | Torque limit value A |
| F41 | Torque limiter 1-2 | Torque limit value B |
| E16 | Torque limiter 2-1 | Torque limit value A |
| E17 | Torque limiter 2-2 | Torque limit value B |

[^17]
## - Analog torque limiter (E61 to E63, E66)

The torque limit value can be specified by analog inputs (voltage or current) through terminal [12], [C1] (C1 function), [C1] (V3 function), and terminal [V2] (V2 function). Assign with function codes E61, E62, and E63 (terminal [12], [C1] (C1 function), [C1] (V3 function) (extension function selection)) as follows.

| E61, E62, E63, E66 <br> data | Function | Description |
| :---: | :---: | :---: |
| 7 | Analog torque limit value A | Input modes: $200 \% / 10 \mathrm{~V}$ or 20 mA |
| 8 | Analog torque limit value B |  |

[^18]
## Torque limiter levels specified via communications link (S10, S11)

The torque limiter levels can be changed via the communications link. Communication dedicated codes S10, S11 interlock with the function codes F40, F41.

| F42 | Drive control selection 1   <br>  Related function code: H68 Slip compensation 1 <br> (Operating conditions selection) |  |
| :--- | :--- | :--- | :--- |

F42 specifies the motor drive control. Refer to "Chapter 4 TEST RUN PROCEDURE" for details on the control method.

| F42 data | Control method | Basic control | Speed feedback | Speed control |
| :---: | :---: | :---: | :---: | :---: |
| 0 | V/f control: without slip compensation | V/f control | No | Frequency control |
| 1 | Dynamic torque vector control (with slip compensation, auto torque boost) |  |  | Frequency control <br> with slip <br> compensation  |
| 2 | V/f control with slip compensation |  |  |  |
| 3 | V/f control with speed sensor |  | Yes | Frequency control with automatic speed regulator (ASR) |
| 4 | Dynamic torque vector control with speed sensor |  |  |  |
| 5 | Speed sensorless vector control | Vector control | Speed estimation | Speed control with automatic speed regulator (ASR) |
| 6 | Vector control with speed sensor |  | Yes |  |
| 15 | Vector Control without speed sensor and magnetic pole position sensor |  | Speed estimation |  |
| 16 | Vector control with sensor (permanent magnet synchronous motors) |  | Yes |  |

## F42 $=0$ : V/f control without slip compensation

Under this control, the inverter controls a motor with the voltage and frequency according to the V/f pattern specified by function codes. This control disables all automatically controlled features such as the slip compensation, so no unpredictable output fluctuation occurs, enabling stable operation with constant output frequency. If running multiple motors, select this control method.

## F42 = 2: V/f control with slip compensation

Applying any load to an induction motor causes a rotational slip due to the motor characteristics, decreasing the motor rotation. The inverter's slip compensation function first presumes the slip value of the motor based on the motor torque generated and raises the output frequency to compensate for the decrease in motor rotation. This prevents the motor from decreasing the rotation due to the slip.

That is, this function is effective for improving the motor speed control accuracy.

| Function code |  | Enable |
| :---: | :--- | :--- |
| P12 | Rated slip | Specify the motor rated slip. |
| P09 | Slip compensation gain <br> (for drive) | Adjust the slip compensation for driving. <br> Slip compensation amount when driving = Rated slip x Slip <br> compensation gain (when driving) |
| P11 | Slip compensation gain <br> (braking) | Adjust the slip compensation amount when braking. <br> Slip compensation amount when braking = Rated slip x Slip <br> compensation gain (when braking) |
| P10 | Slip compensation <br> response time | Set the slip compensation response time. Basically, there is no need <br> to modify the setting. |

To improve the accuracy of slip compensation, perform auto-tuning.
H68 enables or disables the slip compensation function 1 according to the motor driving conditions.

| H68 <br> data | Motor driving condition |  | Motor driving frequency zone |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Accel / decel | During constant speed | Base frequency or below | Above the base frequency |
| 0 | Enable | Enable | Enable | Enable |
| 1 | Disable | Enable | Enable | Enable |
| 2 | Enable | Enable | Enable | Disable |
| 3 | Disable | Enable | Enable | Disable |

## F42 = 1: Dynamic torque vector control

To get the maximal torque out of a motor, this control calculates the motor torque matched to the load applied and uses it to optimize the voltage and current vector output. Specify motor constants, or perform auto tuning.
When the vector control without speed sensor (dynamic torque vector) is selected, automatically auto torque boost and slip compensation become enabled. This control is effective for improving the system response to external disturbances such as load fluctuations, and the motor speed control accuracy.
Note that the inverter may not respond to a rapid load fluctuation.

## - F42 = 3: V/f control with speed sensor

Applying any load to an induction motor causes a rotational slip due to the motor characteristics, decreasing the motor rotation. Under V/f control with speed sensor, the inverter detects the motor rotation using the encoder mounted on the motor shaft and compensates for the decrease in slip frequency by the PI control to match the motor rotation with the reference speed. This improves the motor speed control accuracy.

[^19]
## F42 = 4: Dynamic torque vector control with speed sensor

The difference from "V/f control with speed sensor" stated above is to calculate the motor torque that matches to the load applied, and use it to optimize the voltage and current vector output for getting the maximal torque from the motor. This is effective for improving the system response to external disturbances such as load fluctuations, and the motor speed control accuracy.

Speed detection is performed, but the motor starts based on the H09: Auto search mode setting. The motor starts from the speed detection value only if auto search is enabled with function code H 09 set to 1 or 2 . If $\mathrm{H} 09=0$ (factory default), the speed detection value is ignored, and the motor starts from the starting frequency.

## F42 = 5: Speed sensorless vector control

This control estimates the motor speed based on the inverter's output voltage and current, and uses the estimated speed for speed control. It also decomposes the motor drive current into the exciting and torque current components, and controls each of those components as vectors. No PG (pulse generator) interface card is required. It is possible to obtain the desired response by adjusting the control constants (PI constants) using the speed regulator (PI controller).
With vector control, a difference (voltage margin) is required between the voltage that the inverter is capable of outputting and the motor induced voltage to a certain extent in order to control the motor current. Generally speaking, general-purpose motors are designed for use with commercial power supplies, but due to the need for this voltage margin, it is necessary to control the current by suppressing the motor terminal voltage. By doing so, it is not possible to deliver rated torque even when the original motor rated current is flowing. To ensure that the rated torque is delivered, it is necessary to increase the rated current (the same applies with vector control with speed sensor).

## F42 = 6: Vector control with speed sensor

This control requires an optional PG (pulse generator) and an optional PG interface card to be mounted on a motor shaft and an inverter, respectively. The inverter detects the motor's rotational position and speed according to PG feedback signals and uses them for speed control. It also decomposes the motor drive current into the exciting and torque current components, and controls each of components as vectors.
It is possible to obtain the desired response by adjusting the control constants ( PI constants) using the speed regulator ( PI controller).
(Use of the inverter in combination with a dedicated Fuji motor for vector control (VG motor) is recommended.)

## - F42 = 15: Sensorless vector control (synchronous motors)

This control estimates the motor speed based on the inverter's output voltage and current, and uses the estimated speed for speed control. It also decomposes the motor drive current into the exciting and torque current components, and controls each of those components as vectors. No PG (pulse generator) interface card is required. It is possible to obtain the desired response by adjusting the control constants (PI constants) using the speed regulator (PI controller).

## - F42 = 16: Vector control with speed sensor (synchronous motors)

This control requires an optional PG (pulse generator) and an optional PG interface card to be mounted on a motor shaft and an inverter, respectively. The inverter detects the motor's rotational position and speed according to PG feedback signals and uses them for speed control. It also decomposes the motor drive current into the exciting and torque current components, and controls each of components as vectors.
It is possible to obtain the desired response by adjusting the control constants ( PI constants) using the speed regulator ( PI controller).
(Use of the inverter in combination with a dedicated Fuji synchronous motor for vector control (GNF motor) is recommended.)

Slip compensation, dynamic torque vector control, sensorless vector control, and vector control with speed sensor used motor constants. Consequently, the following conditions should be satisfied; otherwise, full control performance may not be obtained.

- A single motor should be controlled per inverter.
- Motor parameters P02, P03, P06 to P13 should be properly configured or auto-tuning should be performed.
- The capacity of the motor to be controlled should be within the capacity two ranks lower than the inverter capacity under dynamic torque vector control, and the same as the inverter capacity under speed sensorless vector control/vector control with speed sensor. The standard applicable motor capacity differs depending on whether inverter is the HHD or HND specification. Otherwise, the inverter may not control the motor due to decrease of the current detection resolution.
- The wiring distance between the inverter and motor should be $50 \mathrm{~m}(164 \mathrm{ft})$ or less. If it is longer, the inverter may not control the motor due to leakage current flowing through stray capacitance to the ground or between wires. Especially, small capacity inverters whose rated current is also small may be unable to control the motor correctly even if the wiring is less than $50 \mathrm{~m}(164 \mathrm{ft}$ ). In that case, make the wiring length as short as possible or use a wire with small stray capacitance (e.g., loosely-bundled cable) to minimize the stray capacitance.

FUNCTION
F Codes

Control parameters which are initialized when the control method F42 is changed
If the control selection (F42) is changed from induction motor control (other than F42 $=15,16$ ) to permanent magnet synchronous motor control ( $F 42=15,16$ ), the function code values in the following table are automatically changed to the initial values.

| Function code | If changed by setting F42 to 15 or 16 , or other than 15 or 16 | If P02 changed | If motor constants are initialized by setting H03 to 2 with $\mathrm{F} 42=0$ to 6 | If motor constants are initialized by setting H03 to 2 with F42 $=15$ or 16 |
| :---: | :---: | :---: | :---: | :---: |
| F03 | Y | N | N | N |
| F04 | Y | N | N | Y |
| F05 | Y | N | N | Y |
| F06 | Y | N | N | Y |
| F09 | N | N | Y | Y |
| F10 | N | N | N | Y |
| F11 | Y | N | Y | Y |
| F12 | Y | N | N | Y |
| F15 | Y | N | N | N |
| F23 | Y | N | N | N |
| F26 | Y | N | N | N |
| F40 to F41 | Y | N | N | N |
| E50 | Y | N | N | N |
| P01 | Y | N | Y | Y |
| P02 | N | N | N | N |
| P03 | Y | Y | Y | Y |
| P06 to P23 | N | Y | Y | Y |
| P30 | N | Y | Y | Y |
| P53 to P56 | N | Y | Y | Y |
| P60 to P65 | N | Y | Y | Y |
| P74 | N | Y | Y | Y |
| P83 | N | Y | Y | Y |
| P84 | N | Y | Y | Y |
| P85 | N | Y | Y | Y |
| P87 to P89 | N | Y | Y | Y |
| P90 | N | Y | Y | Y |
| P99 | Y | N | N | N |
| H46 | N | Y | Y | Y |
| d01 to d04, d06 and d07 | Y | N | N | N |
| d90 | N | N | Y | N |

Y: Change $\quad \mathrm{N}$ : No change

Note
If the control selection (F42) is set to induction motor speed sensorless vector control (F42 = 5), the function code d67 value is automatically changed.

F43, F44
Current limiter (Operation selection, Operation level)
Related function code: H12 Instantaneous overcurrent limiting (Mode selection)
This is a dedicated V/f control function. It does not work under speed sensorless vector control or vector control with speed sensor.

When the output current of the inverter exceeds the level specified by the current limiter (F44), the inverter automatically manages its output frequency to prevent a stall and limits the output current. The value is set to $160 \%$ for the HHD specification, and $130 \%$ for the HND specification (initial values are written automatically when HHD or HND is selected with function code F80). If an overload current of $160 \%$ or higher, or $130 \%$ or higher flows momentarily, and the frequency drop resulting from current limiting becomes a problem, consider increasing the limiting level.
Operation at constant speed only ( $\mathrm{F} 43=1$ ), and operation when acceleration and at constant speed ( $F 43=2$ ) can be set for the operation selection. Choose F43 = 1 if you need to run the inverter at full capability during acceleration and to limit the load (current) during constant speed operation.

Mode selection (F43)
F43 selects the motor running state in which the current limiter becomes active.

| F43 data | Running states that enable the current limiter |  |  |
| :---: | :---: | :---: | :---: |
|  | During acceleration | During constant speed | During deceleration |
| 0 | Disable | Disable | Disable |
| 1 | Disable | Enable | Disable |
| 2 | Enable | Enable | Disable |

## - Braking level (F44)

F44 specifies the operation level at which the output current limiter becomes activated, as a ratio of the inverter rating.

- Data setting range: 20 to 200 (\%) of rated current of the inverter (Inverter's rated current changes according to the setting value of function code F80.)
- Instantaneous overcurrent limiting (Mode selection) (H12)

H12 specifies whether the inverter invokes the current limit processing or enters the overcurrent trip when its output current exceeds the instantaneous overcurrent limiting level. Under the current limit processing, the inverter immediately turns OFF its output gate to suppress the further current increase and continues to control the output frequency.

| H 12 data | Function |
| :---: | :--- |
| 0 | Disable (An overcurrent trip occurs at the instantaneous overcurrent limiting level.) |
| 1 | Enable (An instantaneous overcurrent limiting operation is activated.) |

If any problem could occur when the motor torque temporarily drops during current limiting processing, it is necessary to cause an overcurrent trip $(\mathrm{H} 12=0)$ and actuate a mechanical brake at the same time.

- Since the current limit operation with F43 and F44 is performed by software, it may cause a delay in control. If you need a quick response current limiting, also enable the instantaneous overcurrent limiting with H 12 .
- If an excessive load is applied when the current limiter operation level is set extremely low, the inverter will rapidly lower its output frequency. This may cause an overvoltage trip or dangerous turnover of the motor rotation due to undershooting. Depending on the load, extremely short acceleration time may activate the current limiting to suppress the increase of the inverter output frequency, causing hunting (undesirable oscillation of the system) or activating the inverter overvoltage trip. When specifying the acceleration time, therefore, you need to take into account machinery characteristics and moment of inertia of the load.

Note

- The torque limiter and current limiter are very similar in function. If both are activated concurrently, they may conflict with each other and cause hunting. Avoid concurrent activation of these limiters.
- Vector control with speed sensor itself contains the current control system, so it disables the current limiter specified by F43 and F44, as well as automatically disabling the instantaneous overcurrent limiting (specified by H12). Accordingly, the inverter causes an overcurrent trip when its output current exceeds the instantaneous overcurrent limiting level.


## F50 to F52

Electronic thermal overload protection for braking resistor
(Discharging capability, Allowable average loss and Braking resistance value)
These function codes specify the electronic thermal overload protection feature for the braking resistor.
Set the discharging capability, allowable average loss and resistance to F50, F51 and F52, respectively. These values are determined by the inverter and braking resistor models. For the discharging capability, allowable average loss and resistance, refer to Chapter 11 "11.8.3 Specifications."
The values listed in the tables are for standard models and $10 \%$ ED models of the braking resistors which Fuji Electric provides. When using a braking resistor of any other manufacturer, confirm the corresponding values with the manufacturer and set the function codes accordingly.

Depending on the thermal characteristics of the braking resistor, the electronic thermal overload protection feature may act so that the inverter issues the overheat protection alarm ditil even if the actual temperature rise is not large enough. If this happens, review the relationship between the performance index of the braking resistor and settings of related function codes.

Using the standard models of braking resistor or using the braking unit and braking resistor together can output temperature detection signal for overheat. Assign terminal command THR ("Enable external alarm trip") to any of digital input terminals [X1] to [X9], [FWD] and [REV] and connect that terminal and its common terminal to braking resistor's terminals [1] and [2]. Set OFF for function code F50.

## Calculating the discharging capability and allowable average loss

If the discharge withstand current rating and permissible average loss are unknown when using a non-Fuji resistor, as long as the applicable motor capacity, \%ED, and maximum braking time (*) resistor specifications are known, the discharge withstand current rating and permissible average loss can be calculated. When doing so, the calculation method differs depending on the resistor specifications \%ED concept (how braking load is applied.)

* The maximum braking time is not the inverter deceleration time setting value, but is the length of time that the braking resistor is able to continuously block regenerative electric power.


## <lf expressed with \%ED for deceleration>

In usual deceleration, the braking load decreases as the speed slows down. In the deceleration with constant torque, the braking load decreases in proportion to the speed. Discharge withstand current rating and permissible average loss can be calculated with the following formula.

<lf expressed with \%ED for constant speed>
Unlike when decelerating, the braking load is constant if an external braking load is applied at constant speed. Discharge withstand current rating and permissible average loss can be calculated with the following formula.

<lf decelerating from a fixed output area>
The fixed output area (base frequency or higher) braking load is constant. Furthermore, the fixed torque area (less than base frequency) braking load is proportional to the speed. Consequently, if decelerating (stopping) from the fixed output area, calculate and add the discharge withstand current rating and permissible average loss for the respective <lf expressed with \%ED for constant speed> and <lf decelerating from a fixed output area> above.

- Discharging capability (F50)

The discharging capability refers to kWs allowance for a single braking cycle.

| F50 data | Function |
| :---: | :--- |
| 1 to 9000 | 1 to $9000(\mathrm{kWs})$ |
| OFF | Disables the protective function with a braking resistor electronic thermal <br> overload. |

## Allowable average loss (F51)

Allowance average loss is the resistor capacitor that enables continuous operation of motor.

| F51 data |  | Function |
| :---: | :--- | :--- |
| 0.001 to 99.99 | 0.001 to $99.99(\mathrm{~kW})$ |  |

## Braking resistance value (F52)

F52 specifies the resistance of the braking resistor.

| F52 data |  | Function |
| :---: | :--- | :--- |
| 0.01 to 999 | 0.01 to $999(\Omega)$ |  |

## F58, F59 <br> F32, F60 to F63

Terminal [FM1] (Filter, Bias) Terminal [FM2] (Operation selection, Output gain, Function selection, Filter, Bias)

A detailed explanation can be found in the function code F29 section.

```
F64
Terminal [FMP] (Filter)
```

A detailed explanation can be found in the function code F33 section.

## Switching between HHD and HND specification

The HHD specification is standard by default, and therefore use is possible with motor standard rated current one to two ranks higher by switching to the HND specification. However, the overload capability will drop. The specification for motor 2 to 4 will also change.

The HD specification for Fuji's inverter FRENIC-MEGA (G1) series is equivalent to the HHD specification for this model, and the LD specification is equivalent to the HND specification.

Double key operation (sion key + keys) is required to change function code F80 data.

| F80 <br> data | Specification | Application | Rated current level | Ambi <br> ent <br> tempe <br> rature | Overload <br> capability | Maximu <br> m output <br> frequenc <br> y |
| :---: | :---: | :--- | :--- | :--- | :--- | :---: |
| 0 | HHD <br> specification | High, Heavy <br> Duty <br> applications | Capable of driving a <br> motor whose capacity is <br> the same as the inverter <br> capacity. | $50^{\circ} \mathrm{C}$ | $150 \%$ for 1 <br> min <br> $200 \%$ for 3.0 s | 599 Hz |
| 1 | HND <br> specification | High, Normal <br> Duty <br> applications | Capable of driving a <br> motor whose capacity is <br> one to two ranks higher <br> than the inverter capacity. | $50^{\circ} \mathrm{C}$ | $120 \%$ for 1 <br> min | 599 Hz |

Refer to Chapter 12 "12.1 Standard Specifications" for details on specific rated current values. The factory default is $0: \mathrm{HHD}$.

HND specification inverters are subject to restrictions on the function code data setting range and internal processing as listed below.

| Function code | Name | Remarks |
| :---: | :--- | :--- |
| F21 | DC braking 1 (Braking level) |  |
| A10 | DC braking 2 (Braking level) |  |
| b10 | DC braking 3 (Braking level) |  |
| r10 | DC braking 4 (Braking level) |  |
| F26 | Motriction sound (Carrier frequency) | Upper limit restriction |
| F44 | Current limiter (Level) |  |
| J68 | Brake Signal Brake-release current | Upper limit restriction |
| d120 | Brake signal brake-release current (REV) |  |

Refer to explanation of each function code and selection guidance in Chapter 10"10.4.2 Guideline for selecting inverter drive mode and capacity."

[^20]
## FUNCTION

F Codes
E Codes
C Codes
P Codes

### 5.3.2 E codes (Extension terminal functions)

## E01 to E09

## Terminal [X1] to [X9] (Function selection)

Related function codes: Terminal E98 [FWD] function
Terminal E99 [REV] function
E01 to E09, E98 and E99 assign commands to general-purpose, programmable, digital input terminals, [X1] to [X9], [FWD], and [REV].

These function codes can also switch the logic system between normal and negative to define how the inverter logic interprets the ON or OFF state of each terminal. The factory default setting is normal logic system "Active ON." Functions assigned to digital input terminals [X1] to [X9], [FWD] and [REV] are as shown below. Descriptions that follow are given in normal logic system. Each signal has been described at data allocation order. However, the signal is related has been described together. Refer to the function codes in the "Related function codes" column, if any.

By setting the same data as that shown in the following table for function code E70, terminal functions indicated with a " $Y$ " in the "Operation possible with M/Shift key" column can be turned ON and OFF manually by assigning the functions to the M/Shift key on the keypad.
Refer to the explanation on function code E70 for details.

## $\triangle C A U T I O N$

- Run commands (e.g., Run forward "FWD"), stop commands (e.g., coast to stop "BX"), and frequency change commands can be assigned to digital input terminals. Depending on the digital input terminal status, operation may start suddenly, or the speed may change significantly simply by changing the function code settings. Make changes to function code settings after sufficiently ensuring safety.
- Functions for switching run or frequency command sources (such as "SS1, SS2, SS4, SS8", "Hz2/Hz1", "Hz/PID", "IVS" and "LE") can be assigned to the digital input terminals. Switching these signals may cause a sudden motor start or an abrupt change in speed depending on the condition. Depending on the conditions, changes to these signals may result in operation being started suddenly or the speed changing suddenly.

Failure to observe this could result in an accident or injury.

| LED |  | Operation <br> Active ON | Active OFF |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |


| LED |  | Defined function | Signal name | Operation possible with M/Shift key | Related function code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Active ON | Active OFF |  |  |  |  |
| 11 | 1011 | Frequency setting 2/Frequency setting 1 | "Hz2/Hz1" | Y | F01, C30 |
| 12 | 1012 | Select motor 2 | "M2" | Y | A42 |
| 13 | - | DC braking command | "DCBRK" | Y | F20 to F22 |
| 14 | 1014 | Select torque limit 2/Torque limit 1 | "TL2/TL1" | Y | $\begin{aligned} & \text { F40, F41 } \\ & \text { E16, E17 } \end{aligned}$ |
| 15 | - | Switch to commercial power ( 50 Hz ) | "SW50" | N | - |
| 16 | - | Switch to commercial power ( 60 Hz ) | "SW60" | N | - |
| 17 | 1017 | UP command | "UP" | N | Frequency |
| 18 | 1018 | DOWN command | "DOWN" | N | setting: F01, C30 PID command: J02 |
| 19 | 1019 | Allow function code editing (Data change enabled) | "WE-KP" | Y | F00 |
| 20 | 1020 | Cancel PID control | "Hz/PID" | Y | J01 to J19, J57 to J62 |
| 21 | 1021 | Switch normal/inverse operation | "IVS" | Y | C53, C54, J01 |
| 22 | 1022 | Interlock | "IL" | N | F14 |
| 23 | 1023 | Cancel torque control | "Hz/TRQ" | Y | H18 |
| 24 | 1024 | Select link operation (RS-485, BUS option) | "LE" | Y | H30, y98 |
| 25 | 1025 | Universal DI | "U-DI" | N | - |
| 26 | 1026 | Select auto search for idling motor speed at starting | "STM" | Y | H09, d67 |
| 1030 | 30 | Force to stop | "STOP" | Y | F07, H56 |
| 32 | 1032 | Pre-excitation | "EXITE" | Y | H84, H85 |
| 33 | 1033 | Reset PID integral and differential terms | "PID-RST" | Y | J01 to J19, |
| 34 | 1034 | Hold PID integral term | "PID-HLD" | Y |  |
| 35 | 1035 | Local (keypad) command selection | "LOC" | Y | $\begin{gathered} \text { (See section } \\ 3.3 .7) \end{gathered}$ |
| 36 | 1036 | Select motor 3 | "M3" | Y | A42, b42 |
| 37 | 1037 | Select motor 4 | "M4" | Y | A42, r42 |
| 39 | - | Condensation prevention | "DWP" | Y | J21 |
| 40 | - | Switch to commercial power built-in sequence ( 50 Hz ) | "ISW50" | Y | J22 |

5.3 Description of Function Codes 5.3.2 E codes (Extension terminal functions)

| LED |  | Defined function | Signal name | Operation possible with M/Shift key | Related function code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Active ON | Active OFF |  |  |  |  |
| 41 | - | Switch to commercial power built-in sequence $(60 \mathrm{~Hz})$ | "ISW60" | Y |  |
| 42 | 1042 | Home position limit switch | "LS" | N | J73 to J88 |
| 46 | 1046 | Enable overload stop | "OLS" | Y | $\begin{aligned} & \text { J63 to J67 } \\ & \text { J90 to J92 } \end{aligned}$ |
| 47 | 1047 | Servo lock | "LOCK" | Y | J97 to J99 |
| 48 | - | Pulse train input (valid only for terminal [X6], [X7]) | "PIN" | N |  |
| 49 | 1049 | Pulse train sign (valid for other than terminal [X6], [X7]) | "SIGN" | N | d62, d63 |
| 58 | 1058 | UP/DOWN frequency clear | "STZ" | Y | F01, H61 |
| 59 | 1059 | Battery operation | "BATRY" | Y |  |
| 60 | 1060 | Select torque bias 1 | "TB1" | Y | H154 to H162 |
| 61 | 1061 | Select torque bias 2 | "TB2" | Y |  |
| 62 | 1062 | Hold torque bias | "H-TB" | Y |  |
| 65 | 1065 | Check brake | "BRKE" | N | J68 to 96 |
| 70 | 1070 | Cancel line speed control | "Hz/LSC" | Y |  |
| 71 | 1071 | Hold line speed control frequency in the memory | "LSC-HLD" | Y | d41 |
| 72 | 1072 | Count the run time of commercial power-driven motor 1 | "CRUN-M1" | N |  |
| 73 | 1073 | Count the run time of commercial power-driven motor 2 | "CRUN-M2" | N |  |
| 74 | 1074 | Count the run time of commercial power-driven motor 3 | "CRUN-M3" | N |  |
| 75 | 1075 | Count the run time of commercial power-driven motor 4 | "CRUN-M4" | N |  |
| 76 | 1076 | Select droop control | "DROOP" | Y | H28 |
| 77 | 1077 | PG alarm cancel | "PG-CCL" | Y |  |
| 78 | 1078 | Select speed control parameter 1 | "MPRM1" | Y |  |
| 79 | 1079 | Select speed control parameter 2 | "MPRM2" | Y | d01 to d06 |
| 80 | 1080 | Cancel customizable logic | "CLC" | Y | E01 to E09, |
| 81 | 1081 | Clear all customizable logic timers | "CLTC" | Y | U81 to U90 |
| 82 | 1082 | Cancel anti-regenerative control | "AR-CCL" | Y | H69 |
| 83 | 1083 | PG input switching | "PG-SEL" | Y |  |
| 84 | 1084 | Acceleration/deceleration cancel (bypass) | "BPS" | Y |  |
| 94 | - | Jogging forward rotation/stop command | "FJOG" | N |  |
| 95 | - | Jogging reverse rotation/stop command | "RJOG" | N |  |


| LED |  | Defined function | Signal name | Operation possible with M/Shift key | Related function code |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Active ON | Active OFF |  |  |  |  |
| 97 | - | Forward rotation/reverse rotation selection | "DIR" | Y | F02 |
| 98 | - | Run forward (Exclusively assigned to [FWD] and [REV] terminals by E98 and E99) | "FWD" | N | F02 |
| 99 | - | Run reverse (Exclusively assigned to [FWD] and [REV] terminals by E98 and E99) | "REV" | N |  |
| 100 | - | No function assigned | "NONE" | Y | U81 to U90 |
| 105 | 1105 | Light load automatic double speed judgment permission | "LAC-ENB" | Y | d170 to d189 |
| 110 | 1110 | Servo lock gain selection | "SLG2" | Y | J97, d28 |
| 1111 | 111 | Forced stop (terminal block only enabled) | "STOP-T" | N |  |
| 116 | 1116 | AVR cancel | "AVR-CCL" | Y | F05, H71 |
| 119 | 1119 | Speed regulator P selection | "P-SEL" | Y |  |
| 121-129 | 1121-1129 | Customizable logic input 1 to 9 | "CLI1-9" | Y | U01 to U70 |
| 134 | 1134 | Forced operation | "FMS" | Y | H116 to H121 |
| 135 | 1135 | Travel/position switching | "INC/ABS" | Y | d201 to d299 |
| 136 | 1136 | Orientation command | "ORT" | Y |  |
| 137 | 1137 | Position control/speed control switching | "POS/Hz" | Y |  |
| 138 | 1138 | Homing command | "ORG" | Y |  |
| 139 | 1139 | +direction overtravel | "+OT" | N |  |
| 140 | 1140 | -direction overtravel | "-OT" | N |  |
| 141 | 1141 | Position clear command | "P-CLR" | Y |  |
| 142 | 1142 | Position preset command | "P-PRESET" | Y |  |
| 143 | 1143 | Teaching signal | "TEACH" | Y |  |
| 144 | 1144 | Position change command | "POS-SET" | Y |  |
| 145 | 1145 | Positioning data selection 1 | "POS-SEL1" | Y |  |
| 146 | 1146 | Positioning data selection 2 | "POS-SEL2" | Y |  |
| 147 | 1147 | Positioning data selection 4 | "POS-SEL4" | Y |  |
| 169 | 1169 | Initial diameter set command | "D-SET" | Y | d158 to d166 |
| 170 | 1170 | Winding diameter calculation hold command | "D-HLD" | Y |  |
| 171 | 1171 | PID control multistage command 1 | "PID-SS1" | Y | J136 to J138 |
| 172 | 1172 | PID control multistage command 2 | "PID-SS2" | Y |  |

[^21]| FUNCTION |
| :---: |
| F Codes |
| E Codes |
| C Codes |
| P Codes |
| H Codes |
| A Codes |
| b Codes |
| r Codes |
| J Codes |
| d Codes |
| U Codes |
| y Codes |
| K Codes |

## Terminal function assignment and data setting

■ Select multistep frequency "SS1", "SS2", "SS4", and "SS8" assignment (Function code data = 0, 1, 2, and 3)

The combination of the ON/OFF states of digital input signals "SS1", "SS2", "SS4" and "SS8" selects one of 16 different frequency commands defined beforehand by 15 function codes C05 to C19 (Multistep frequency 1 to 15). With this, the inverter can drive the motor at 16 different preset frequencies.
( $\mathbb{\square}$
Function codes C05 to C19)

- Select ACC/DEC time "RT1" and "RT2" assignment (Function code data = 4 and 5)

These terminal commands switch between ACC/DEC time 1 to 4 (F07, F08 and E10 through E15).
( $\mathbb{C l}$
Function codes F07, F08)

## ■ Select 3-wire operation "HLD" assignment (Function code data = 6)

This is used as the self-hold signal when performing 3-wire operation with the "FWD", "REV", and "HLD" signals.Function code F02)

- Coast to stop "BX" assignment (Function code data = 7)

Turning " $B X$ " ON immediately shuts down the inverter output. The motor free runs to a stop, without issuing any alarm.

## Reset alarm "RST" assignment (Function code data = 8)

Turning this terminal command ON clears the ALM state--alarm output (for any alarm). Turning it OFF erases the alarm display and clears the alarm hold state. When you turn the "RST" command ON, keep it ON for 10 ms or more. This command should be kept OFF for the normal inverter operation.


Fig. 5.3-1

## External alarm "THR" assignment (Function code data = 9)

Turning this terminal command OFF immediately shuts down the inverter output (so that the motor coasts to a stop), displays the alarm ${ }^{1 / 1 / 2)}$, and issues the alarm output (for any alarm) ALM. The THR command is self-held, and is reset when an alarm reset takes place.

[^22]
## - Ready for jogging "JOG" assignment (Function code data $=10$ )

This terminal command is used to jog or inch the motor for positioning a workpiece.
Turning this command ON makes the inverter ready for jogging.
(띠 Function code C20)

## Select frequency setting $\mathbf{2 / 1}$ " $\mathrm{Hz} 2 / \mathrm{Hz} 1$ " assignment (Function code data $=11$ )

Turning this terminal command ON and OFF switches the frequency command source between frequency setting 1 (F01) and frequency setting 2 (C30).
( $\mathbb{0}$ Function code F01)

■ Motor selection 2/3/4 "M2/M3/M4" assignment (Function code data = 12, 36, 37)
Motor 1 to motor 4 can be selected with the "M2", "M3", and "M4" signals, or control parameters can be changed by switching the function code for motor 1 to motor 4 .
(띠 Function codes A42, b42, r42)

## ■ DC braking command "DCBRK" assignment (Function code data = 13)

This terminal command gives the inverter a DC braking command through the inverter's digital input.
(Requirements for DC braking must be satisfied.)
( 1 [al Function codes F20 to F22)

## - Select torque limit 2/1 "TL2/TL1" assignment (Function code data = 14)

This terminal command switches between torque limiter 1-1, 1-2 (F40 and F41) and torque limiter 2-1, 2-2 (E16 and E17).
( $\mathbb{C}$ Function codes F40, F41)

Switch to commercial power ( 50 Hz ) "SW50"/( 60 Hz ) "SW60" assignment (Function code data =15, 16)
When an external sequence switches the motor drive power from the commercial line to the inverter, the terminal command SW50 or SW60 enables the inverter to start running the motor with the current commercial power frequency, regardless of settings of the reference/output frequency in the inverter. A running motor driven by commercial power is carried on into inverter operation. This command helps you smoothly switch the motor drive power source from the commercial power to the inverter power.

For details, refer to the table below, "Operation timing scheme", "Example of sequence circuit" and "Example of operation time scheme" on the following pages.

| Terminal command assigned | Enable |  |
| :--- | :--- | :--- |
| Switch to commercial power for <br> 50 Hz "SW50" | Starts at 50 Hz | Do not concurrently assign both SW50 <br> and SW60. A commercial power supply <br> cannot be used to run synchronous <br> motors. |
| Switch to commercial power for <br> 60 Hz "SW60" | Starts at 60 Hz | Note |

<Operation timing scheme>

- When the motor speed remains almost the same during free run:


Fig. 5.3-2

- When the motor speed decreases significantly during free run (with the current limiter activated)


Fig. 5.3-3

## Note <br> - Secure more than 0.1 second after turning ON the "Switch to commercial power" signal before turning

 ON a run command.- Secure more than 0.2 second of an overlapping period with both the "Switch to commercial power" signal and run command being ON.
- If an alarm has been issued or BX has been ON when the motor drive source is switched from the commercial power to the inverter, the inverter will not be started at the commercial power frequency and will remain OFF. After the alarm has been reset or "BX" turned OFF, operation at the frequency of the commercial power will not be continued, and the inverter will be started at the ordinary starting frequency.
If you wish to switch the motor drive source from the commercial line to the inverter, be sure to turn "BX" OFF before the "Switch to commercial power" signal is turned OFF.
- When switching the motor drive source from the inverter to commercial power, adjust the inverter's reference frequency at or slightly higher than that of the commercial power frequency beforehand, taking into consideration the motor speed down during the coast to stop period produced by switching.
- Note that when the motor drive source is switched from the inverter to the commercial power, a high inrush current will be generated, because the phase of the commercial power usually does not match the motor speed at the switching. Make sure that the power supply and all the peripheral equipment are capable of withstanding this inrush current.
- If you have enabled "Restart mode after momentary power failure" (F14 = 3, 4, or 5), keep "BX" ON during commercial power driven operation to prevent the inverter from restarting after a momentary power failure.
<Example of sequence circuit>


Chap 5 FUNCTION CODES

## FUNCTION

Note 2) When any alarm has occurred inside the inverter, the motor drive source will automatically be switched to the commercial power.


Fig. 5.3-5
Tip
Furthermore, built-in sequences can also used automatically inside the inverter for some of these series of operations.
Refer to the explanation on "ISW50"/"ISW60" for details.
■ "UP" (Increase output frequency) and "DOWN" (Decrease output frequency) command assignment (Function code data $=17$ and 18)

- Frequency command: Turning the terminal command "UP" or "DOWN" ON causes the output frequency to increase or decrease, respectively, within the range from 0 Hz to the maximum frequency. ( $\mathbb{C l}$ Function code F01 data = 7)
- PID command: Turning the terminal command "UP" or "DOWN" ON causes the PID command value to increase or decrease, respectively, within the range from 0 to $100 \%$.
( Function code J02 data = 3)


## ■ Allow function code editing "WE-KP" assignment (Function code data = 19)

Turning the terminal command "WE-KP" OFF protects function code data from accidentally getting changed by pressing the keys on the keypad. Only when this terminal command is ON, you can change function code data from the keypad. ( Function code F00)

## ■ Cancel PID control "Hz/PID" assignment (Function code data $=\mathbf{2 0}$ )

Turning this terminal command "Hz/PID" ON disables PID control. If the PID control is disabled with this command, the inverter runs the motor with the reference frequency manually set by any of the multistep frequency, keypad, analog input, etc.

| Terminal command "Hz/PID" | Function |
| :---: | :--- |
| OFF | Enable PID control |
| ON | Disable PID control (Enable manual settings) |

( (1) Function codes J01 to J19, J57 to J62)

## ■ Normal/inverse operation switching "IVS" assignment (Function code data = 21)

Switches between normal operation and inverse operation for analog frequency settings or PID control output signals (frequency settings).


Fig. 5.3-6
Tip The normal/inverse switching operation is useful for air-conditioners that require switching between cooling and heating. In cooling, the speed of the fan motor (output frequency of the inverter) is increased to lower the temperature. In heating, the speed of the fan motor (output frequency of the inverter) is reduced to lower the temperature. This switching is realized by the IVS.

## - Analog frequency settings

With analog frequency settings, it is also possible to switch between normal operation and inverse operation with function codes C53 and C54. Operation will be as shown in the following table if used in combination with "IVS". C53 is a function code for F01: Frequency setting 1, and C54 is for C30: Frequency setting 2.
Reverse operation analog frequency settings

| C53 (for F01), C54 (for C30) data | Terminal command "IVS" | Enable |
| :---: | :---: | :---: |
| 0: Normal operation | OFF | Normal |
| 0: Normal operation | ON | Inverse |
| 1: Inverse operation | OFF | Inverse |
| 1: Inverse operation | ON | Normal |

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
$J$ Codes
d Codes
U Codes
K Codes

- When process control is performed by the PID processor integrated in the inverter:

The terminal command Hz/PID ("Cancel PID control") can switch PID control between enabled (process is to be controlled by the PID processor) and disabled (process is to be controlled by the manual frequency setting). In either case, the combination of the "PID control" (J01) or "Selection of normal/inverse operation for frequency setting 1 " (C53) and the terminal command IVS determines the final operation as listed in Table 5.3-4 and Table 5.3-5.

Table 5.3-4 When PID control is enabled: The normal/inverse operation selection for the PID processor output (reference frequency) is as follows.

| PID control (Mode selection) (J01) | Terminal command "IVS" | Enable |
| :--- | :---: | :--- |
| 1: Enable (normal operation) | OFF | Normal |
|  | 2: Enable (inverse operation) | ON |
| Inverse |  |  |
|  | OFF | Inverse |
|  | ON | Normal |

Table 5.3-5 When PID control is disabled: The normal/inverse operation selection for the manual reference frequency is as follows.

| Selection of normal/inverse operation <br> for frequency setting 1 (C53) | Terminal command "IVS" | Enable |
| :--- | :---: | :---: |
| 0: Normal operation | - | Normal |
| 1: Inverse operation | - | Inverse |

When process control is performed by the PID control facility integrated in the inverter, the "IVS" is used to switch the PID processor output (reference frequency) between normal and inverse, and has no effect on any normal/inverse operation selection of the manual frequency setting.
(凹) Function codes J01 to J19, J57 to J62)

## Interlock "IL" assignment (Function code data = 22)

In a configuration where a magnetic contactor (MC) is installed in the power output (secondary) circuit of the inverter, the momentary power failure detection feature provided inside the inverter may not be able to accurately detect a momentary power failure by itself. Using a digital signal input with the interlock command IL assures the accurate detection. ([10 Function code F14)

| Terminal command "IL" | Meaning |
| :---: | :--- |
| OFF | No momentary power failure has occurred. |
| ON | A momentary power failure has occurred. <br> (Restart after a momentary power failure enabled) <br> Restart mode after momentary power failure (mode selection) |

## ■ Cancel torque control "Hz/TRQ" assignment (Function code data $=\mathbf{2 3}$ )

When torque control is enabled ( $\mathrm{H} 18=2$ or 3 ), assigning the terminal command " $\mathrm{Hz} / \mathrm{TRQ}$ " (Cancel torque control) to any of the general-purpose digital input terminals (data $=23$ ) enables switching between speed control and torque control.

| Cancel torque control signal "Hz/TRQ" | Enable |
| :---: | :--- |
| ON | Cancel torque control (Enable speed control) |
| OFF | Enable torque control |

## Select link operation (RS-485, BUS option) "LE" assignment (Function code data = 24)

Turning this terminal command "LE" ON gives priority to frequency commands or run commands received via the RS-485 communications link (H30) or the fieldbus option (y98).
No LE assignment is functionally equivalent to the "LE" being ON.
( $\mathbb{C}$ Function codes H 30 , y98)

■ Universal DI＂U－DI＂assignment（Function code data＝25）
Universal DI＂U－DI＂assigned to digital input terminals allow to monitor signals from peripheral equipment connected to those inputs from an upper controller via an RS－485 or fieldbus communications link．Input terminals assigned to ＂U－DI＂are simply monitored and do not operate the inverter．
（LD）For an access to universal DI via the RS－485 or fieldbus communications link，refer to their respective Instruction Manuals．

## －Select auto search for idling motor speed at starting＂STM＂assignment（Function code data＝26）

This digital terminal command determines，at the start of operation，whether or not to search for idling motor speed and follow it．（凹u Function code H09）

## －Force to stop＂STOP＂assignment（Function code data $=30$ ）

Turning this terminal command＂STOP＂OFF causes the motor to decelerate to a stop in accordance with the H56 data（Deceleration time for forced stop）．After the motor stops，the inverter enters the alarm state with the alarm ErGdisplayed．（ Fanction code F07）

## －Pre－excite＂EXITE＂assignment（Function code data＝32）

Turning this terminal command ON activates the pre－excitation feature．Even if this pre－excitation command is not assigned，specifying H85（Pre－excitation：Time）to other than＂0．00＂enables the inverter to automatically start pre－ excitation of the motor when it is turned ON．（This applies exclusively to the inverters under vector control with speed sensor．）（ Function codes H84，H85）

## Reset PID integral and differential terms＂PID－RST＂assignment（Function code data $=33$ ）

Turning this terminal command＂PID－RST＂ON resets the integral and differential components of the PID processor． （ $\mathbb{C l}$ Function codes J01 to J19，J23，J24，J57 to J62）

## ■ Hold PID integral term＂PID－HLD＂assignment（Function code data＝34）

Turning this terminal command＂PID－HLD＂ON holds the integral components of the PID processor．
（ Function codes J01 to J19，J23，J24，J57 to J62）
－Local（keypad）command selection＂LOC＂assignment（Function code data $=35$ ）
This terminal command＂LOC＂switches the sources of run and frequency commands between remote and local．
（LD）For details of switching between remote and local modes，refer to Chapter 3 ＂3．3．8 Remote and local modes＂．

## －Condensation prevention＂DWP＂assignment（Function code data $=39$ ）

By turning on condensation prevention＂DWP＂when the motor is stopped，DC current flows to raise the motor temperature to prevent condensation forming．（ $\mathbb{C}$ Function code J21）
－Switch to commercial power sequence（ 50 Hz ）＂ISW50＂，
Switch to commercial power sequence（ 60 Hz ）＂ISW60＂assignment（Function code data $=40,41$ ）
A magnetic contactor is controlled with built－in sequences to switch between commercial power supply operation and inverter operation by selecting external command＂ISW50＂or＂ISW60＂．
This control is valid only when either＂ISW50＂or＂ISW60＂is assigned，and commercial power supply to inverter operation switching＂SW88＂，＂SW52－2＂are assigned with the output terminal assignment．

Either＂ISW50＂or＂ISW60＂is used depending on the commercial power supply frequency．
Refer to＜Circuit diagram and configuration＞and＜Operation timing scheme＞from the next page onward for details．

## FUNCTION

Table 5.3-6

| Terminal command assigned | Operation (when switching from commercial power <br> supply to inverter startup) |
| :---: | :---: |
| Switch to commercial power sequence $(50 \mathrm{~Hz})$ "ISW50" | Startup at 50 Hz |
| Switch to commercial power sequence $(60 \mathrm{~Hz}$ ) "ISW60" | Startup at 60 Hz |

Note Do not set both "ISW50" and "ISW60". Operation will not be guaranteed if both are set.
<Circuit diagram and configuration>


Fig. 5.3-7
Table 5.3-7 Operation input/output related table

| Input |  | Output (magnetic contactors) |  |  | Inverter <br> operation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| "ISW50" / "ISW60" | Run <br> command | "SW52-1" | "SW52-2" | "SW88" |  |
| OFF (commercial power <br> supply) | ON | OFF | OFF | ON | OFF |
|  | OFF |  |  | ON | OFF |

<Operation timing scheme>
From inverter operation to commercial power supply operation ("ISW50"/"ISW60": ON $\rightarrow$ OFF)
(1) Inverter output is cut immediately (gate OFF).
(2) "SW52-1": Inverter primary circuit and "SW52-2": Inverter secondary circuit are immediately turned OFF.
(3) After t1 ( $0.2 \mathrm{~s}+$ function code H 13 setting time) has elapsed, "SW88": Commercial power supply is turned ON if the run command is ON .

Commercial power supply operation to inverter operation ("ISW50"/"ISW60": OFF $\rightarrow$ ON)
(1) "SW52-1": Inverter primary circuit is immediately turned ON.
(2) "SW88": Commercial power supply circuit is immediately turned OFF.
(3) After t2 ( $0.2 \mathrm{~s}+$ main circuit ready completion time) has elapsed since "SW52-1" turns ON, "SW52-2": Inverter secondary circuit is turned ON.
(4) After fixed time t3 ( $0.2 \mathrm{~s}+$ function code H 13 setting time) has elapsed since "SW52-2" turns ON, draw-in from the commercial frequency operation is performed by the inverter, and operation is restored to inverter operation at the set frequency.


Fig. 5.3-8
$\mathrm{t} 1: 0.2 \mathrm{~s}+\mathrm{H} 13$ (restart wait time following momentary power failure)
t2: $0.2 \mathrm{~s}+$ main circuit ready completion time
$\mathrm{t} 3: 0.2 \mathrm{~s}+\mathrm{H} 13$ (restart wait time following momentary power failure)

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
U Codes
K Codes
<Switch to commercial power sequence selection)
With function code J22, it is possible to select whether to automatically switch to commercial power supply operation when an inverter alarm occurs.
Table 5.3-8

| J22 data | Sequence (when alarm occurs) |
| :---: | :--- |
| 0 | Inverter operation continues (alarm stoppage) |
| 1 | Automatic switching to commercial power supply operation |

- The sequence functions normally without using "SW52-1", even if the inverter main power is supplied constantly.
- If using "SW52-1", connect control power auxiliary input terminal [R0] and [T0]. If "SW52-1" turns OFF without using [R0] and [T0], the control power supply will be lost. Furthermore, enable the instant restart function by setting a value of 2 to 5 for function code F14 to prevent an LV alarm occurring when the primary power supply is cut off.
- The sequence functions even when an alarm occurs, and may not function normally if the inverter is damaged. Prepare an external emergency switching circuit for important equipment.
- By turning ON the commercial power supply side contactor (88) and inverter output side (secondary side) contactor (52-2) simultaneously, the main power supply is input from the inverter output side (secondary side), and depending on the situation, the inverter may be damaged. Use an interlock for external circuits.
<Sequence example>

1) Standard sequence

Main power


Fig. 5.3-9
2) Sequence with emergency switching function


Fig. 5.3-10
3) Sequence 2 with emergency switching function (with function for switching automatically when inverter outputs alarm)


Fig. 5.3-11

## Home position limit switch "LS" assignment (Function code data = 42)

This is a home position limit switch signal used for position control.Refer to function codes d201 to d299 for details on position control.

## - Enable overload stop "OLS" assignment (Function code data $=46$ )

Turning this terminal command ON enables the overload stop function; turning it OFF disables the function. If no OLS is assigned, the function is enabled.
( $\mathbb{C l}$ Function codes J63 to J67)

## ■ Servo-lock command "LOCK" assignment (Function code data = 47)

Turning this terminal command ON enables a servo-lock command; turning it OFF disables a servo-lock command.
( $\mathbb{C l}$ F Function codes J 97 to J99)

## - Pulse train input "PIN", Pulse train sign "SIGN" assignment (Function code data $=48,49$ )

Frequency setting by pulse train input is possible with terminal [X6] and [X7]. It is necessary to assign terminal [X6] and [X7] to pulse train input [PIN]. Assigning the command "SIGN" to one of the digital input terminals except [X6] and [X7] enables the pulse train sign input to specify the polarity of frequency command.
( 10 Function code F01)

## UP/DOWN frequency clear "STZ" assignment (Function code data = 58)

If save initial value with frequency setting is selected $(\mathrm{H} 61=1)$ with the UP/DOWN signal, the initial value is forcibly cleared to zero when this signal is turned ON.
( $\mathbb{l a l d}_{\text {Function code F01) }}$

## Battery operation valid command "BATRY" assignment (Function code data = 59)

The Battery operation can drive the motor during undervoltage situation. This can realize rescue operation which rescues the passengers from the cage stopped halfway due to power failure in the lift application. When "BATRY" is assigned to the digital input terminal, the operation becomes same as F14 $=0$ regardless of F14 setting, and the inverter trips immediately.
When "BATRY" is on, the input open phase protection operation becomes invalid regardless of the function code H 98 bit 1 setting. Furthermore, main circuit power cutoff is also disabled regardless of the H 72 function.

Battery operation is possible with FRN0008G2S-2G to FRN0180G2S-2G and FRN0004G2 $\square$-4G to FRN0150G2 $\square$ -4 G , and assumes that operation is performed by supplying the main power from the battery, and the control power as sine wave voltage or DC voltage from the auxiliary power terminals ( $R 0$ to TO).
Note (1) Connect the battery power supply before or simultaneously with turning on the "BATRY" signal.
(2) Between the period from turning on of the "BATRY" signal and MC2 (and power supply start from the battery) to the state that the battery operation is possible, the delay time "T1" + "T2" indicated in the above "time chart" occurs.
(3) Do not turn on the "BATRY" signal when the voltage is same or higher than the specified undervoltage level (before $\dot{i} i, j$ is indicated after the power failure). If the "BATRY" signal is turned on with the voltage same or higher than the undervoltage value, the specified level, the short circuit for charging resistor 73 X remains on.
(4) During the battery operation, avoid driving with application of the heavy load. Operate with no load or braking load. (Sufficient torque cannot be obtained by the battery voltage, and the motor may stall in such case.)
(5) Operate the motor at a low speed, and pay attention to the battery capacity. In addition, when the high voltage is supplied (such as when 300 VDC power supply at 200 V series inverter and 600 VDC power supply at 400 V series inverter), operate normally without the battery.
(6) During the normal operation, it is required to turn off the "BATRY" signal. If the main power is turned on with the "BATRY" signal on, the 73 X remains ON, causing the rectifier diode getting damaged.

## ■ Battery operation (operation possible for FRN0008G2S-2G to FRN0180G2S-2G and FRN0004G2■-4G to FRN0150G2■-4G models)

The motor can be operated by the inverter with undervoltage status by the battery power.

## Note <br> Prerequisite of battery operation

(1) Terminal function BATRY (data $=59$ ) can be assigned to any digital input terminal.
(2) As shown in Fig. 5.3-14 below, DC link bus voltage is supplied from the battery to the main circuit (L1/R-L3/T or L2/S-L3/T).
(3) The specified voltage (sinusoidal waveform or DC voltage) is input to auxiliary power terminal (R0TO).
(4) The terminal that BATRY (data $=59$ ) is assigned has to be turned on simultaneously with the MC2.


Fig. 5.3-12 Connection diagram example

Battery operation (when "BATRY" = ON)
(1) Undervoltage protection function ( $\left.\begin{array}{l}1 \\ 1 \\ i\end{array} i_{1}^{\prime}\right)$ becomes non-operating status.
(2) The inverter can operate the motor even under the undervoltage condition.
(3) Operation ready complete RDY signal is turned off.
(4) The circuit of charging resistor is shorted $(73 X=O N)$ after the delay time T1 from the "BATRY" terminal being turned ON. ( $73 \mathrm{X}=\mathrm{ON}$ ). In addition, after the delay time T2 (max. 0.1 sec .), the battery operation starts. For T1 specifications, see Table 5.3-9 on the next page.


Fig. 5.3-13 Battery operation timing chart

Table 5.3-9 Time T1 from "BATRY" ON to 73X ON

| Power supply condition | T1 |
| :--- | :---: |
| Time required for turning on the control power supply, switching to the power supply from the <br> battery, and then to turning on the charging resistor short circuit 73X | 100 ms |
| Time required from the occurrence of momentary power failure in the control power supply ON <br> status, switching to the power supply from the battery, and turning on of the short circuit 73X <br> for the charging resistor | 205 ms |

(5) S-curve acceleration/deceleration becomes invalid.
(6) The speed at which operation is possible during battery operation is calculated based on the following formula.

Frequency command during battery operation $\leq \frac{\text { Battery voltage }-5[\mathrm{~V}]}{\sqrt{2} \times \text { base voltage (F05) }} \times$ Base frequency (F04) $\times \mathrm{K}$

| Here, |  |
| :--- | :--- |
| Battery voltage: | 24 VDC or higher (200V series) <br> 48 VDC or higher (400V series) |
| Rated frequency: | F04 |
| Rated voltage: | F05 (Motor rated voltage (V)) |
| K: | Safety factor (less than 1. Approx. 0.8) |

Select torque bias 1, 2 -- "TB1", "TB2" (Function code data = 61, 62)
The torque bias level can be selected from three types by combining the "TB1" and "TB2" signals, and is valid under vector control with sensor.Function codes H 154 to H 162 )

| Input signal |  | Torque bias selection |
| :---: | :---: | :---: |
| "TB1" | "TB2" |  |
| OFF | OFF | Disable torque-bias |
| OFF | ON | H155: Torque bias level 1 |
| ON | OFF | H156: Torque bias level 2 |
| ON | ON | H157: Torque bias level 3 |

- Hold torque bias -- "H-TB" (Function code data $=63$ )

Turning this terminal command ON enables a torque bias hold command. This command directs to preserve the torque bias data supplied via an analog input.
( $\mathbb{1}$ al Function codes H 154 to H 162 )

## - Check brake "BRKE" assignment (Function code data $=65$ )

If the status of the brake signal BRKS fails to agree with the status of the brake check signal BRKE during inverter operation, the inverter enters an alarm stop state with $E$.
This signal is used as a feedback signal for the brake signal BRKS. When the mechanical brake does not operate, it causes the inverter to trip to activate the mechanical brake. The response delay time for BRKS and BRKE can be adjusted with H 180 : Brake response time.
([C] Function codes J68 to J96, H180)

## ■ Cancel line speed control -- "Hz/LSC" (Function code data $=70$ )

Turning $\mathrm{ON} \mathrm{Hz/LSC}$ cancels line speed control. This disables the frequency compensation of PI operation, resulting in no compensation for a take-up roll getting bigger and an increase in the winding speed. Use this signal to temporarily interrupt the control for repairing a thread break, for example.

| "Hz/LSC" | Function |
| :---: | :--- |
| OFF | Enable line speed control (depending on d41 setting) |
| ON | Cancel line speed control(V/f control, without compensation for a take-up roll getting <br> bigger) |

( $\mathbb{1}$ Function code d41)

- Hold line speed control frequency in the memory -- "LSC-HLD" (Function code data = 71)

If "LSC/HLD" is ON under line speed control frequency, stopping the inverter (including an occurrence of an alarm and a coast to stop command) or turning OFF "Hz/LSC" saves the current frequency command compensating for a take-up roll getting bigger, in the memory. At the time of restart, the saved frequency command applies and the inverter keeps the line speed constant.

| "LSC-HLD" |  |
| :---: | :--- |
| OFF | Disable (No saving operation) |
| ON | Enable (Saving the frequency command compensating for a take-up roll getting bigger) |

[^23] that a large overshoot may occur.

- Input during operation with commercial power supply (motor 1 to 4) "CRUN-M1", "CRUN-M2", "CRUNM3", "CRUN-M4" (Function code data $=72$ to 75)

These terminal commands enable the inverter to count the cumulative run time of motor-1 to motor-4 even when they are driven by commercial power (not by the inverter). When "CRUN-M1", "CRUN-M2", "CRUN-M3", or "CRUNM4" is ON, the inverter judges that the motor-1, motor-2, motor-3, or motor-4 is driven by commercial power, respectively, and counts the run time of the corresponding motor.
( $\mathbb{C l}$ Function codes H 44 , H94)

- Select droop control "DROOP" assignment (Function code data = 76)

This terminal command "DROOP" toggles droop control on and off.

| Terminal command "DROOP" | Droop control |
| :---: | :---: |
| ON | Enable |
| OFF | Disable |

(띨 Function code H28)

## PG alarm cancel "PG-CCL" assignment (Function code data = 77)

PG wire break alarms are ignored when PG alarm cancel "PG-CCL" is ON. If PG wires are switched at such times as when replacing the motor, alarms are canceled so that wire break is not mistakenly detected. This function is valid only when using a PG interface card (OPC-PG2, OPC-PMPG).

Select speed control parameter 1, 2 "MPRM1", "MPRM2" assignment (Function code data = 78, 79)
The combination of the ON/OFF states of digital input signals "MPRM1" and "MPRM2" selects one of 4 different level speed control parameter sets. These parameters are valid under vector control with speed sensor, V/f control with speed sensor, and sensorless vector control.
( $\mathbb{C l}$
(1) Function codes d01 to d08)

| Input signal |  | Speed control constant |
| :---: | :---: | :---: |
| "MPRM2" | "MPRM1" |  |
| OFF | OFF | Speed control constant 1: d01 to d06 |
| OFF | ON | Speed control constant 2: A43 to A50 |
| ON | OFF | Speed control constant 3: b43 to b50 |
| ON | ON | Speed control constant 4: r43 to r50 |

■ Cancel customizable logic "CLC" assignment (Function code data $=\mathbf{8 0}$ ), Clear all customizable logic timers "CLTC" assignment (Function code data = 81)

Terminal command "CLC" stops the operation of customizable logic. Terminal command "CLTC" clears all customizable logic timers.
( $\mathbb{1}$ Function code U codes)

- Cancel anti-regenerative control "AR-CCL" assignment (Function code data = 82)

Anti-regenerative control can be canceled with "AR-CCL". When "AR-CCL" is ON, the H69 setting is ignored, and anti-regenerative control is disabled.
(띨 Function code H69)

## ■ PG input switching "PG-SEL" assignment (Function code data $=83$ )

The PG option card command/feedback channel can be changed with "PG-SEL". Switching is possible only while the inverter is stopped. If terminal operation is performed while the inverter is running, it will stop before switching. This function cannot be used with synchronous motor drive with sensor.

- If using a dual system PG option card.

| Input signal "PG-SEL" | Command | Feedback |
| :---: | :---: | :---: |
| OFF | $[\mathrm{XA}] /[\mathrm{XB}]$ | $[\mathrm{YA}] /[\mathrm{YB}]$ |
| ON | $[\mathrm{YA}] / \mathrm{YB}]$ | $[\mathrm{XA}] /[\mathrm{XB}]$ |

- If using a single system PG option card

| Input signal "PG-SEL" | Command | Feedback |
| :---: | :---: | :---: |
| OFF | - | $[\mathrm{YA}] /[\mathrm{YB}]$ |
| ON | $[\mathrm{YA}] /[\mathrm{YB}]$ | - |

(띠 Function code F01)
Usage example
If switching between two motors with encoder, an external switching circuit is installed for both the motor and encoder, but with dual system PG option cards, the encoder switching circuit will not be necessary if using this function.

■ Acceleration/deceleration cancel "BPS" assignment (Function code data = 84)


Fig. 5.3-14

By turning "BPS" ON, the currently selected acceleration/deceleration time is interpreted as zero, and the set frequency is immediately output. This does not happen during PID control. This does not work for acceleration/deceleration time set individually for jogging operation or forced stop. This signal can be turned ON during operation.
( $\mathbb{C l}$ Function code F07)
■ Jogging forward operation/stop command "FJOG", Jogging reverse operation/stop command "RJOG" assignment (Function code data $=94,95$ )

This is valid only when performing terminal block operation ( $\mathrm{FO}=1$ ). Jogging operation can be performed in the forward direction or reverse direction with "FJOG" and "RJOG". By turning this signal ON, the inverter runs at the frequency selected with C 20 . The acceleration/deceleration time is set with H 54 and H 55 . There is no need to turn ON the "JOG" terminal.


## - Forward rotation/reverse rotation selection "DIR" assignment (Function code data $=97$ )

This is valid only when performing terminal block operation ( $\mathrm{FO}=1$ ). By turning "DIR" ON, the command can be changed to a direction run command opposite to the run command direction set with terminals [FWD] and [REV]. Switching is possible during operation. This signal can also be used in combination with "HLD". This signal is invalid for communication commands and run commands from the keypad.
( Function code F02)

- Run forward "FWD" assignment (Function code data = 98)

Turning this terminal command ON runs the motor in the forward direction; turning it OFF decelerates it to stop.
Tip This terminal command "FWD" can be assigned only to E98 or E99.

## - Run reverse "REV" assignment (Function code data $=99$ )

Turning this terminal command "REV" ON runs the motor in the reverse direction; turning it OFF decelerates it to stop.

[^24]
## FUNCTION

## No function assigned "NONE" assignment (Function code data $=100$ )

It allows the inverter to run unaffected by ON/OFF of signals. It is used when a signal is externally input using customizable logic. It is also used to temporarily disable a terminal function.

- Light load automatic double speed judgment permission "LAC-ENB" assignment (Function code data = 105)

This is used with the hoist function. Refer to the hoist function explanation for details.
( $\mathbb{\square}$ Function code d170)

- Servo lock gain selection "SLG2" assignment (Function code data $=110$ )

By turning "SLG2" ON, servo lock gain is changed to servo lock gain 2. Switching is possible during operation.

| Input signal "SLG2" | Servo lock gain |
| :---: | :---: |
| OFF | J97 |
| ON | d28 |

(띠 Function codes J97, d28)

## ■ Forced stop (for control terminals) "STOP-T" assignment (Function code data = 111)

Turning this terminal command "STOP-T" OFF causes the motor to decelerate to a stop in accordance with the H56 data (Deceleration time for forced stop). After the motor stops, the inverter enters the alarm state with the alarm Er displayed. This provides the same function as "STOP", but is a dedicated signal for control terminals (actual terminals), and does not function with communication commands.
([10] Function code F07)

■ AVR cancel "AVR-CCL" assignment (Function code data $=116$ )

| Input signal "AVR-CCL" | AVR operation |
| :---: | :---: |
| OFF | Based on F05 setting value |
| ON | Disable (same operation as F05 $=0$ ) |

## Speed regulator $P$ selection "P-SEL" assignment (Function code data $=119$ )

This is a P selection signal used with position control.Refer to function codes d201 to d299 for details on position control.

## ■ Customizable logic input signal 1 to 9 "CLI1" to "CLO9" assignment (Function code data = 121 to 129)

It allows the inverter to run unaffected by ON/OFF of signals. It is used when a signal is externally input using customizable logic.
( $\mathbb{C l}$ Function code U00)

- Forced operation "FMS" assignment (Function code data =134)

By turning "FMS" ON, almost all inverter protective operations are disabled, and inverter output continues until a fault occurs. This is used when not wishing to trip inverters in such cases as when using with emergency exhaust equipment.
(띠 Function codes H 116 to H 121 )

- Position control related function "INC/ABS" assignment (Function code data=135 to 147)

This signal is used with position control.
[1] Refer to function codes d201 to d299 for details on position control.

- Initial diameter set command "D-SET" assignment (Function code data = 169)

■ Winding diameter calculation hold command "D-HLD" assignment (Function code data = 170)
This signal is used with winding diameter calculation used to calculate the roll winding diameter from the peripheral speed (line speed) and roll rotation speed when performing constant surface speed control.
( 1 Function codes d158 to d166)

- PID control multistage command 1, 2 "PID-SS1", "PID-SS2" assignment (Function code data $=171$, 172) "PID-SS1" and "PID-SS2" can be used to select 4 different PID commands. ( $\mathbb{C D}$ Function codes J136 to J138)


## E10 to E15

Acceleration time 2 to 4, Deceleration time 2 to 4
(Refer to F07)
Acceleration/deceleration time 2 to 4 settings are described in detail at the function code F07 section.

E16, E17
Torque limiter 2 (driving), 2 (braking)
(Refer to F40)
For the torque limiter 2 (driving) and 2 (braking) settings, refer to the description of F40.

```
E20 to E23
E24, E27
```

```
Terminal [Y1] to [Y4](Function selection)
Terminal [Y5A/C], [30A/B/C] (Ry output)
```

E20 through E24 and E27 assign output signals to general-purpose, programmable output terminals [Y1] to [Y4], [Y5A/C] and [30A/B/C]. These function codes can also switch the logic system between normal and negative to define how the inverter interprets the ON or OFF state of each terminal.

The factory default setting is normal logic system "Active ON." Terminals [Y1] to [Y4] are transistor outputs, and terminals [Y5A/C] and [30A/B/C] are contact outputs. In normal logic, if an alarm occurs, the relay will be energized so that [30A] and [30C] will be closed, and [30B] and [30C] opened. In negative logic, the relay will be de-energized so that [30A] and [30C] will be opened, and [30B] and [30C] closed. This may be useful for the implementation of failsafe power systems.

- When negative logic is employed, output signal is OFF (active) while the inverter is powered OFF. To avoid causing system malfunctions by this, interlock these signals to keep them ON using an external power supply. Furthermore, the validity of these output signals is not guaranteed for approximately 1.5 seconds (for FRN0115G2S-2G/FRN0060G2 $\square$-4G or below) or 3 seconds (for FRN0146G2S2G/FRN0075G2 $\square$-4G or above) after power-ON, so introduce such a mechanism that masks them during the transient period.
- Contact outputs (terminal [Y5A/C], [30A/B/C]) are mechanical contacts. They cannot stand frequent ON/OFF switching. Where frequent ON/OFF switching is anticipated (for example, by using frequency arrival signal), use transistor outputs [Y1] to [Y4] instead.
The service life of a relay is approximately 200,000 times if it is switched ON and OFF at one-second intervals. For signals expected to be turned ON/OFF frequently, use terminals [Y1] to [Y4] for output.

The tables given on the following pages list functions that can be assigned to terminals [Y1] to [Y4], [Y5A/C], and [30A/B/C]. Each signal has been described at data allocation order. However, the signal is related has been described together. Refer to the function codes or signals in the "Related function codes/signals (data)" column, if any.

Explanations of each function are given in normal logic system "Active ON."

By setting the same data as that shown in the following table for function code E71, terminal functions indicated with a " $Y$ " in the "Applicable to M-LED" column can monitor signals with the keypad M-LED. Refer to the explanation on function code E71 for details.

| LED |  | Defined function | Signal name | Applica ble to M-LED | Related function codes/related signals (data) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Active ON | Active OFF |  |  |  |  |
| 0 | 1000 | Change | "RUN" | Y | - |
| 1 | 1001 | Frequency (speed) arrival | "FAR" | Y | E30 |
| 2 | 1002 | Frequency (speed) detected | "FDT" | Y | E31, E32 |
| 3 | 1003 | Undervoltage detected (Inverter stopped) | "LU" | Y | - |
| 4 | 1004 | Detected torque polarity | "B/D" | Y | - |
| 5 | 1005 | Inverter output limiting | "IOL" | Y | - |
| 6 | 1006 | Auto-restarting after momentary power failure | "IPF" | Y | F14 |
| 7 | 1007 | Motor overload early warning | "OL" | Y | E34, F10, F12 |
| 8 | 1008 | Keypad operation | "KP" | Y | - |
| 10 | 1010 | Inverter ready to run | "RDY" | Y | - |
| 11 | - | Commercial/inverter operation switching (commercial power supply side magnetic contactor) | "SW88" | N |  |
| 12 | - | Commercial/inverter operation switching (inverter output side) | "SW52-2" | N |  |
| 13 | - | Commercial/inverter operation switching (inverter input side) | "SW52-1" | N |  |
| 15 | 1015 | AX terminal function (for input side magnetic contactor) | "AX" | N | - |
| 16 | 1016 | Pattern operation stage transition | "TU" | Y |  |
| 17 | 1017 | Pattern operation cycle completed | "TO" | Y |  |
| 18 | 1018 | Pattern operation stage No. 1 | "STG1" | Y |  |
| 19 | 1019 | Pattern operation stage No. 2 | "STG2" | Y |  |
| 20 | 1020 | Pattern operation stage No. 4 | "STG4" | Y |  |
| 21 | 1021 | Frequency (speed) arrival 2 | "FAR2" | Y | E29 |
| 22 | 1022 | Inverter output limiting (with delay) | "IOL2" | Y | IOL (5) |
| 25 | 1025 | Cooling fan ON-OFF control | "FAN" | Y | H06 |
| 26 | 1026 | Auto-resetting | "TRY" | Y | H04, H05 |
| 27 | 1027 | Universal DO | "U-DO" | Y | - |
| 28 | 1028 | Cooling fin overheat early warning | "OH" | Y | - |
| 29 | 1029 | Synchronization completed | "SY" | Y | d17 to d78 |
| 30 | 1030 | Lifetime alarm | "LIFE" | Y | H42 |
| 31 | 1031 | Frequency (speed) detection 2 | "FDT2" | Y | E32, E36 |
| 33 | 1033 | Reference loss detected | "REF OFF" | Y | E65 |
| 35 | 1035 | Inverter outputting | "RUN2" | Y | "RUN" (0) |
| 36 | 1036 | Overload prevention controlling | "OLP" | Y | H70 |
| 37 | 1037 | Current detected | "ID" | Y | E34, E35 |
| 38 | 1038 | Current detected 2 | "ID2" | Y | E37, E38 |
| 39 | 1039 | Current detected 3 | "ID3" | Y | E55, E56 |


| LED |  | Defined function | Signal name | Applica ble to M-LED | Related function codes/related signals (data) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Active ON | Active OFF |  |  |  |  |
| 41 | 1041 | Low current detected | "IDL" | Y | E37, E38 |
| 42 | 1042 | PID alarm output | "PID-ALM" | Y | J 11 to J13 |
| 43 | 1043 | Under PID control | "PID-CTL" | Y | J01 |
| 44 | 1044 | Under sleep mode of PID control | "PID-STP" | Y | J08, J09 |
| 45 | 1045 | Low torque detection | "U-TL" | Y | E89, E81 |
| 46 | 1046 | Torque detected 1 | "TD1" | Y | E78, E79 |
| 47 | 1047 | Torque detected 2 | "TD2" | Y | E80, E81 |
| 48 | 1048 | Motor 1 selected | "SWM1" | Y | A42 |
| 49 | 1049 | Motor 2 selected | "SWM2" | Y | A42 |
| 50 | 1050 | Motor 3 selected | "SWM3" | Y | A42 |
| 51 | 1051 | Motor 4 selected | "SWM4" | Y | A42 |
| 52 | 1052 | Performing forward rotation | "FRUN" | Y | - |
| 53 | 1053 | Performing reverse rotation | "RRUN" | Y | - |
| 54 | 1054 | In remote mode | "RMT" | Y | (Refer to Section 3.3.7) |
| 56 | 1056 | Motor overheat detected by thermistor | "THM" | Y | H26, H27 |
| 57 | 1057 | Machine brake signal | "BRKS" | Y | J68 to J72 |
| 58 | 1058 | Frequency (speed) detection 3 | "FDT3" | Y | E32, E54 |
| 59 | 1059 | Terminal [C1] wire break detection | "C10FF" | Y | - |
| 70 | 1070 | Speed valid | "DNZS" | Y | F25, F38 |
| 71 | 1071 | Speed agreement | "DSAG" | Y | d21, d22 |
| 72 | 1072 | Frequency (speed) arrival 3 | "FAR3" | Y | E30 |
| 76 | 1076 | Speed mismatch | "PG-ERR" | Y | d21 to d23 |
| 77 | 1077 | Low DC link bus voltage detection | "U-EDC" | Y | E76 |
| 79 | 1079 | During deceleration in momentary power failure | "IPF2" | Y |  |
| 82 | 1082 | Positioning completed | "PSET" | Y | J73 to J88 |
| 84 | 1084 | Maintenance timer counted up | "MNT" | Y | H44, H78, H79 |
| 87 | 1087 | Frequency arrival and frequency detected | "FARFDT" | Y | E30, E31, E32 |
| 89 | 1089 | Magnetic pole position detection complete | "PTD" | Y | P30 |
| 90 | 1090 | Alarm content 1 | "AL1" | N |  |
| 91 | 1091 | Alarm content 2 | "AL2" | N |  |
| 92 | 1092 | Alarm content 4 | "AL4" | N |  |
| 93 | 1093 | Alarm content 8 | "AL8" | N |  |
| 95 | 1095 | Performing forced operation | "FMRUN" | Y |  |
| 98 | 1098 | Warning | "L-ALM" | Y | $\underline{\mathrm{H} 81 \text { to H83 }}$ |
| 99 | 1099 | Alarm output (for any alarm) | "ALM" | Y | - |
| 101 | 1101 | EN terminal detection circuit error | "DECF" | Y |  |
| 102 | 1102 | EN terminal input OFF | "ENOFF" | Y |  |

## FUNCTION

| LED |  |  | Signal name | Applica <br> ble to <br> M-LED | Related <br> function <br> codes/related <br> signals (data) |
| :---: | :---: | :--- | :---: | :---: | :---: |
| Active ON | Active OFF |  | Defined function | "DBAL" | Y |
| 105 | 1105 | Braking transistor broken | H98 |  |  |
| 111 to 124 | 1111 to <br> 1124 | Customizable logic output signal 1 to 14 | "CLO14" | Y | U code |
| 125 | 1125 | Integral power pulse output | "POUT" | N |  |
| 131 | 1131 | Performing speed limiting | "S-LIM" | Y |  |
| 132 | 1132 | Torque limiting | "T-LIM" | Y | F40, F41 |
| 133 | 1133 | Low current detection 2 | "IDL2" | Y |  |
| 135 | 1135 | Dancer upper limit position warning signal | "D-UPFL" | Y | d 150 |
| 136 | 1136 | Dancer lower limit position warning signal | "D-DNFL" | Y | d 151 |
| 137 | 1137 | Dancer position limit warning signal | "D-FL" | Y |  |
| 151 | 1151 | Overtravel detection | "OT-OUT" | Y | d201 to d299 |
| 152 | 1152 | Forced stop detection | "STOP-OUT" | Y | d201 to d299 |
| 153 | 1153 | Pass point detection 1 | "PPAS1" | Y | d 201 to d299 |
| 154 | 1154 | Pass point detection 2 | "PPAS2" | Y | d201 to d299 |
| 158 | 1158 | Performing overload detection | "LLIM" | Y | $\mathrm{d} 186, \mathrm{~d} 187$ |
| 159 | 1159 | Performing light load automatic double speed <br> operation | "LAC" | Y | d175 to d185 |
| 251 | 1251 | M/Shift key ON/OFF status | "MTGL" | Y |  |

A negative logic (Active OFF) command cannot be assigned to the functions marked with "-" in the "Active OFF" column.

- Inverter running "RUN" assignment (Function code data $=0$ ), Inverter outputting "RUN2" assignment (Function code data $=35$ )
These output signals tell the external equipment that the inverter is running at a starting frequency or higher. If assigned in negative logic (Active OFF), these signals can be used to tell the "Inverter being stopped" state.

| Output signal | Basic function | Remarks |
| :--- | :--- | :--- |
| "RUN" | These signals come ON when the inverter is running. | Goes OFF during DC braking. |
| "RUN2" | Under V/f control: These signals come ON if the <br> inverter output frequency exceeds the starting <br> frequency, and go OFF if it drops below the stop <br> frequency. The "RUN" signal can also be used as a <br> "Speed valid" signal. | Comes ON even during DC <br> braking, pre-excitation, zero <br> speed control. |

Frequency (speed) arrival "FAR" assignment (Function code data $=1$ ), Frequency (speed) arrival 3 "FAR3" assignment (Function code data = 72)
These output signals come ON when the difference between the output frequency (detected speed) and reference frequency (reference speed) comes within the frequency arrival hysteresis width specified by E30.
(띠 Function code E30)

- Frequency (speed) detected "FDT" assignment (Function code data $=2$ ), Frequency (speed) detected 2 "FDT2" assignment (Function code data = 31), Frequency (speed) detected 3 "FDT3" assignment (Function code data $=58$ )

These output signals FDT, FDT2 or FDT3 come ON when the output frequency (detected speed) exceeds the frequency detection level specified by E31, E36 or E54, respectively, and go OFF when the output frequency (detected speed) drops below the "Frequency detection level (E31, E36 or E54) - Hysteresis width (E32)."
( $\mathbb{[ 1 ]}$ Function codes E31, E32)

## ■ Undervoltage detected (Inverter stopped) "LU" assignment (Function code data = 3)

This output signal comes ON when the DC link bus voltage of the inverter drops below the specified undervoltage level. When this signal is ON, the inverter cannot run even if a run command is given. It goes OFF when the voltage exceeds the level. The undervoltage protection function will be triggered, and the motor error stop (trip) status will also turn ON .

## Detected torque polarity "B/D" assignment (Function code data = 4)

The inverter issues the driving or braking polarity signal to this digital output judging from the internally calculated torque or torque command. This signal goes OFF when the detected torque corresponds to driving, and it goes ON when it corresponds to braking.

- Inverter output limiting "IOL" assignment (Function code data $=5$ ), Inverter output limiting with delay "IOL2" assignment (Function code data = 22)

The output signal IOL comes ON when the inverter is limiting the output frequency by activating any of the following actions (minimum width of the output signal: 100 ms ).
The output signal IOL2 comes ON when any of the following output limiting operation continues for 20 ms or more.

- Torque limiting (F40, F41, E16 and E17, Maximum internal value)
- Current limiting by software (F43 and F44)
- Instantaneous overcurrent limiting by hardware (H12 = 1)
- Automatic deceleration (Anti-regenerative control) (H69)
- Overload stop function (J65)

When the "IOL" is ON, it may mean that the output frequency may have deviated from the reference frequency because of the limiting functions above.

- Auto-restarting after momentary power failure "IPF" assignment (Function code data $=6$ )

This output signal is ON either during continuous running after a momentary power failure or during the period after the inverter detects an undervoltage condition and shuts down the output until restart has been completed (the output has reached the reference frequency).
( $\mathbb{\square}$ Function code F14)

- Motor overload early warning "OL" assignment (Function code data = 7)

The OL signal is used to detect a symptom of an overload condition (alarm code iilit to iilitict of the motor so that the user can take an appropriate action before the alarm actually happens.
(띡 Function code E34)

## - Performing keypad operation "KP" assignment (Function code data =8)

An ON signal is output when run commands (®un), soop keys) from the keypad are valid.

## - Inverter ready to run "RDY" assignment (Function code data $=10$ )

This output signal comes ON when the inverter becomes ready to run by completing hardware preparation (such as initial charging of DC link bus capacitors and initialization of the control circuit) and no protective functions are activated. "RDY" OFF conditions are shown in the following table.

| "RDY" OFF conditions |
| :--- |
| Running in restart after momentary power failure operation mode (IPF signal ON) |
| Alarm occurring |
| Terminal [BX] ON (coast to stop status) |
| Terminal [BATRY] ON (performing battery operation) |
| OFF across terminal [EN1] and [PLC], or across [EN2] and [PLC] |

- Commercial power supply/inverter operation switching "SW88", "SW52-2", "SW52-1" assignment (Function code data $=11,12,13$ )
A magnetic contactor is controlled with built-in sequences to switch between commercial power supply operation and inverter operation by selecting external command "ISW50" or "ISW60". Refer to the explanation on "ISW50"/"ISW60" for details.
( ([al Function codes E01 to E09 data $=40,41$ )


## Switch MC on the input power lines "AX" assignment (Function code data = 15)

In response to a run command FWD, this output signal controls the magnetic contactor on the commercial-power supply side. It comes ON when the inverter receives a run command. It goes OFF after the motor decelerates to stop with a stop command received. This signal immediately goes OFF upon receipt of a free run command or when an alarm occurs.


Fig. 5.3-15

## - Pattern operation stage transition "TU" assignment (Function code data =16)

When transitioning between stages during pattern operation, a 1 shot ( 100 ms ) ON signal is output, indicating that the stage has changed. This signal can be used with customizable logic.

- Pattern operation cycle operation complete "TO" assignment (Function code data =17)

A 1 shot ( 100 ms ) ON signal is output the moment all stages 1 to 7 are complete during pattern operation. This signal can be used with customizable logic.

- Pattern operation stage No. 1 "STG1" assignment (Function code data = 18), Pattern operation stage No. 2 "STG2" assignment (Function code data = 19), Pattern operation stage No. 4 "STG4" assignment (Function code data $=20$ )

Outputs the stage (operation process) currently performed during pattern operation.

| Operation pattern stage No. | Output terminal signal |  |  |
| :---: | :---: | :---: | :---: |
|  | STG1 | STG2 | STG4 |
| Stage 1 | ON | OFF | OFF |
| Stage 2 | OFF | ON | OFF |
| Stage 3 | ON | ON | OFF |
| Stage 4 | OFF | OFF | ON |
| Stage 5 | ON | OFF | ON |
| Stage 6 | OFF | ON | ON |
| Stage 7 | ON | ON | ON |

## FUNCTION

## Frequency (speed) arrival 2 "FAR2" assignment (Function code data $=21$ )

The signals come ON when the difference between the output frequency before torque limiting and reference frequency is within the frequency arrival hysteresis width specified by E30 and the frequency arrival delay specified by E29 has elapsed.
( Function codes E29, E30)

## - Cooling fan in operation "FAN" assignment (Function code data $=25$ )

With the cooling fan ON/OFF control enabled (H06 = 1), this output signal is ON when the cooling fan is in operation, and OFF when it is stopped. This signal can be used to make the cooling system of peripheral equipment interlocked for an ON/OFF control.
( $\mathbb{C l}$ Function code H06)

■ Auto-resetting "TRY" assignment (Function code data = 26)
This output signal comes ON when auto resetting (resetting alarms automatically) is in progress.
( $\mathbb{1}$ Function codes H 04 , H 05 )

## - Universal DO "U-DO" assignment (Function code data = 27)

Assigning this output signal to an inverter's output terminal and connecting the terminal to a digital input terminal of peripheral equipment, allows an upper controller to send commands to the peripheral equipment via the RS-485 or the fieldbus communications link. The universal DO can be used as an output signal independent of the inverter operation.For the procedure for access to Universal DO via the RS-485 or fieldbus communications link, refer to the respective instruction manual.

## Heat sink overheat early warning "OH" assignment (Function code data = 28)

This is used to take appropriate measures when signs of this are detected before an overheating trip ( (illif ) occurs.

OFF at [(Overheat trip (in íl temperature) $\left.-8{ }^{\circ} \mathrm{C}\left(46^{\circ} \mathrm{F}\right)\right]$ or lower

## - Synchronization completed "SY" assignment (Function code data = 29)

This output signal comes ON when the control target comes inside the synchronization completion detection angle in synchronous running.
For details about master-follower operation, refer to function codes J73 to J88.

## - Lifetime alarm "LIFE" assignment (Function code data = 30)

This output signal comes ON when it is judged that the service life of any one of capacitors (DC link bus capacitors or electrolytic capacitors on the printed circuit boards), cooling fan, or IGBT has expired. This signal should be used as a guide for replacement of the capacitors and cooling fan. If this signal comes ON , use the specified maintenance procedure to check the service life of these parts and determine whether the parts should be replaced or not ( $\mathbb{\square}$ Function code H42)

## - Reference loss detected "REF OFF" assignment (Function code data $=33$ )

This output signal comes ON when an analog input used as a frequency command source is in a reference loss state (as specified by E65) due to a wire break or a weak connection. This signal goes OFF when the normal operation under the analog input is resumed.
( $\mathbb{1}$ Function code E65)

## - Overload prevention controlling "OLP" assignment (Function code data $=36$ )

This output signal comes ON when overload prevention control is activated.
(The minimum ON-duration is 100 ms .)
( $\mathbb{C l}$ Function code H70)

■ Current detection "ID" assignment, Current detection 2 "ID2" assignment, Current detection 3 "ID3" assignment (Function code data $=37,38,39$ )
When the inverter output current exceeds the level specified by E34, E37 or E55 for the period specified by E35, E38 or E56, the ID, ID2 or ID3 signal turns ON, respectively. (The minimum ON-duration is 100 ms .)
( $\mathbb{0}$ Function code E34)

- Low current detection "IDL", "IDL2" assignment (Function code data $=41,133$ )

When the inverter output current falls to or below the level specified by E34, E37 or E55 for the period specified by E35, E38 or E56, the IDL or IDL2 signal turns ON, respectively (minimum output signal width: 100 ms ). "IDL" turns ON if conditions are established even while the inverter is stopped. "IDL2" turns ON only while the inverter is running.
( $\mathbb{C l}$ Function code E34)

## - PID alarm "PID-ALM" assignment (Function code data = 42)

Assigning this output signal enables PID control to output absolute-value alarm or deviation alarm.
( Fanction codes J11 to J13)

## - Under PID control "PID-CTL" assignment (Function code data $=43$ )

This output signal comes ON when PID control is enabled ("Cancel PID control" (Hz/PID) = OFF) and a run command is ON .
( $\mathbb{C D}]$ Function code J01)
When PID control is enabled, the inverter may stop due to the slow flowrate stopping function or other reasons. If that happens, the "PID-CTL" signal remains ON. As long as the "PID-CTL" signal is ON, PID control is effective, so the inverter may abruptly resume its operation, depending on the feedback value in PID control.

## $\triangle$ WARNING

When PID control is enabled, even if the inverter stops its output during operation because of sensor signals or other reasons, operation will resume automatically. Design your machinery so that safety is ensured even in such cases.

Failure to observe this could result in an accident.

## Under sleep mode of PID control "PID-STP" assignment (Function code data $=44$ )

This output signal is ON when the inverter is in a stopped state due to the slow flowrate stopping function under PID control.)
( Function codes J15 to J17, J23 J24)

## - Low torque detected "U-TL" assignment (Function code data $=45$ )

This output signal comes ON when the torque value calculated by the inverter or torque command drops below the level specified by E80 (Low torque detection (Level)) for the period specified by E81 (Low torque detection (Timer)). (Minimum width of the output signal: 100 ms )
(凹l Function codes E78 to E81)

- Torque detected 1 "TD1" assignment (Function code data $=46$ ), Torque detected 2 - "TD2" assignment (Function code data = 47)
This output signal TD1 or TD2 comes ON when the torque value calculated by the inverter or torque command exceeds the level specified by E78 or E80 (Torque detection (Level)) for the period specified by E79 or E81 (Torque detection (Timer)), respectively. (Minimum width of the output signal: 100 ms )
([10] Function codes E78 to E81)

■ Motor 1 to 4 switching "SWM1", "SWM2", "SWM3", "SWM4" assignment (Function code data = 48 to 51)

The output signals turn ON corresponding to the motor selected by the signal "M2" to "M4" the selected function code group.
( $\mathbb{C l}$ Function code A42)

■ Running forward - "FRUN" assignment (Function code data = 52) Running reverse - "RRUN" assignment (Function code data $=53$ )

| Output signal | Assigned data | Running forward | Running reverse | Inverter stopped |
| :---: | :---: | :---: | :---: | :---: |
| "FRUN" | 52 | ON | OFF | OFF |
| "RRUN" | 53 | OFF | ON | OFF |

Under remote mode "RMT" assignment (Function code data =54)
This output signal comes ON when the inverter switches from local to remote mode.
For details of switching between remote and local modes, refer to Chapter 3 "3.3.8 Remote and local modes".

## Motor overheat detected by thermistor "THM" assignment (Function code data = 56)

When the PTC thermistor on the motor detects an overheat, the inverter turns this signal ON and continues to run, without entering the alarm ${ }^{[7117}$ li state. This feature applies only when H 26 data is set to " 2 ."
( $\mathbb{\square}$ Function codes $\mathrm{H} 26, \mathrm{H} 27$ )

- Brake control "BRKS" assignment (Function code data $=57$ )

This signal outputs a brake control command that releases or applies the brake.
( 10 Function codes J68 to J72)

## - Terminal [C1] (C1 function) wire break detection "C1OFF" assignment (Function code data = 59)

This output signal comes ON when the inverter detects that the input current to terminal [C1] (C1 function) drops below 2 mA interpreting it as the terminal [C1] wire broken.

- Speed valid "DNZS" assignment (Function code data = 70)

This output signal comes ON when the reference speed or detected one exceeds the stop frequency specified by function code F25. It goes OFF when the speed is below the stop frequency for 100 ms or longer.

Under vector control with speed sensor, F38 switches the decision criterion between the reference speed and actual speed. Under vector control without speed sensor, the reference speed is used as a decision criterion.
( Function codes F25, F38)


Fig. 5.3-16

## - Speed agreement "DSAG" assignment (Function code data $=71$ )

This output signal comes ON when the deviation of the detected speed from the speed command after the acceleration/deceleration processor is within the allowable range specified by d21. It goes OFF when the deviation is beyond the range for longer than the period specified by d22. This feature allows you to check whether the speed controller is working correctly.
( $\mathbb{1}$ a Function codes d21, d22)

## - PG error detected "PG-ERR"assignment (Function code data = 76)

This output signal comes ON when the inverter detects a PG error with the d23 (PG error processing) data being set to " 0 : Continue to run," in which the inverter does not enter the alarm state.
([0] Function codes d21 to d23)

## - Low DC link bus voltage detection "U-EDC" assignment (Function code data = 77)

This output signal comes ON when the DC intermediate voltage drops below E76 (DC link bus low-voltage detection level), and it goes OFF when the DC intermediate voltage exceeds E76.
( $\mathbb{1}$ Function code E76)

## ■ During decelerating at momentary power failure "IPF2" assignment (Function code data = 79)

When F14 is 2 or 3 , signal turns ON when the intermediate DC voltage will drop to or below the H 15 "continue to run level", and the motor continues to run. The signal turns OFF after power has been restored, and the intermediate DC voltage reaches the "voltage set at $\mathrm{H} 15+10 \mathrm{~V}$ or more".
Even when F14 data is set to 4 or 5 , the signal comes $O N$ when the DC intermediate voltage drops below the undervoltage level, and it goes OFF when the DC intermediate voltage becomes "at least 10 V higher than the undervoltage level."
(
Function codes F14, H15)

- Positioning completed "PSET" assignment (Function code data $=82$ )

This output signal comes ON as a positioning completion signal. This signal is used when in-position with the position control function, and when settling is complete with servo lock function.

Refer to function codes J97 to J99 for details on the servo lock function. Refer to d201 to d299 for details on the position control function.

Maintenance timer counted up "MNT" assignment (Function code data =84)
Once the inverter's cumulative run time or the startup times for the motor 1 exceeds the previously specified count, this output signal comes ON.
( $\mathbb{1}$ Function codes H78, H79)
Frequency arrival AND frequency detected "FARFDT" assignment (Function code data $=87$ )
The FARFDT, which is an AND composite signal of FAR and FDT, comes ON when both signal conditions are met. ( Function codes E30 to E32)

- Magnetic pole position detection signal "PTD" assignment (Function code data =89)

An ON signal is output if the magnetic pole position is detected when a PM motor starts running.

## FUNCTION

Alarm content＂AL1＂，＂AL2＂，＂AL4＂，＂AL8＂assignment（Function code data＝90，91，92，93）
Outputs the state of operation of the inverter protective functions．

| Alarm content（inverter protective function） | Alarm code | Output terminal |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | AL1 | AL2 | AL4 | AL8 |
| Instantaneous overcurrent protection，ground fault protection，fuse blow |  | ON | OFF | OFF | OFF |
| Overvoltage protection |  | OFF | ON | OFF | OFF |
| Undervoltage protection，input phase loss | LiL，i m | ON | ON | OFF | OFF |
| Motor overload，electronic thermal（motors 1 to 4） |  | OFF | OFF | ON | OFF |
| Inverter overload | ［il 31 | ON | OFF | ON | OFF |
| INV overheat protection，inverter internal overheat， charging resistor overheat |  | OFF | ON | ON | OFF |
| External alarm，DB resistor overheat，motor overheat |  | ON | ON | ON | OFF |
| Memory error，CPU error，undervoltage save error， hardware combination error |  | OFF | OFF | OFF | ON |
| Keypad communication error，option communication error | E゙で，にな | ON | OFF | OFF | ON |
| Option error | Erg | OFF | ON | OFF | ON |
| Charging circuit error，operating procedure error， EN circuit error，DB transistor failure detection |  | ON | ON | OFF | ON |
| Tuning error，output phase loss protection |  | OFF | OFF | ON | ON |
| RS485 communications error | ErG゙ErF | ON | OFF | ON | ON |
| Overspeed protection，PG error，excessive positioning error <br> Speed mismatch（excessive speed deviation）， positioning control error | BG，Fi，ErE，Era | OFF | ON | ON | ON |
| PID feedback wire break，mock alarm Other alarm |  | ON | ON | ON | ON |

＊No terminal outputs a signal during normal operation．
－Performing forced operation＂FMRUN＂assignment（Function code data＝95）
An ON signal is output during forced operation．（［al Function codes H 116 to H 121 ）

Warning＂L－ALM＂assignment（Function code data $=98$ ）
This output signal comes ON when a warning occurs．（［al Function codes H 81 to H 83 ）
－Alarm output（for any alarm）＂ALM＂assignment（Function code data＝99）
This output signal comes ON if any of the protective functions is activated and the inverter enters Alarm mode．
－EN circuit failure detected＂DECF＂assignment（Function code data $=101$ ）
The signal comes ON when any error is detected in the circuit for EN terminal．

EN terminal input OFF "ENOFF" assignment (Function code data = 102)
The signal comes ON when the EN terminal is turned OFF.

## - Braking transistor broken "DBAL" assignment (Function code data = 105)

If the inverter detects a breakdown of the braking transistor, it displays the braking transistor alarm (alit) and also issues the output signal "DBAL". Detection of the breakdown of a braking transistor can be canceled by H98.
(띠) Function code H98)

A breakdown of the braking transistor could lead to a damage of the braking resistor or inverter's internal units. To prevent the secondary damage, use "DBAL" to cut off power to the magnetic contactor in inverter primary circuits upon detection of a breakdown of the built-in braking transistor.

- Customizable logic output signal 1 to 14 "CLO1" to "CLO14" assignment (Function code data = 111 to 124)

Outputs the result of customizable logic operation.
( $\mathbb{C l}$ I Function code U codes)

- Power consumption cumulative pulse "POUT" assignment (Function code data = 125)

A 0.15 s pulse is output each time the increase in integral power consumption increases by the unit electric energy selected at function code E57.
( $\mathbb{C l}$ ) Function code E57)

- Performing speed limiting "S-LIM" assignment (Function code data = 131)

Under vector control, the speed limiting function is enabled when performing droop control or torque control. This signal turns ON if speed limiting occurs.
( 10 Function codes $\mathrm{H} 18, \mathrm{H} 28$ )

- Performing torque limiting "T-LIM" assignment (Function code data = 132)

This signal turns ON if torque limiting occurs.
( $\mathbb{C D}$ Function code F40)

- Dancer upper limit position warning signal "D-UPFL" assignment (Function code data = 135)
- Dancer lower limit position warning signal "D-DNFL" assignment (Function code data = 136)
- Dancer position limit warning signal "D-FL" assignment (Function code data =137)

Signals are output when the dancer position reaches the set upper/lower limit warning position when performing speed control (dancer) using PID control. Refer to the explanation on the following reference function code for details.
( $\mathbb{C D}$ Function code J57)

- Overtravel detection "OT-OUT", Forced stop detection "STOP-OUT", Pass point detection 1 "PPAS1", Pass point detection 2 (PPAS2) assignment (Function code data = 151 to 154)
These signals are for position control. Refer to the explanation on following reference function code for details.
( $\mathbb{C D}$ Function codes d201 to 299)


## - Overload detection "LLIM" assignment (Function code data = 158)

This signal is for the overload detection function. Refer to the explanation on following reference function code for details.
([®] Function code d186)

- Performing light load automatic double speed operation "LAC" assignment (Function code data = 159)

This signal is for the hoist function. Refer to the explanation on following reference function code for details.
( $\mathbb{C D}$ Function codes d170 to d189)

## - M/Shift key ON/OFF status "MTGL" assignment (Function code data = 251)

Indicates the ON/OFF status of the M/Shift key function assigned with function code E70.

| E29 |
| :--- |
| E30 |

```
Frequency arrival delay timer (FAR2)
Frequency arrival detection width (Detection width)
```

E30 specifies the detection level for the Frequency (speed) arrival signal "FAR", Frequency (speed) arrival signal 2 "FAR2" and the Frequency (speed) arrival signal 3 "FAR3".

| Output <br> signal | E20 to E24, E27 <br> assignment data | Operating condition 1 | Operating condition 2 |
| :---: | :---: | :--- | :--- |
| "FAR" | 1 | The signals come ON when the <br> difference between the output <br> frequency (estimated/actual speed) <br> and the reference frequency <br> (reference speed) comes within the <br> frequency arrival width specified by <br> E30. | "FAR always goes OFF when the run <br> command is OFF or the reference <br> speed is "0." |
| "FAR3" | 72 | When the run command is OFF, the <br> inverter regards the reference <br> speed as "0," so FAR3 comes ON <br> as long as the output frequency <br> (estimated/ actual speed) is within <br> the range of "0 $\pm$ the frequency <br> arrival width specified by E30." |  |
| "FAR2" | 21 | The signal comes ON when the <br> difference between the output <br> frequency (before torque and current <br> limiting) and the reference frequency <br> (reference speed) comes within the <br> frequency arrival width specified by <br> E30. | This signal always goes OFF when <br> the run command is OFF or the <br> reference speed is "0." <br> The delay can be specified by E29. |
| "FARFDT" | 87 | "FAR" and "FDT" AND signals |  |

- Data setting range: E30: 0.0 to $10.0(\mathrm{~Hz})$, E29: 0.01 to 10.00 (s)

The operation timings of each signal are as shown below.


Fig. 5.3-17


Fig. 5.3-18

$\triangle$ FAR effective zone (Reference frequency $+/$ E E30 data)
Fig. 5.3-19

## E31, E32

## Frequency detection (level and hysteresis width)

## Related function codes: E36 (Frequency detection 2, level),

 E54 (Frequency detection 3, level)When the output frequency exceeds the frequency detection level specified by E31, the "Frequency (speed) detection signal" comes ON; when it drops below the "Frequency detection level minus Hysteresis width specified by E32," it goes OFF.
The following three settings are available.

| Name | Output signal | E20 to E24, <br> E27 <br> assignment <br> data | Detection level | Hysteresis width |
| :--- | :---: | :---: | :---: | :---: |
| Frequency <br> detection | "FDT2 | 2 | E31 | Range: 0.0 to 599.0 Hz |
| Frequency <br> detection 2 | "FDT2" 599.0 Hz | 31 | E36 | E32 |
| Frequency <br> detection 3 | "FDT3" | 58 | E54 |  |
| Frequency arrival <br> and frequency <br> detected | "FARFDT" | 87 | "FAR" and "FDT" AND signal |  |



Fig. 5.3-20

E34, E35

```
Overload early warning/Current detection (level and timer)
 Related function codes:
 E37, E38 (Current detection 2/Low current detection level and timer)
 E55, E56 (Current detection 3, level and timer)
```

These function codes define the detection level and time for the Motor overload early warning "OL", Current detection "ID", Current detection 2 "ID2", Current detection 3 "ID3", Low current detection "IDL", and Low current detection 2 "IDL2" output signals.

| Output signal | E20 to E24, E27 assignment data | Detection level | Timer | Motor characteristics | Thermal time constant |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Range: See below | $\begin{gathered} \text { Range: } 0.01 \text { to } \\ 600.00 \mathrm{~s} \end{gathered}$ | Range: See below | Range: 0.5 to 75.0 min |
| "OL" | 7 | E34 | - | F10 | F12 |
| "ID" | 37 | E34 | E35 | - | - |
| "ID2" | 38 | E37 | E38 |  |  |
| "ID3" | 39 | E55 | E56 |  |  |
| "IDL" | 41 | E37 | E38 |  |  |
| "IDL2" | 133 | E37 | E38 | "IDL" and " | RUN" AND signals |

- Data setting range

Operation level: 0.00 A (disable), current value of 1 to $200 \%$ of inverter rated current set in A (ampere) units
Motor characteristics 1: Enable (For a general-purpose motor with shaft-driven cooling fan)
2: Enable (For an inverter-driven motor, non-ventilated motor, or motor with separately powered cooling fan)

## Motor overload early warning signal - "OL"

The OL signal is used to detect a symptom of an overload condition (alarm code ilil i) of the motor so that the user can take an appropriate action before the alarm actually happens. The OL signal turns ON when the inverter output current exceeds the level specified by E34. In typical cases, set E34 data to 80 to $90 \%$ against F11 data (Electronic thermal overload protection for motor 1, Overload detection level). Set the temperature characteristics of the motor with electronic thermal (motor characteristics selection, thermal time constant).

## - Current detected, Current detected 2 and Current detected 3 - "ID", "ID2" and "ID3"

When the inverter output current exceeds the level specified by E34, E37 or E55 for the period specified by E35, E38 or E56, the ID, ID2 or ID3 signal turns ON, respectively. When the output current drops below $90 \%$ of the specified detection level, the ID, ID2 or ID3 turns OFF. (The minimum ON-duration is 100 ms .)


Fig. 5.3-21

## FUNCTION

## Low current detection "IDL", Low current detection 2 "IDL2"

This signal turns ON when the output current drops below the level specified by E37 (Low current detection, Level) for the period specified by E38 (Timer). When the output current exceeds the "Low current detection level plus $+5 \%$ of the inverter rated current," it goes OFF (minimum output signal width: 100 ms ). "IDL" is output even when the inverter is stopped. "IDL2" is valid only during inverter output ("RUN" ON).


Fig. 5.3-22

The inverter rated current changes based on the F80: Operation mode (HHD/HND switching) setting value. Refer to "Chapter 12 "SPECIFICATIONS" for details.
E36 Frequency detection $2 \quad$ (Refer to E31)

Refer to the description of E31.

```
E37, E38
```

Current detection 2/Low current detection (level and timer)
(Refer to E34)
For details about Current detection 2/Low current detection (level) (timer), refer to the description of E34.

E39 specifies the constant-rate feeding time, load shaft speed, coefficient for line speed setting, and coefficient for output status monitor indication.

- Data setting range: 0.000 to 9.999

Calculation formula (when motor 1 selected)
Constant feeding rate time $(\mathrm{min})=\frac{\text { Display coefficient for transport time (E50) }}{\text { Frequency } x \text { constant rate of feeding coefficient (E39) }}$

$$
(\text { Load speed, line speed })=(\text { Output frequency } 1) \times \frac{\text { E50 }}{\text { E39 }}
$$

The "Frequency" in the above formula is set frequency when each indication is the setting value (constant-rate feeding time setting, load shaft speed setting, and line speed setting), whereas it is output frequency before slip compensation when the indication is output status monitor.
When the constant-rate feeding time is $999.9(\mathrm{~min})$ or greater, or the denominator on the above formula is 0 , " 999.9 " is displayed.
E50 is the speed display coefficient applied when motor 1 is selected. A60, b60, r60, respectively, are applied when motor 2,3 , or 4 is selected.

Excluding speed monitor (when E43 $=0$ ), E42 specifies a filter time constant to be applied for displaying the output frequency, output current and other running status monitored on the LED monitor on the keypad. If the display varies unstably so as to be hard to read due to load fluctuation or other causes, increase this filter time constant.

- Data setting range: 0.0 to 5.0 (s)

E43

## LED monitor (Item selection)

Related function code: E48 LED monitor (speed monitor item)
Selects the operating state monitor information displayed on the keypad LED.
Specifying the speed monitor with E43 provides a choice of speed-monitoring formats selectable with E48 (LED monitor).

| Monitor item | Monitor example | LED indication | Unit | Meaning of displayed value | E43 data |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Speed monitor <br> Output frequency 1 (before slip compensation) | Function code E48 specifies what to be displayed on the LED monitor and LED indicators. |  |  |  | $(E 48=0)$ |
|  | 517 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | Hz | Indicated value = Output frequency ( Hz ) |  |
| Output frequency 2 (after slip compensation) | 517818 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | Hz | Indicated value = Output frequency ( Hz ) | $(E 48=1)$ |
| Reference frequency | 518 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | Hz | Indicated value = Reference frequency (Hz) | $(E 48=2)$ |
| Motor rotation speed | 15 | ■Hz■A■kW | min-1 | Indicated value $=$ Output frequency $(\mathrm{Hz}) \times \frac{120}{\mathrm{P} 01(\mathrm{A15)}}$ | $(E 48=3)$ |
| Load rotation speed | 317818 | $\square \mathrm{Hz}$ ■A $\square \mathrm{kW}$ | min-1 | $\begin{aligned} & \text { Indicated value = Output frequency }(\mathrm{Hz}) \mathrm{x} \\ & \text { E50/E39 Note } \end{aligned}$ | $(E 48=4)$ |
| Feed speed | 317817 | $\square \mathrm{Hz}$ ■A■kW | $\mathrm{m} / \mathrm{min}$ | $\begin{aligned} & \text { Indicated value = Output frequency }(\mathrm{Hz}) \mathrm{x} \\ & \text { E50/E39 Note } \end{aligned}$ | $(\mathrm{E} 48=5)$ |
| Transport time for specified length | 517818 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | min | Indicated value $=$ E $50{ }^{\text {Note } /(O u t p u t ~}$ frequency x E39) | $(E 48=6)$ |
| Speed (\%) | 51818 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | \% | $\begin{aligned} & \text { Indicated } \\ & \text { value } \\ & \mathrm{i}= \\ & \text { Output frequency } \\ & \text { Maximum output frequency }(\text { F03 (A01)) } \end{aligned} 100$ | $(\mathrm{E} 48=7)$ |
| Line speed set value | 181818 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | $\mathrm{m} / \mathrm{min}$ | Line speed setting value after calculating acceleration/deceleration with d168 and d169 for feed speed set with E48 = 5 | $(E 48=8)$ |
| Line speed output value | 181818 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | $\mathrm{m} / \mathrm{min}$ | Roll frequency setting value compensated with winding diameter calculation result for line speed set with E48 = 8 | $(E 48=9)$ |
| Output current | 15.37 | $\square \mathrm{Hz} \square \mathrm{Ca} \square \mathrm{kW}$ | A | Current output from the inverter in RMS | 3 |
| Output voltage |  | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | V | Output voltage (RMS) of the inverter | 4 |
| Calculated motor output torque | 510 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | \% | Motor output torque in \% (Calculated value) | 8 |
| Power consumption | 11.10 | $\square \mathrm{Hz} \square \mathrm{A}$ - kW | kW | Input power to the inverter | 9 |
| PID process command | 11\% 11.10 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | - | PID command and its feedback converted into physical quantities of the object to be controlled (e.g. temperature) | 10 |
| PID feedback value | 9.817 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | - |  | 12 |
| Timer value | 1717 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | s | Timer value (remaining run time) | 13 |
| PID output | 1rion | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | \% | PID output indicated with percentage (\%) with maximum output frequency (F03, A01) being $100 \%$ | 14 |
| Load factor | 517 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | \% | Load factor of motor indicated with percentage (\%) with rated output being 100\% | 15 |
| Motor output | 9.95 | $\square \mathrm{Hz} \square \mathrm{A}$ ■ kW | kW | Motor output (kW) | 16 |


| Monitor item | Monitor example | LED indication | Unit | Meaning of displayed value | E43 data |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Analog signal input monitor | 81818 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | － | An analog input to the inverter in a format suitable for a desired scale． | 17 |
| Current position pulse | $10^{7}-34$ | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | Pulse | Current position pulse | 21 |
| Positioning deviation pulse | シ3ッチ | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | Pulse | Command current position and feedback current position deviation indicated with user value | 22 |
| Torque current | 46 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | \％ | Torque current command value or calculated torque current | 23 |
| Flux command value | 517 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | \％ | Magnetic flux command value <br> （Available only under vector control） | 24 |
| Integral power consumption | 1817） | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | kWh | $\text { Indicated value }=\frac{\text { Input watt }- \text { hour }(\mathrm{kWh})}{100}$ | 25 |
| Winding diameter | 10アゴリ | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | mm | Winding diameter calculation result display for constant surface speed control | 26 |
| Position control start position | バゴリ | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | － | Position when run command turns ON or ＂POS－SET＂command turns ON indicated with user value | 27 |
| Stop target position | シヲリヒ | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | － | Stop target position indicated with user value | 28 |
| PID deviation | 1.8171 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | － | PID command value and PID feedback value deviation converted into physical quantities of the object to be controlled | 29 |
| Torque bias | 15 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | \％ | Torque bias value display | 30 |
| Estimated inertia acceleration／ deceleration time conversion value | 1．13 30 | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | S | Display of estimated inertia result in logic acceleration／deceleration time <br> See function code P24． | 31 |
| Customizable logic output | ロ1\％$\square^{7170}$ | $\square \mathrm{Hz} \square \mathrm{A} \square \mathrm{kW}$ | － | Display of output content for specific customizable logic step See function codes U98，U99． | 32 |

ON，$\square$ OFF
Note：The function code applied when the motor changes will also change．

Selects monitor information displayed with the keypad LEDs while the inverter is stopped. If E44 $=0$, the set frequency is displayed, and when E44 = 1, the output frequency is displayed. The display format is that selected with Speed monitor E48.

| E48 data | Monitored item |  | Inverter stopped |  |
| :---: | :--- | :--- | :--- | :---: |
|  | E44 = 0 Specified value | E44 = 1 Output value |  |  |
| 0 | Output frequency 1 <br> (before slip <br> compensation) | Reference frequency | Output frequency 1 <br> (before slip compensation) |  |
| 1 | Output frequency 2 <br> (after slip <br> compensation) | Reference frequency | Output frequency 2 <br> (after slip compensation) |  |
| 2 | Reference <br> frequency | Reference frequency | Reference frequency |  |
| 3 | Motor rotation <br> speed | Reference motor rotation speed | Motor rotation speed |  |
| 4 | Load rotation speed | Reference load rotation speed | Load shaft speed |  |
| 5 | Feed speed | Reference line speed | Line speed |  |
| 6 | Transport time for <br> specified length | Transport time for specified <br> length setting | Constant feeding rate time |  |
| 7 | Speed (\%) | Reference display speed | Display Speed |  |
| 8 | Line speed set <br> value | Line speed output <br> value |  |  |
| 9 |  |  |  |  |

For details about LED Monitor (Speed monitor item), refer to the description of E43.

## FUNCTION

## E49

Torque Command Monitor (Polarity selection)
The polarity of calculated torque value in v/f control or the torque command value in vector control is normally + for driving and - for braking. However in the case of hoisting load, when the motor rotation direction changes from forward direction to reverse direction, the torque polarity also changes from driving to braking. If it monitors the torque data by FRENIC-Loader, we cannot take the expected data around zero speed because the polarity changes. If E49 is set to 0 , the torque monitor data becomes + for forward/driving and reverse/braking, - for forward/braking and reverse/driving. Therefore we can monitor the continuous torque data around zero speed.

| E49 data | Torque monitor polarity |
| :---: | :--- |
| 0 | Torque polarity <br> (+ for forward/driving and reverse/braking, - for forward/braking and reverse/driving) |
| 1 | Plus for driving, Minus for braking (factory default) |



Fig. 5.3-23

Related data is the following. These data are displayed and submitted with polarity. Judge the meaning of the polarity by E49 setting.

| Torque data | LED | Related data |
| :---: | :---: | :---: |
| Keypad LED monitor | E43 = 8 | Calculated motor output torque |
|  | $E 43=23$ | Torque current |
| Keypad operation monitor | 3_04 | Calculated motor output torque |
| Keypad alarm Information | 6_03 | Calculated torque when alarm occurs (latest up to previous 3 alarms) |
| Analog output [FM1] | $\begin{aligned} & \text { F31 = 4, } \\ & 22 \end{aligned}$ | Output torque, torque current command (F29 = 4: Bipolar only) |
| Analog output [FM2] | $\begin{aligned} & \mathrm{F} 61=4, \\ & 22 \end{aligned}$ | Output torque, torque current command (F32 = 4: Bipolar only) |
| OPC-AIO | -90 $=4$ | Output torque (only 093=0: Bipolar) |
| Torque monitor function code | M02 | Torque command (final command value) |
|  | M03 | Torque current command (final command value) |
|  | M07 | Output torque |
|  | M08 | Torque current |
|  | M28 | Torque command when alarm occurs (final command value) |
|  | M29 | Torque current command when alarm occurs (final command value) |
|  | M33 | Output torque when alarm occurs |
|  | M34 | Torque current when alarm occurs |
|  | W07 | Actual torque value |
|  | W24 | Torque current |
|  | X23 | Latest information when alarm occurs (torque calculation value) |
|  | X63 | Previous information when alarm occurs (torque calculation value) |
|  | Z03 | Information from 2 times ago when alarm occurs (torque calculation value) |
|  | Z53 | Information from 3 times ago when alarm occurs (torque calculation value) |
|  | Z81 | Output torque |

```
E50
A60, b60, r60
Speed display coefficient
Speed display coefficient 2, 3,4
```

E50 specifies the coefficient that is used when the load shaft speed or line speed is displayed on the LED monitor. (Refer to the description of E43.)

By selecting a motor, the applied speed display coefficient changes.
If motor 1 is selected:
Load shaft speed [min-1] = (E50: Display coefficient for speed monitor) x (Output frequency Hz)
Line speed $[\mathrm{m} / \mathrm{min}]=$ (E50: Display coefficient for speed monitor) $\times$ (Output frequency Hz )

- Data setting range: 0.01 to 200.00

| Selected motor | Applied speed display coefficient | Factory default |
| :---: | :---: | :--- |
| Motor 1 | E50 | 30.00 |
| Motor 2 | A60 | 0.00 (same value as E52 applied) |
| Motor 3 | b60 | 0.00 (same value as E52 applied) |
| Motor 4 | r60 | 0.00 (same value as E52 applied) |

## E51 Display coefficient for "Input watt-hour data"

E51 specifies a display coefficient (multiplication factor) for displaying the input watt-hour data (5 _ ifí) in a part of maintenance information on the keypad.

Integral power data = Display coefficient (E51 data) x Integral power consumption (100 kWh)

- Data setting range: 0.000 (cancel/reset) 0.001 to 9999

By setting E51 = 0.000, integral power consumption and integral power data can be cleared to zero.
Setting E51 data to 0.000 clears the input watt-hour and its data to " 0 ." After clearing, be sure to restore E51 data to the previous value; otherwise, input watt-hour data will not be accumulated.

E52 provides a choice of three menu display modes for the standard keypad as listed below．

| E52 data | Menu display mode | Menus to be displayed |
| :---: | :--- | :--- |
| 0 | Function code data editing mode | Menus \＃0，\＃1 and \＃7 |
| 1 | Function code data check mode | Menus \＃2 and \＃7 |
| 2 | Full－menu mode | Menus \＃0 through \＃7 |

Selects the menus displayed on the standard keypad．There are eight menus as shown in the table below．

| Menu \＃ | LED monitor indication | Function | Displayed content |
| :---: | :---: | :---: | :---: |
| 0 | ${ }_{\text {Ci．}}^{17}$ | Quick setup | Quick setup function code |
| 1 | 1.15 | Data setting F to o | F to o group function code |
| 2 | E． 51 | ＂Data Checking＂ | Modified function code |
| 3 | 3.016 | Run monitor | Operation status indication |
| 4 | 4.1 .0 | I／O check | DIO，AIO status indication |
| 5 | 516 | Maintenance | Maintenance information indication |
| 6 | 6.81 | Alarm Information | Alarm information indication |
| 7 | 7.19 | Data copy | Copy function（option keypad only） |
| 8 | B．065 | Destination setting | This is not used for machines for use in Japan． |

For details on the content of each menu item，refer to Chapter 3 ＂OPERATION USING THE KEYPAD＂．
E54
Frequency detection 3 （level）
（Refer to E31）

For details，refer to the description of E31．

| E55，E56 Current detection 3 （level and timer） | （Refer to E34） |
| :--- | :--- | :--- |

For details，refer to the description of E34．

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
d Codes
U Codes
y Codes
K Codes

By setting "POUT" integral power consumption pulse output to the digital output terminals with E20 to E24, or E27, a 0.15 s pulse can be output each time the integral power consumption increase reaches the unit amount selected with this function code. Accuracy is not so good, and therefore this cannot be used as data for making business deals.


Fig. 5.3-24
( $\mathbb{C D}$ Function codes E20, E24 and E27, data = 126)

| E61 to E63, <br> E66 | Terminal [12], [C1] (C1 function), [V2], [C1] (V3 function) (extension function <br> selection) |
| :--- | :--- |

If other than a frequency setting signal is assigned to analog input terminals, change this function code. The same function cannot be set for another terminal.

| E61, E62, <br> E63, E66 data | Function | Description |
| :---: | :--- | :--- |
| 0 | None | - |
| 1 | Auxiliary frequency <br> setting 1 | Auxiliary frequency input to be added to the reference frequency given <br> by frequency setting 1 (F01). Will not be added to any other reference <br> frequency given by frequency setting 2 and multistep frequency <br> commands, etc. <br> 100 \%/full scale. <br> Effective range: -100\% to 100\% |
| 2 | Auxiliary frequency <br> setting 2 | Auxiliary frequency input to be added to all frequency commands. Will <br> be added to frequency command 1, frequency command 2, multistep <br> frequency commands, etc. <br> $100 \% / f u l l$ <br> Ecale. |
| 3 | PID command 1 | Effective range: -100\% to 100\% |
| Inputs command sources such as temperature and pressure under PID |  |  |
| control. You also need to set function code J02. |  |  |
| 100 \%/full scale. |  |  |
| Effective range: -100\% to 100\% |  |  |


| E61, E62, E63, E66 data | Function | Description |
| :---: | :---: | :---: |
| 5 | PID feedback value | Inputs feedback values such as temperature and pressure under PID control. <br> 100 \%/full scale. <br> Effective range: - $-110 \%$ to $110 \%$ |
| 6 | Ratio setting | Multiplies the final frequency command value by this value, for use in the constant line speed control by calculating the winder diameter or in ratio operation with multiple inverters. <br> 100 \%/full scale. <br> Effective range: -200\% to 200\% |
| 7 | Analog torque limiter A | Used when analog inputs are used as torque limiters. <br> (띠) Function code F40) <br> 200 \%/full scale. <br> Effective range: -400\% to $400 \%$ |
| 8 | Analog torque limiter B | Used when analog inputs are used as torque limiters. <br> ( $\mathbb{C l}$ Function code F40) <br> 200 \%/full scale. <br> Effective range: $-400 \%$ to $400 \%$ |
| 9 | Torque bias | Used when analog inputs are used as torque bias. <br> ( $\mathbb{[ 1 ]}$ Function code H154) <br> 200 \%/full scale. <br> Effective range: -400\% to 400\% |
| 10 | Torque command | Analog inputs to be used as torque commands under torque control. <br> ( $\mathbb{I D}$ Function code H18) <br> Effective range: -400\% to 400\% |
| 11 | Torque current command | Analog inputs to be used as torque current commands under torque control. ( Function code H18) <br> Effective range: $-400 \%$ to $400 \%$ |
| 12 | Acceleration/decele ration time ratio setting | Multiplies the ratio based on the analog input amount by the acceleration/deceleration time. <br> ( $\mathbb{1 0}$ Function code F07) <br> Effective range: $-400 \%$ to $400 \%$ |
| 13 | Upper limit frequency | The frequency obtained by multiplying the maximum frequency by the analog input amount is used as the upper limit frequency. <br> (띠 Function code F15) <br> Effective range: 0\% to 100\% |
| 14 | Lower limit frequency | The frequency obtained by multiplying the maximum frequency by the analog input amount is used as the lower limit frequency. <br> (미 Function code F15) <br> Effective range: 0\% to 100\% |
| 15 | Auxiliary frequency setting 3 | This is added immediately after adding auxiliary frequency setting 1. $100 \% /$ full scale (see block diagram) <br> Effective range: $-100 \%$ to $100 \%$ |
| 16 | Auxiliary frequency setting 4 | This is added immediately after adding auxiliary frequency setting 2. $100 \% /$ full scale (see block diagram) <br> Effective range: $-100 \%$ to $100 \%$ |

## FUNCTION

| E61, E62, <br> E63, E66 data | Function | Description |
| :---: | :--- | :--- |
| 17 | Speed limit for <br> forward rotation | The motor speed limit value can be set with terminal [12] and terminal <br> [C1] (C1/V3 functions) under torque control. To limit the motor speed to <br> the maximum frequency (F02, A01), set the analog input (maximum <br> input) to the maximum value. <br> If using this function, it is recommended that it be used in combination <br> with d35 (overspeed detection level). <br> Note: Function codes C31 to C45 (analog input adjustment) are <br> applied to these analog inputs. |
| 18 | Speed limit for <br> reverse rotation <br> Effective range: 0\% to 100\% |  |
| 20 | Analog signal input <br> monitor | By inputting analog signals from various sensors such as the <br> temperature sensors in air conditioners to the inverter, you can monitor <br> the state of external devices via the communications link. By using an <br> appropriate display coefficient, you can also have various values to be <br> converted into physical quantities such as temperature and pressure <br> before they are displayed. 100\%/full scale. |

If the same setting is specified for a different terminal, priority is given in the order E61, E62, E63, E66.

## E64

Saving of digital reference frequency
E64 specifies how to save the reference frequency specified in digital format by the keys on the keypad as shown below.

| E64 data | Save method |
| :---: | :--- |
| 0 | The reference frequency will be automatically saved when the main power is turned OFF. At <br> the next power-on, the reference frequency at the time of the previous power-off applies. |
| 1 | Pressing the <br> without pressing the <br> the reference frequency saves the reference frequency. If the control power is turned OFF |
| they, the data will be lost. At the next power-ON, the inverter uses |  |

## E65

Reference loss detection (continuous running frequency)
When the analog frequency command (setting with terminal [12], [C1] (C1 function), terminal [V2], or [C1] (V3 function) has dropped below $10 \%$ of the reference frequency within 400 ms , the inverter presumes that the analog frequency command wire has been broken and continues its operation at the frequency determined by the ratio specified by E65 to the reference frequency. And "REF OFF" signal comes on.
( $L$ Cd Function codes E20 to E24, E27, data = 33)
When the frequency command level (in voltage or current) returns to a level higher than that specified by E65, the inverter presumes that the broken wire has been fixed and continues to run following the frequency command.


Fig. 5.3-25

In the diagram above, f 1 is the level of the analog frequency command sampled at any given time. The sampling is repeated at regular intervals to continually monitor the wiring connection of the analog frequency command.

- Data setting range:0 (Decelerate to stop), 20 to 120 (\%), 999 (Disable)


## Note <br> Avoid an abrupt voltage or current change for the analog frequency command. An abrupt change may be

 interpreted as a wire break.Setting E65 data at " 999 " (Disable) allows the REF OFF signal ("Reference loss detected") to be issued, but does not allow the reference frequency to change. (The inverter runs at the analog frequency command as specified.)

When E65 = " 0 " or " 999 ," the reference frequency level at which the broken wire is recognized as fixed is "f1 $\times 0.2$."

When E65 = " 100 " (\%) or higher, the reference frequency level at which the wire is recognized as fixed is " $\mathrm{f} 1 \times 1$."

The reference loss detection is not affected by the setting of analog input adjustment (filter time constants: C33, C38, C43, C76).

## E66

Terminal [C1] (V3 function) (extension function selection) (Refer to E61)
A detailed explanation can be found in the function code E61.

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
$J$ Codes
d Codes
U Codes
y Codes


By setting the same value as E01 for E70, the same commands (with certain exceptions) as those for the X terminal function can be assigned to the standard keypad M/Shift key. Refer to the explanation on function code E01 for details on selectable command signal types and all command signals. These function codes are OFF immediately after turning ON the power. These selections toggle between ON and OFF by holding down the key for 1 s or longer while in operation mode. In programming mode, the cursor moves between data and the function code number (shift function), and command signal operation is disabled.

When toggling between ON and OFF, the following is displayed temporarily.

```
When OFF \(\rightarrow\) ON: if \(_{17}\) -
When ON \(\rightarrow\) OFF: 17 - \(171 \% F\)
* This is displayed regardless of the E70 function assignment.
```

By setting the same value as E20 for E71, the same monitor signals (with certain exceptions) as those for the Y terminal function can be lit up on the standard keypad M-LED. Refer to the explanation on function code E20 for details on selectable command signal types and all command signals.


Fig. 5.3-26

## E76

DC link bus low-voltage detection level
"U-EDC" signal comes ON when the DC intermediate voltage drops below E76 (DC link bus low-voltage detection level), and it goes OFF when the DC intermediate voltage exceeds E76.
( $\mathbb{\square}$
(1) Function codes E20 to E24, E27, data = 77)

```
E78, E79 Torque detection 1 (level and timer)
E80, E81
Torque detection 2/low torque detection (level and timer)
```

E78 specifies the operation level and E79 specifies the timer, for the output signal "TD1". E80 specifies the operation level and E81 specifies the timer, for the output signal "TD2" or "U-TL".

In the inverter's low frequency operation, as a substantial error in torque calculation occurs, no low torque can be detected within the operation range at less than $20 \%$ of the base frequency (F04). (In this case, the result of recognition before entering this operation range is retained.) The U-TL signal goes off when the inverter is stopped.

Since the motor parameters are used in the calculation of torque, it is recommended that auto-tuning be applied by function code P04 to achieve higher accuracy.

| Output signal | Assigned data | Detection level | Timer |
| :---: | :---: | :---: | :---: |
|  |  | Range: 0 to $300 \%$ | Range: 0.01 to 600.00 s |
| "TD1" | 46 | E78 | E79 |
| "TD2" | 47 | E80 | E81 |
| "U-TL" | 45 | E80 | E81 |

## Torque detected 1 - "TD1", Torque detected 2 - "TD2"

The output signal TD1 or TD2 comes ON when the torque value calculated by the inverter or torque command exceeds the level specified by E78 or E80 (Torque detection (Level)) for the period specified by E79 or E81 (Torque detection (Timer)), respectively. The signal turns OFF when the calculated torque drops below "the level specified by E78 or E80 minus $5 \%$ of the motor rated torque." (The minimum ON-duration is 100 ms .)


Fig. 5.3-27

## - Low torque detected - "U-TL"

This output signal comes ON when the torque value calculated by the inverter or torque command drops below the level specified by E80 (Low torque detection (Level)) for the period specified by E81 (Low torque detection (Timer)). The signal turns OFF when the calculated torque exceeds "the level specified by E78 or E80 plus $5 \%$ of the motor rated torque." (The minimum ON-duration is 100 ms .)


Fig. 5.3-28

For details, refer to the descriptions of E01 to E09.

### 5.3.3 C codes (Control functions)

## C01 to C04 C94 to C96

Jump frequency 1, 2 and 3, Jump frequency (Skip width)
Jump frequency 4 to 6

These function codes enable the inverter to jump over six different points on the output frequency in order to skip resonance caused by the motor speed and natural frequency of the driven machinery (load).

- While increasing the reference frequency, the moment the reference frequency reaches the bottom of the jump frequency band, the inverter keeps the output at that bottom frequency. When the reference frequency exceeds the upper limit of the jump frequency band, the internal reference frequency takes on the value of the reference frequency. When decreasing the reference frequency, the situation will be reversed. Refer to the left figure below.
- When more than two jump frequency bands overlap, the inverter actually takes the lowest frequency within the overlapped bands as the bottom frequency and the highest as the upper limit. Refer to the right figure below.



## - Jump frequency 1 to 6 (C01 to C03, C95 to C96)

Specify the center of the jump frequency band.

- Data setting range: 0.0 to $599.0(\mathrm{~Hz})$ (Setting to 0.0 results in no jump frequency band.)
- Jump frequency skip width (C04)

Specify the jump frequency skip width.

- Data setting range: 0.0 to $30.0(\mathrm{~Hz})$ (Setting to 0.0 results in no jump frequency band.)


## C05 to C19

Multistep Frequency 1 to 15
These function codes specify 15 frequencies required for driving the motor at frequencies 1 to 15.
Turning terminal commands "SS1", "SS2", "SS4" and "SS8" ON/OFF selectively switches the reference frequency of the inverter in 15 steps. To use this features, you need to assign "SS1", "SS2", "SS4" and "SS8" ("Select multistep frequency") to the digital input terminals with E01 to E09 (data $=0,1,2$, and 3).

- Multistep frequency 1 to 15 (C05 through C19)
- Data setting range: 0.00 to $599.0(\mathrm{~Hz})$

The combination of "SS1", "SS2", "SS4" and "SS8" and the selected frequencies is as follows.

| "SS8" | "SS4" | "SS2" | "SS1" | Selected frequency |
| :--- | :---: | :---: | :---: | :--- |
| OFF | OFF | OFF | OFF | Other than multistep frequency* |
| OFF | OFF | OFF | ON | C05 (Multistep frequency 1) |
| OFF | OFF | ON | OFF | C06 (Multistep frequency 2) |
| OFF | OFF | ON | ON | C07 (Multistep frequency 3) |
| OFF | ON | OFF | OFF | C08 (Multistep frequency 4) |
| OFF | ON | OFF | ON | C09 (Multistep frequency 5) |
| OFF | ON | ON | OFF | C10 (Multistep frequency 6) |
| OFF | ON | ON | ON | C11 (Multistep frequency 7) |
| ON | OFF | OFF | OFF | C12 (Multistep frequency 8) |
| ON | OFF | OFF | ON | C13 (Multistep frequency 9) |
| ON | OFF | ON | OFF | C14 (Multistep frequency 10) |
| ON | OFF | ON | ON | C15 (Multistep frequency 11) |
| ON | ON | OFF | OFF | C16 (Multistep frequency 12) |
| ON | ON | OFF | ON | C17 (Multistep frequency 13) |
| ON | ON | ON | OFF | C18 (Multistep frequency 14) |
| ON | ON | ON | ON | C19 (Multistep frequency 15) |

* "Other than multistep frequency" includes frequency setting 1 (F01), frequency setting 2 (C30) and other frequency command sources except multistep frequency commands.

| C20 | Jogging frequency <br> Related function codes: | H54 and H55 Acceleration/Deceleration time (Jogging) <br> H54 and H55 Acceleration/Deceleration time (jogging) <br> d09 to d13 Speed control (JOG) |
| :--- | :--- | :--- |

C20 specifies the operating condition (frequency) to apply in jogging operation.

| FUNCTION CODES |  | Data setting range | Description |
| :---: | :--- | :--- | :--- |
| C20 | Jogging frequency | 0.00 to $599.0(\mathrm{~Hz})$ | Reference frequency for jogging <br> operation |
| H54 | Acceleration time (Jogging) | 0.00 to 6000 s | Acceleration time for jogging <br> operation |
| H55 | Deceleration time (Jogging) | 0.00 to 6000 s | Deceleration time for jogging <br> operation |
| d09 | Speed control (JOG) <br> Speed command filter | 0.000 to 5.000 s | Speed control system adjustment <br> element when performing jogging <br> operation under speed sensorless <br> vector control/vector control with <br> speed sensor <br> See d01 to d06 for adjustment <br> method. |
| d10 | Speed control (JOG) <br> Speed detection filter | 0.000 to 0.100 s | d11 <br> Speed control (JOG) P gain |
| d12 | Speed control (JOG) I integral <br> time | 0.001 to 1.000 s | 0 times |
| d13 | Speed control (JOG) Output <br> filter | 0.000 to 0.100 s |  |

For details about jogging operation, refer to Chapter 3 "3.3.6 Jogging operation."

```
C21
C22 to C28
Pattern operation mode selection Stage 1 to 7 / Timed operation
```

Pattern operation is a function of automatic operation according to the predefined run time, rotational direction, acceleration/deceleration time and reference frequency.
When using this function, set the frequency setting (F01) to 10 (pattern operation).
The following operation patterns are available:

| C21: Setting | Operation pattern |
| :---: | :--- |
| 0 | Pattern operation performed for one cycle and stopped after the cycle. |
| 1 | Pattern operation repeatedly performed and immediately stopped with a stop command |
| 2 | Pattern operation performed for one cycle and operation continued at the reference <br> frequency after the cycle. |
| 3 | Timed operation |





## C22 to C28 Stage 1 to Stage 7

Specify the run time, rotation direction, and acceleration/deceleration time for Stage 1 to Stage 7. Press the FUNC/DATA key three times for each function code to set the following three data.

| Setting | Content |
| :---: | :---: |
| 1st | Specifies the run time between 0.0 and 6000 s . |
| 2nd | 2nd: Specifies the rotational direction $F$ (forward) or $r$ (reverse) |
| 3rd | 3rd: Specifies the acceleration/deceleration time between 1 and 4. <br> 1: F07/F08 <br> 2: E10/E11 <br> 3: E12/E13 <br> 4: E14/E15 |

If the FUNC/DATA key is pressed to exit the function code before the three data are specified by pressing the PRG key three times, no data are updated.
For any unused stage, specify 0.0 as the run time.PA2_57 (5002 Sub: 57) to " 0 ". The stage is skipped and the next stage becomes ready for setting.

## Frequency specified by frequency command

Multistep frequencies 1 to 7 are assigned to the reference frequency of Stage 1 to 7 .

## - Example of pattern operation setting

| C21 <br> (mode selection) | Stage No. | Run time | Rotational <br> direction | Acceleration/deceler <br> ation time | Operation (reference) <br> frequency |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Setting value | Setting value | Setting value |  |  |
|  | Stage 1 | 60.0 | F | 2 | C05 Multistep frequency 1 |
|  | Stage 2 | 100 | F | 1 | C06 Multistep frequency 2 |
|  | Stage 3 | 65.5 | r | 4 | C07 Multistep frequency 3 |
|  | Stage 4 | 55.0 | r | 3 | C08 Multistep frequency 4 |
|  | Stage 5 | 50.0 | F | 2 | C09 Multistep frequency 5 |
|  | Stage 6 | 72.0 | F | 4 | C10 Multistep frequency 6 |
|  | Stage 7 | 35.0 | F | 2 | C11 Multistep frequency 7 |

The figure below illustrates the operation.


F08 Deceleration time 1 setting is used as deceleration time for deceleration to stop after the completion of one cycle.

- To run or stop, use input from the Rey of the keypad or by switching the control terminal. Taking the keypad as an example, the motor starts running when the key is pressed. By pressing the key, stage advance is paused. Press the run key again to resume operation according to the stages from the point where it was suspended. For alarm stop, press the key to reset the inverter protective functions. Then press the key. The suspended progression of the cycle resumes. If a need arises for operation from the first stage "C22 (Stage 1 runtime)" and "C82 (Stage 1 rotational direction and acceleration/deceleration time)" during operation, input a stop command and press the key.
When operation from the first stage is necessary after an alarm stop, press the resetting the protective functions and press the key again. For operation with input terminals, use of the "RST" terminal (set "8 (Active ON)" or "1008 (Active OFF)" for any of E01 to E09) function the same way.
- Pattern operation can be started by either a forward run command (specify F02 $=2$ and press the key, or specify F02 = 1 and turn the terminal [FWD] ON) or reverse run command (specify F02 $=3$ and press the RUN key, or specify F02 $=1$ and turn the terminal [REV] ON).
- When using terminal [FWD] or terminal [REV], the run command self-hold function does not work. Please use the alternate-type switch.


## $\triangle C A U T I O N$

When pattern operation is started by specifying C21 = 0 and turning the terminal [FWD (REV)] ON, the motor stops after the completion of the last stage even if the terminal [FWD (REV)] is kept turned ON.
In this case, modifying the value for F 01 or C 30 or switching the control terminal "Hz2/Hz1" ON/OFF without turning the FWD (REV) terminal OFF causes the operation to be immediately resumed according to the reference frequency after the change.
Failure to observe this could result in an accident or injury.

## Timed operation (C21 = 3)

Select this for timed operation, in which simply specifying the run time and inputting a run command starts motor operation and stops the operation after the specified period has elapsed.
Tip - To stop the timed operation, press the stoo key during timer countdown.

- When the timer period is 0 , pressing the key does not start operation if C21 $=3$.
- An external signal (FWD or REV) can also be used to start operation.


## Example of timed operation

## Preconfiguration

- To indicate the timer value on the LED monitor, set the data for E43 (LED monitor) to "13" (timer vaule) and data for C21 to "3."
- Specify the reference frequency for timed operation. When the reference frequency is specified by keypad operation and the timer value is indicated, press the (—nme key to switch to speed monitor display and modify the reference frequency.

Timed operation (to start operation with the Rey)
(1) While checking the timer value on the LED monitor, press the key to specify the timer period (in seconds). (The timer value is indicated as an integer without a decimal point on the LED monitor.)
(2) Press the Bun) key to start motor operation. The timer period counts counted down. After the timer period has elapsed, the operation stops without the need for pressing the seof (Timed operation is possible even when the LED monitor indication is not the timer value.)

For operation by turning the FWD terminal ON, the indication alternates between "End" and LED monitor display ( 0 for timer value) when the timed operation has been completed with deceleration to stop. Turning FWD OFF brings back the LED monitor display.

## FUNCTION

F Codes
E Codes
C Codes
P Codes

For details on Frequency setting 2, refer to the description for function code F01.

| C31 to C35 | Analog input adjustment (terminal [12]) <br> (Offset, Gain, Filter, Gain reference point, Polarity selection) |
| :---: | :---: |
| C36 to C40 | Analog input adjustment (terminal [C1] C1 function) <br> (Offset, Gain, Filter, Gain reference point, range selection) |
| C41 to C45 | Analog input adjustment (terminal [V2]) <br> (Offset, Gain, Filter, Gain reference point, Polarity selection) |
| C74 to C78 | Analog input adjustment (terminal [C1] V3 function) (Offset, Gain, Filter, Gain reference point, Polarity selection) Refer to F01 for details on frequency settings. |
| C55, C56 | Bias (for PID, Frequency setting 2 (terminal [12])) |
|  | (Bias, Bias reference point) (Refer to F01) |
| C61, 662 | Bias (for PID, Frequency setting 2 (terminal [C1]) (C1 function)) |
|  | (Bias, Bias reference point)(Refer to F01) |
| C67, 668 | Bias (for PID, Frequency setting 2 (terminal [V2]) |
|  | (Bias, Bias reference point)(Refer to F01) |
| C82, C83 | Bias (for PID, Frequency setting 2 (terminal [C1]) (V3 function)) |
|  | (Bias, Bias reference point)(Refer to F01) |

You can adjust the gain, bias, polarity, filter time constant and offset which are applied to analog inputs (voltage inputs to terminals [12], [V2], and [C1] (V3 function) and current input to terminal [C1] (C1 function)).
Adjustable items for analog inputs (excluding those for frequency command 1 )

| Input terminal | Input range | Bias |  | Gain |  | Polarity | Filter | Offset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bias | Reference point | Gain | Reference point |  |  |  |
| [12] | $\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$ | C55 | C56 | C32 | C34 | C35 | C33 | C31 |
| [C1] (C1) | $\begin{aligned} & 4 \text { to } 20 \mathrm{~mA}, \\ & 0 \text { to } 20 \mathrm{~mA} \end{aligned}$ | C61 | C62 | C37 | C39 | C40 | C38 | C36 |
| [V2] | $\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$ | C67 | C68 | C42 | C44 | C45 | C43 | C41 |
| [C1] (V3) | $\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$ | C82 | C83 | C75 | C77 | C78 | C76 | C74 |

## ■ Offsets (C31, C36, C41, C74)

C31, C36, C41 or C74 configures an offset for an analog voltage/current input. The offset also applies to signals sent from the external equipment.

- Data setting range: -5.0 to $+5.0(\%)$


## - Filters (C33, C38, C43, C76)

C33, C38, C43 and C76 provide the filter time constants for the voltage and current of the analog input. The larger the time constant, the slower the response. Specify the proper filter time constant taking into account the response speed of the machine (load). If the input voltage fluctuates due to line noises, increase the time constant.

- Data setting range: 0.00 to 5.00 (s)


## Polarity selection for terminal [12], [V2], [C1] (V3 function) (C35, C45, C78)

C35, C45 and C78 configures the polarity and therefore the input range for analog input voltage.

| C35 data | Terminal input specification |
| :---: | :--- |
| 0 | -10 to +10 V |
| 1 | 0 to +10 V (Negative value of voltage is regarded as 0 V ) |

- Gain

(C34, C39, C44, C77)
To input bipolar ( 0 to $\pm 10 \mathrm{VDC}$ ) analog voltage at analog input (terminal [12]), set function code C35 to " 0 ". When the data of C35 is " 1 ", only 0 to +10 VDC effective and negative polar input 0 to -10 VDC regarded as 0 (Zero) V.
- Data setting range: -400.00 to 400.00(\%)
- Terminal [C1] (C1 function) range / polarity selection (C40)

Selects the range of current input terminal [C1](C1 function).

| C40 data | Terminal input range | Handling when bias value is set to minus |
| :---: | :--- | :--- |
| 0 | 4 to 20 mA (factory default) | Limit below 0 point with 0 |
| 1 | 0 to 20 mA |  |
| 10 | 4 to 20 mA | Enable below 0 point as minus value. |
| 11 | 0 to 20 mA |  |

In order to use terminal [C1] with the C1 function and V3 function, the following settings are necessary.

| [C1] terminal | SW8 | C40 | C78 |
| :--- | :---: | :---: | :---: |
| When using C1 function <br> $(4$ to 20 mA$)$ | C1 side (factory default) | 0 (unipolar) (factory default) <br> 10 (both poles) | Not required |
| When using C1 function <br> $(0$ to 20 mA$)$ | C1 side | 1 (single pole) <br> 11 (both poles) | Not required |
| When using V3 function <br> $(0$ to $\pm 10 \mathrm{~V})$ | V3 side | Not required | 0 (factory default) |
| When using V3 function <br> $(0$ to $+10 \mathrm{~V})$ | V3 side | Not required | 1 |

Refer to Chapter 2 2.2.7 for details on SW8.
Exercise caution as expected operation may not result if the setting above is not conducted accurately.
E61, E62, E63, E66 Gain can be used up to the maximum of $400.00 \%$ only for terminals for which "Terminal [12], [C1] (C1 function), [V2], and [C1] (V3 function) (extension function selection)" data is set to 10 or 11.
With other functions, the gain value is limited to $200.00 \%$ internally even if a large gain value is set.

## Gain and bias

Terminal

These are biases and bias reference points used for PID command, PID feedback, frequency command 2 and analog monitor. For details, refer to the description of F01 and J01.
Bias (C55, C61, C67, C82, 066, 082)

- Data setting range: -200.00 to 200.00(\%)

Bias reference point (C56, C62, C68, C83)

- Data setting range: 0.00 to 100.00 (\%)

Specifying the bias as a negative value allows an input to be specified as bipolar for a unipolar analog input. By setting C40 data to 10 or 11 for terminal [C1] (C1 function), the input value takes negative polarity with an analog input of 0 point or lower.

For details on Frequency setting 1 bias reference point settings, refer to the description for function code F01.

| C53 |
| :--- | :--- |
| C54 |$\quad$| Normal/inverse operation selection (Frequency setting 1) <br> Normal/inverse operation selection (Frequency setting 2) |
| :--- |

Switches between the analog frequency setting normal operation and inverse operation.
For details, refer to E01 through E09 (data = 21) for the terminal command IVS ("■ Switch Normal/inverse operation switching "IVS" assignment normal/inverse operation - "IVS"").

| C58 |  |
| :--- | :--- |
| C64 | Analog input adjustment (for analog monitor (terminal [12])) (Display unit) <br> C70 <br> C84 |
| Analog input adjustment (for analog monitor (terminal [C1])) (C1 function) (Display unit) <br> Analog input adjustment (for analog monitor (terminal [V2])) (Display unit) <br> Analog input adjustment (for analog monitor (terminal [C1])) (V3 function) (Display unit) |  |
|  |  |

The units for the respective analog inputs can be displayed when a multi-function keypad (TP-A2SW) is used. Set these codes to use for command and feedback values of the PID control and the analog input monitor. Use the multi-function keypad to display the SV and PV values of the PID control and the analog input monitor on the main and sub-monitors. Indications are given in the specified units.

| Setting value | Display unit | Setting value | Display unit | Setting value | Display unit | Setting value | Display unit |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | No unit | [Flow] |  | [Pressure] |  | [Length] |  |
| 2 | \% | 20 | $\mathrm{m} 3 / \mathrm{s}$ | 40 | Pa | 70 | mm |
| 4 | $\mathrm{r} / \mathrm{min}$ | 21 | $\mathrm{m} 3 / \mathrm{min}$ | 41 | kPa | 71 | cm |
| 7 | kW | 22 | m3/h | 42 | MPa | 72 | m |
| 8 | HP | 23 | L/s | 43 | mbar | 73 | km |
| [Speed] |  | 24 | L/min | 44 | bar | 74 | in |
| 10 | $\mathrm{mm} / \mathrm{s}$ | 25 | L/h | 45 | mmHg | 75 | Ft |
| 11 | mm/m | 26 | GPS | 46 | PSI | 76 | Yd |
| 12 | $\mathrm{mm} / \mathrm{h}$ | 27 | GPM | 47 | mWG | 77 | mi |
| 13 | $\mathrm{m} / \mathrm{s}$ | 28 | GPH | 48 | inWG | [Concentration] |  |
| 14 | $\mathrm{m} / \mathrm{min}$ | 29 | CFS | 49 | inHg | 80 | ppm |
| 15 | m/h | 30 | CFM | 50 | WC | [Volume] |  |
| 16 | FPS | 31 | CFH | 51 | FT WG | 90 | $\mathrm{m}^{3}$ |
| 17 | FPM | 32 | kg/s | [Temperature] |  | 91 | L |
| 18 | FPH | 33 | kg/m | 60 | K | 92 | GAL |
|  |  | 34 | kg/h | 61 | ${ }^{\circ} \mathrm{C}$ | 73 | Ft |
|  |  | 35 | $\mathrm{lb} / \mathrm{s}$ | 62 | ${ }^{\circ} \mathrm{F}$ |  |  |
|  |  | 36 | $\mathrm{ib} / \mathrm{m}$ | [Torque] |  |  |  |
|  |  | 37 | ib/h | 65 | $\mathrm{N} \cdot \mathrm{m}$ |  |  |
|  |  | 38 | AF/Y | 66 | lb ft |  |  |

## FUNCTION

```
C59, C60
 Analog input adjustment (terminal [12]) (Maximum scale, Minimum scale)
C65, C66
Analog input adjustment (terminal [C1] (C1 function)) (Maximum scale, Minimum scale)
C71, C72
C85, C86
Analog input adjustment (terminal [V2]) (Maximum scale, Minimum scale)
Analog input adjustment (terminal [C1] (V3 function)) (Maximum scale, Minimum scale)
```

Values of the analog input monitor (terminals [12], [V2], and [C1] (C1 and V3 functions) can be converted into easily recognizable physical quantities for display. This function can also be used for PID feedback and PID command values.

- Data setting range: (maximum scale and minimum scale) -999.00 to 0.00 to 9990.00


```
C89 Frequency compensation 1 with communication (Numerator)
C90
Frequency compensation 2 with communication (Denominator)
```

A compensation value can be set for frequency settings via RS-485 communication or field bus communication. This is used if wishing manually compensate the frequency determined by the system. By displaying these function codes with the keypad, values are displayed in hexadecimal format. If data 0 is set, it is handled as 1 .

- Data setting range: -32768 to 32767 (keypad display: h. 8000 to h.7FFF)

Last frequency setting $=$ Frequency setting with communication $x \frac{\text { C89: Frequency compensation } 1 \text { (numerator) }}{\text { C90: Frequency compensation } 2 \text { (denominator) }}$

## C94 to C96

Jump frequency 4 to 6
(Refer to C01)
A detailed explanation can be found in the function code C01.
C99 Digital setting frequency $\quad$ (Refer to F01)

Displays the digital setting frequency set with the frequency setting using the keypad that becomes valid when F01 $=0$. Changes to C09 can only be made with communication. C99 is copied using the keypad or PC Loader copy function, allowing the digital setting frequency to be copied.

## 5．3．4 P codes（Motor 1 parameters）

To use the integrated automatic control functions such as auto torque boost，torque calculation monitoring，auto energy saving operation，torque limiter，automatic deceleration（anti－regenerative control），auto search for idling motor speed，slip compensation，vector control without speed sensor（torque vector），droop control，and overload stop，it is necessary to build a motor model in the inverter by specifying proper motor parameters including the motor capacity and rated current．Consequently，it is necessary to correctly set not only the motor capacity and rated current，but also all constants．

FRENIC－MEGA is equipped with constants for Fuji standard motor 8 －series motors，Fuji standard high－efficiency premium motors，and Fuji standard synchronous motors．To use these Fuji motors，it is enough to specify motor parameters for P99（Motor 1 selection）．If the cabling between the inverter and the motor is long（generally， 20 m （ 66 ft ）or longer）or a reactor is inserted between the motor and the inverter，however，the apparent motor parameters are different from the actual ones，so auto－tuning or other adjustments are necessary．
For the auto－tuning procedure，refer to Chapter 4 ＂TEST RUN PROCEDURE＂．
When using a motor made by other manufacturers or a Fuji non－standard motor，obtain the datasheet of the motor and specify the motor parameters manually or perform auto－tuning．


P01 specifies the number of poles of the motor．Enter the value given on the nameplate of the motor．This setting is used to display the motor speed on the LED monitor and to control the speed（refer to E43）．The following expression is used for the conversion．

Motor rotational speed（min－1）$=120 /$ No．of poles $x$ Frequency $(H z)$
－Data setting range： 2 to 128 （poles）

## P02 Motor 1 （Rated capacity）

P02 specifies the rated capacity of the motor．Enter the rated value given on the nameplate of the motor．

| P02 data | Unit | Function |
| :---: | :--- | :--- |
| 0.01 to 1000 | kW | When P99（Motor 1 selection）$=0,2$ to 5,20 to 23 |
|  | HP | When P99（Motor 1 selection）$=1$ |

When changing P02 with the keypad，take into account that the following function code data will be automatically rewritten with the initial values．
Applicable function codes：P03，P06 to P23，P30，P53 to P56，P60 to P65，P74，P83，P84，P85，P87 to P89，P90， H46

## P03

Motor 1 （Rated current）

## FUNCTION

P03 specifies the rated current of the motor．Enter the rated value given on the nameplate of the motor．
－Data setting range： 0.00 to 2000 （A）

## P04

Motor 1 (Auto-tuning)
The inverter automatically detects the motor parameters and saves them in its internal memory. If using a Fuji standard motor (incl. old model IE1 induction motors and synchronous motors) with a standard connection method, there is generally no need to perform tuning.

There are two types of auto-tuning as listed below. Select the appropriate one considering the limitations in your equipment and control mode. In the following table, IM indicates induction motor, and PM indicates synchronous motor.

| P04 data | Auto tuning | Enable | Motor parameters to be tuned |  |
| :---: | :---: | :---: | :---: | :---: |
| 0 | Disable | --- | --- |  |
| 1 | Tune the motor while it is stopped | Tunes while the motor is stopped. | IM | Primary resistance (\%R1) (P07) <br> Leakage reactance (\%X) (P08) <br> Rated slip frequency (P12) <br> \%X correction factor 1 (P53) |
|  |  |  | PM | Armature resistance (P60) <br> d-axis inductance (P61) <br> q-axis inductance (P62) <br> Magnetic pole position detection  <br> method selection (P30) |
| 2 | Rotation tuning | After tuning the motor in a stopped state, retunes it running at $50 \%$ of the base frequency. | IM | Magnetic saturation factor 1 to 5 (P16 - P20) <br> Magnetic saturation expansion coefficient a, b, c <br> (P21-P23) |
|  |  |  | PM | Induced voltage (P63) <br> Magnetic pole position detection  <br> method selection (P30) <br> Armature resistance (P60) <br> d-axis inductance (P61) <br> q-axis inductance (P62) <br> Motor induced voltage (P63) <br> Reserved (P84, P88) |
| 4 | Magnetic pole position offset tuning | The motor is run at the speed set at d80, and tuning is performed. | PM | Magnetic pole position offset (P95) |
| 5 | Tune the motor while it is stopped | Tunes while the motor is stopped. | IM | Primary resistance (\%R1) (P07) <br> Leakage reactance (\%X) (P08) <br> \%X correction factor 1 (P53) |

For details on the auto-tuning procedure, refer to Chapter 4 "TEST RUN PROCEDURE".

Note In any of the following cases, perform auto-tuning since the motor parameters are different from those of Fuji standard motors so that the best performance cannot be obtained under some conditions. In cases such as this, perform auto tuning.

- The motor to be driven is a non-Fuji motor or a non-standard motor.
- The wiring distance between the inverter and the motor is too long (generally 20 m or more).
- A reactor is inserted between the motor and the inverter.


## Other applicable cases

If P04 $=2$, or tuning is performed under vector control with permanent magnet type speed sensor (F42 = 16), the motor may be driven in the opposite direction from the command direction. If this is not permissible, set the H 08 rotation direction restriction.

Functions whose performance is affected by the motor parameters

| Function | Related function codes (representative) |
| :--- | :--- |
| Auto torque boost | F37 |
| Output torque monitor | F31 |
| Load factor monitor | F31 |
| Auto energy saving operation | F37 |
| Torque limit control | F40 |
| Anti-regenerative control | H69 |
| Auto search | H09 |
| Slip compensation | F42 |
| Dynamic torque vector control | F42 |
| Dynamic torque vector control with sensor | F42 |
| Vector control with speed sensor | F42 |
| Sensorless vector control | F42 |
| Sensorless vector control (synchronous motors) | F42 |
| Vector control with sensor (synchronous motors) | F42 |
| Torque control | H18 |
| Droop control | H28 |
| Torque detection | E78 to E81 |
| Contacting the stopper | J90 to J92 |
| Brake signal (Brake-release torque) | J95 |
|  |  |

## FUNCTION

## P05 <br> Motor 1 (Online tuning)

When vector control without speed sensor (dynamic torque vector) or slip compensation control is used for longtime operation, the motor parameters change along with motor temperature rise.
If motor parameters change, the amount of speed compensation may change to cause the motor speed to be different from the initial speed.
Enabling online tuning allows the identification of the motor parameters that match the change in the motor temperature, which minimizes the motor speed variation.
To use this function, specify "2" for auto-tuning (P04).

Online tuning is enabled only when F42 $=1$ (Vector control without speed sensor) or F42 $=2$ (V/f control with slip compensation active) and F37 $=2,5$ (auto torque boost).

## P06 to P08

## Motor 1 (No-load current, \%R1 and \%X)

P06 through P08 specify no-load current, \%R1 and \%X, respectively. Obtain the appropriate values from the test report of the motor or by calling the manufacturer of the motor. Performing auto-tuning automatically sets these parameters.

- No-load current: Input the value obtained from the motor manufacturer.
- \%R1: Enter the value calculated by the following expression.

$$
\% R 1=\frac{R 1+\text { Cable R1 }}{V /(\sqrt{3} \times I)} \times 100(\%)
$$

R1: Primary resistance of the motor ( $\Omega$ )
Cable R1: Resistance of the output cable ( $\Omega$ )
V : Rated voltage of the motor ( V )
I: Rated current of the motor (A)

- \%X: Enter the value calculated by the following expression.

$$
\% X=\frac{X 1+X 2 \times X M /(X 2+X M)+\text { Cable } X}{V /(\sqrt{3} \times 1)} \times 100(\%)
$$

X1: Primary leakage reactance of the motor ( $\Omega$ )
X2: Secondary leakage reactance of the motor (converted to primary) ( $\Omega$ )
XM: Exciting reactance of the motor $(\Omega)$
Cable X: Reactance of the output cable ( $\Omega$ )
V : Rated voltage of the motor (V)
I: Rated current of the motor (A)
Note For reactance, use the value at the base frequency (F04).

## P09 to P11

Motor 1 (Slip compensation gain for driving, Slip compensation response time, Slip compensation gain for braking)

P09 and P11 determine the slip compensation amount in \% for driving and braking individually and adjust the slip amount from internal calculation. Setting to $100 \%$ fully compensates for the rated slip of the motor. Excessive compensation ( $100 \%$ or more) may cause hunting (undesirable oscillation of the system), so carefully check the operation on the actual machine.
P10 determines the response time for slip compensation. Basically, there is no need to modify the default setting. If you need to modify it, consult your Fuji Electric representatives.

| Function code |  | Operation (slip compensation) |
| :--- | :--- | :--- |
| P09 | Slip compensation gain (for <br> drive) | Adjust the slip compensation for driving. <br> Slip compensation amount when driving $=$ <br> Rated slip x Slip compensation gain (when driving) |
| P11 | Slip compensation gain <br> (braking) | Adjust the slip compensation amount when braking. <br> Slip compensation amount when braking $=$ <br> Rated slip x Slip compensation gain (when braking) |
| P10 | Slip compensation <br> response time | Set the slip compensation response time. Basically, there is no need <br> to modify the setting. |

For details about slip compensation control, refer to the description of function code F42.

Sets the motor rated slip. Obtain the appropriate values from the test report of the motor or by calling the manufacturer of the motor. Performing auto-tuning automatically sets these parameters.

- Rated slip: Convert the value obtained from the motor manufacturer to Hz using the following expression and enter the converted value.
(Note: The motor rated value on the nameplate sometimes shows a larger value.)

$$
\text { Rated slip frequency }(\mathrm{Hz})=\frac{(\text { Synchronous speed }- \text { Rated speed })}{\text { Synchronous speed }} \times \text { Base frequency }
$$

(1) For details about slip compensation control, refer to the description of F42.

## P13 to P15 Motor 1 (Iron loss factor 1 to 3 )

Inputs the exciting current required to create the magnetic flux produced inside the motor, and the characteristics of the produced magnetic flux.
The combination of P99 (Motor 1 selection) and P02 (Motor 1 rated capacity) data determines the standard value. Basically, there is no need to modify the setting.

## P16 to P23

Motor 1 (Magnetic saturation factors 1 to 5, and a, b, c)
Inputs the exciting current required to create the magnetic flux produced inside the motor, and the characteristics of the produced magnetic flux. The combination of P99 (Motor 1 selection) and P02 (Motor 1 rated capacity) data determines the standard value. Performing auto-tuning while the motor is rotating ( $\mathrm{P} 04=2$ ) sets the value of these factors automatically.

The load and motor inertia total is set with the theoretical acceleration/deceleration time.

## Theoretical acceleration/deceleration time calculation formula

With motor rated output $P[W]$, the acceleration time when support is provided to help the "total moment of inertia J [ $\mathrm{kgm}^{2}$ ] load converted to the motor shaft (including motor rotor) at motor rated torque at synchronous rotation speed $N[r / \mathrm{min}]$ " accelerate from $0[r / \mathrm{min}]$ to synchronous rotation speed $N[r / \mathrm{min}]$ is taken to be the theoretical acceleration time [s], and this calculation result is set.

$$
\mathrm{T}[\mathrm{~s}]=\frac{2 \pi \mathrm{JN}}{60 \mathrm{P}}
$$

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
$J$ Codes
d Codes
U Codes
y Codes
K Code

## P30

## Motor 1 (Synchronous motor magnetic pole position detection selection) <br> Related function codes: <br> P74: Synchronous motor 1 (Current command value when starting) <br> P87: Synchronous motor 1 (NS discrimination current command value) <br> d80: Synchronous motor 1 (Magnetic pole position draw-in frequency)

P30 specifies the magnetic pole position detection mode. Select the appropriate mode that matches the synchronous motor to be used.

| P30 data | Function |
| :---: | :---: |
| 0: Current draw method | Magnetic pole position detection is not performed. <br> At the start of driving the motor, the inverter supplies current specified by P74 to pull in the magnetic pole position. <br> In this position detection mode, the motor may rotate slightly in the direction opposite to the commanded direction depending upon the current motor shaft position. |
| 1: IPM (interior permanent magnet) motor method 1 | The inverter starts the motor with the magnetic pole position detection suitable for synchronous motors. <br> The reference current for polarity discrimination specified by P87 applies. Usually it is not necessary to change the factory default. |
| 2: For SPMSM (Surface permanent magnet synchronous motor) | The inverter starts the motor with the magnetic pole position detection suitable for surface magnet type synchronous motors. |
| 3: Current draw method for IPM motors | The inverter starts the motor with the magnetic pole position detection suitable for synchronous motors causing no magnetic saturation. <br> In this position detection mode, the motor may rotate slightly in the direction opposite to the commanded direction depending upon the current motor shaft position. |
| 4: For IPM (embedded magnet) motor type 2 | By superimposing high-frequency voltage on the motor control voltage, the saliency of the IPM (interior permanent magnet) motor inductance is used to improve the sensorless speed detection accuracy at low speed, and to improve the speed control and torque limiting performance. <br> Depending on the synchronous motor characteristics, it may not be possible to use this method. <br> This method can be used with the Fuji Electric standard synchronous motor GNB2 series. |

Tip
The reference current for polarity discrimination specified by P87 applies. Usually it is not necessary to change the factory default.

During the magnetic pole position pull-in operation or the magnetic pole position detection, the motor cannot generate enough torque. When applying to an application which requires torque when starting, use the brake signal "BRKS" and magnetic pole position detection complete signal "PTD" to ensure that the machine brake is not released until the magnetic pole position draw-in operation is complete.
(띠) Function code E20)

When adopting vector control with sensor for synchronous motors, the starting operation will be as shown in the following table based on each function code combination.

| F42 data | d14 data | P95 data | P30 data | Operation when starting |
| :---: | :---: | :---: | :---: | :---: |
| 16: Vector control with sensor for PM | 2: A, B phase $90^{\circ}$ phase difference, Z phase | 999 <br> (Offset not adjusted) | 0: Current draw method <br> 3: Current draw method for IPM motors | <Unable to start> <br> An $E r^{-1}$ alarm occurs, and the motor does not start. Adjust P95. |
|  |  |  | 1, 4: Method for IPM motors <br> 2: Method for SPM motors | <Magnetic pole position detection start> <br> The motor starts from 0 Hz following magnetic pole position detection. |
|  |  | 0.0 to $359.9^{\circ}$ <br> (Offset <br> adjustment <br> complete) | 0,3 | <Magnetic pole position draw-in start> <br> The magnetic pole position drawin operation is performed at the frequency set at d 80 when turning ON the inverter power for the first time. The motor accelerates to the command speed after magnetic pole position draw-in is complete. The motor starts (normal start) from 0 Hz from the next time onward. <br> The time required for the magnetic pole position draw-in operation is a maximum of one machine angle rotation. <br> ( $\mathbb{C l}$ ) Function code d80) |
|  |  |  | 1, 2, 4 | <Magnetic pole position detection start> <br> The motor starts from 0 Hz following magnetic pole position detection when turning ON the inverter power for the first time. The motor starts (normal start) from 0 Hz from the next time onward. |
|  | 4: A, B phase $90^{\circ}$ phase difference, UVW signal | 999 <br> (Offset not adjusted) | 0,3 | <Unable to start> <br> An $E r^{-1}$ alarm occurs, and the motor does not start. Adjust P95. |
|  |  |  | 1, 2, 4 | <Magnetic pole position detection start> <br> The motor starts from 0 Hz following magnetic pole position detection. |
|  |  | 0.0 to $359.9^{\circ}$ <br> (Offset <br> adjustment <br> complete) | Not required | <Normal start> <br> The motor starts from 0 Hz . |

During the magnetic pole position pull-in operation or the magnetic pole position detection operation, the motor is unable to generate enough torque. When applying to an application which requires torque when starting, use the brake signal "BRKS" and magnetic pole position detection complete signal "PTD" to ensure that the machine brake is not released until the magnetic pole position draw-in operation and magnetic pole position detection operation are complete. ( $\mathbb{C}$ Function code E20)

## FUNCTION

```
P40, P41 For manufacturer
```

These function codes are reserved for particular manufacturers. Unless otherwise specified, do not access these function codes.

## P53, P54

Motor 1 (\%X correction factor 1, 2)
This is a factor for correcting leakage reactance \%X. Basically, there is no need to modify the setting.

```
P55 Motor 1 (Torque current under vector control)
```

Sets the torque current rated value under vector control with speed sensor.
The combination of P99 (Motor 1 selection) and P02 (Motor 1 rated capacity) data determines the standard value. To change the standard value, do so after specifying these settings.
Basically, there is no need to modify the setting.
$\square$
Motor 1 (Induced voltage factor under vector control)
Sets the induced voltage under vector control with speed sensor.
The combination of P99 (Motor 1 selection) and P02 (Motor 1 rated capacity) data determines the standard value. To change the standard value, do so after specifying these settings.
Basically, there is no need to modify the setting.

## P57 <br> Motor 1 (Reserved)

This is displayed, but is reserved for particular manufacturers. Unless otherwise specified, do not access these function codes.

## P60 to P64

Motor 1 (Synchronous motor armature resistance, $d$-axis inductance, $q$-axis inductance, Induced voltage, Iron loss)

P60 through P64 specify the armature resistance, $d$-axis inductance, $q$-axis inductance, induced voltage and iron loss of the motor, respectively. Obtain the appropriate values from the test report of the motor or by calling the manufacturer of the motor. Furthermore, P60 to P63 are set automatically by performing auto tuning.

| P65, P85 | Motor 1 (Synchronous motors q-axis inductance magnetic saturation correction, Flux limitation value) |
| :---: | :---: |

These are the control parameter for PMSMs. Normally, it is not necessary to change the data of these function codes.

Motor 1 (Synchronous motors - Reference current when starting)

When the motor starts, the set starting current flows in the area at or below the output frequency level set at P89, the magnetic pole position is drawn in, and operation is performed. Increase the setting value if the torque is insufficient.

## P87

Synchronous motor 1 (NS discrimination current command value)
Refer to P30.

> P83, P84, P86, P88

## Motor 1 (Reserved)

These function codes are displayed, but they are reserved for particular manufacturers. Unless otherwise specified, do not access these function codes.

## P89 Motor 1 (Synchronous motor control switching level)

These are the control parameter for PMSMs. Normally, it is not necessary to change the data of these function codes.

| P90 |
| :--- |
| Motor 1 (Synchronous motor overcurrent protection level) |
| Sets the synchronous motor demagnetization limit current value with an effective value. Check the demagnetization |
| limit current value with the motor manufacturer. |
| Synchronous motors have a current limit to prevent demagnetization of permanent magnet. If a current exceeding |
| that limit flows through the motor, it weakens the magnet force of permanent magnet so that the motor does not get |
| the desired characteristics. |
| To prevent it, P90 specifies the overcurrent protection level. If a current flows exceeding the level, the inverter |
| causes an overcurrent protection alarm |

## P95 Motor 1 (Synchronous motor magnetic pole position sensor offset)

Adjusts the offset with the actual magnetic pole position for PM motors with magnetic pole position sensor, and detection position with magnetic pole position sensor. If using a Fuji standard synchronous motor (GNF2 series), set the magnetic pole position offset value indicated on the product tag.
This can be adjusted automatically by auto tuning.

## FUNCTION

```
P99 Motor 1 selection
```

P99 specifies the motor type to be used.

| P99 data | Function |
| :---: | :--- |
| 0,3 | Motor characteristics 0 (Fuji standard IM, 8-series) |
| 1 | Motor characteristics 1 (HP rating IMs) |
| 2 | Motor characteristics 2 <br> (Fuji dedicated motors for vector control) |
| 4 | Other (Induction motors) |
| 5 | Motor characteristics 5 (Fuji premium efficiency motors) |
| 20 | Other synchronous motors |
| 21 | Fuji standard synchronous motors (GNB2 series) |
| 22 | Fuji standard synchronous motors (GNF2 series, with magnetic pole position <br> sensor) |
| 23 | Fuji standard synchronous motors (GNP1 series) |

Items 20 to 23 are displayed when F42 = 15 or 16 .
To select the motor drive control or to run the inverter with the integrated automatic control functions such as auto torque boost and torque calculation monitoring, it is necessary to specify the motor parameters correctly.

First select the motor type with P99 from Fuji standard motors 8 -series, set P02 (capacity) and then initialize the motor parameters with H03. The required motor parameters (P01, P03, P06 to P23, P53, P55 to P65, P74, P83 to P85, P87 to P90, H46) are automatically set.
The data of F09 (Torque boost 1), H13 (Restart mode after momentary power failure (Restart time)), and F11 (Electronic thermal overload protection for motor 1 (Overload detection level)) depends on the motor capacity, but the process stated above does not change them. Specify and adjust the data during a test run if needed.

## High induction motor efficiency (premium efficiency motors)

A "top runner system" was established and made obligatory in Japan through the Energy Conservation Act in 2015, and Fuji has since then been selling premium efficiency motors which conform to efficiency class IE3. In comparison to conventional induction motors (IE1), premium efficiency motors (IE3) have the following features.

Table 5.3-10 Typical comparison of induction motors (IE1) and premium efficiency motors (IE3)

| Item | Induction motors (IE1) | Premium efficiency motors (IE3) |
| :---: | :---: | :---: |
| Armature resistance | High | Low |
| Moment of inertia | Low | High |
| Rated slip | High | Low |

Points to bear in mind and remedies for phenomena that occur when combining premium efficiency motors (IE3) with inverters
If changing a combination of a conventional induction motor (IE1) and inverter to a premium efficiency motor (IE3) and inverter, or if a conventional induction motor (IE1) driven by a commercial power supply is changed to a premium efficiency motor (IE3) and inverter, the following phenomena may occur. These phenomena should be handled with the remedies indicated.

| No. | Phenomenon | Remedy | Point to bear in mind |
| :---: | :---: | :---: | :---: |
| 1 | - Overcurrent protection [OC1] is triggered when the motor starts. <br> - The frequency does not increase. <br> - Motor thermal protection [OL1] is triggered, and continuous operation is no longer possible at low speed. | - Reduce torque boost (Fuji Electric inverter function code [F09]). | - Since the armature resistance tends to drop as shown in Table 5.3-10 under acceleration, constant velocity, and deceleration characteristics. In the case of commonly used V/F control, motor current increases, and in the worst case, motor thermal protection may be triggered. |
| 2 | - Overvoltage protection [OV2] is triggered when decelerating. <br> - Deceleration time increases. | - Enable strong break control under deceleration characteristics (set Fuji Electric inverter function code [H71] to 1 or 2). <br> - Increase the deceleration time (Fuji Electric inverter function code [F08]). <br> - Or set torque limiting antiregenerative control (Fuji Electric inverter function code [H69]). | - Since the moment of inertia tends to increase, regenerative energy increases with the current deceleration time in the case of commonly used V/F control under deceleration characteristics, and in the worst case, overvoltage protection is triggered. |
| 3 | - The equipment speed is too fast, or the fan air flow is too high. | - Readjust the rated slip (Fuji Electric inverter function code [P12]) (when slip compensation enabled). <br> - Lower the set frequency (when slip compensation disabled). | - The rated slip has decreased, and therefore if the machine conditions are the same, the motor rotation speed may become higher than before. |
| 4 | - An [Er7] alarm occurred during motor tuning. | - Reduce torque boost (Fuji Electric inverter function code [F09]). | - The armature resistance tends to be lower than conventional induction motors (IE1), and therefore at the factory default torque boost (Fuji Electric inverter function code [F09]), the motor current will be high, and an $E\left[\begin{array}{c}\text { Cla } \\ \text { alarm may occur. }\end{array}\right.$ |

## FUNCTION

### 5.3.5 H codes (High performance functions)

## H00 Simulated operation

The simulated operation function is used at the following times, and is performed without inverter output.

- When wishing to operate run commands and digital input terminals via a terminal block or communication in order to check whether the inverter functions.
- When wishing to check digital output terminals and analog voltage/current, and pulse output, etc.

If performing vector control or feedback control such as V/f control with sensor, acceleration will not be possible with the speed detection value at zero, meaning that it will not be possible to carry out tests of digital input/output terminals such as speed arrival with the inverter alone. By selecting simulated operation with this function code, a machine model is configured inside the inverter, and simulated feedback signals are generated, enabling acceleration without connecting a motor. With simulated operation, however, no voltage is produced, and therefore the current monitor value will always be zero even if a motor is connected. Simulated operation can be performed even for other than control with sensor, and therefore this function can be used in cases where you do not want to produce output voltage during testing.

## $\triangle$ CAUTION

There is no inverter output when performing simulated operation, but digital output signals such as "RDY", "RUN", "RUN2", and "AX" turn ON. If the machine brake is controlled with a RUN signal or frequency detection signal, etc., ensure that the machine brake is not released unintentionally. Furthermore, voltage is not produced at the inverter output side ( $\mathrm{U}, \mathrm{V}, \mathrm{W}$ ), but in the interests of safety, either isolate the output side, or shut off the output side with a magnetic contactor.

Failure to observe this could result in an accident or injury.


With machine models simulated with the inverter, load inertia P24, A38, b38, and r38 are used. If 0.000 is set, it is handled as 0.200 .

Double key operation (stoo key + keys) is required to change function code H00 data.

| H00 data | Function |
| :---: | :--- |
| 0 | Normal operation (factory default) |
| 1 | Simulated operation |

Motor operating time, and startup count, etc. are not added during simulated operation. The operating time for capacitors and cooling fans, etc. is added when the inverter power is ON.

Data initialization (Method, Target)
Related function codes: H193, H194 User preference dataset (Save, Protect)
Returns function code data to the factory default settings. The motor parameters are also initialized.
To change the $\mathrm{H} 02 / \mathrm{H} 03$ data, it is necessary to press the + + keys (simultaneous keying).

| H03 data | Function |
| :---: | :--- |
| 0 | Disable initialization (Settings manually made by the user will be retained.) |
| 1 | Initialize all function codes (initialization in accordance with function code H02 setting) |
| 2 | Initialize motor 1 parameters in accordance with F42 (Drive control selection 1), P02 <br> (Rated capacity) and P99 (Motor 1 selection) |
| 3 | Initialize motor 2 parameters in accordance with F42 (Drive control selection 2), A16 <br> (Rated capacity) and A39 (Motor 2 selection) |
| 4 | Initialize motor 3 parameters in accordance with F42 (Drive control selection 1), b16 <br> (Rated capacity) and b39 (Motor 1 selection) |
| 5 | Initialize motor 4 parameters in accordance with F42 (Drive control selection 2), r16 <br> (Rated capacity) and r39 (Motor 2 selection) |
| 11 | Limited initialization (initialization other than communications function codes): <br> Communication can be continued after initialization. |
| 12 | Limited initialization (initialization of customizable logic function U codes only) |

- When all function codes are initialized, select the initialization method in advance with function code H 02 .

| H02 selection |  | Initialization method when 1 is set to H03 |
| :--- | :--- | :--- |
| Data=0 | Fuji standard initial value | Initialize all function codes with the Fuji Electric standard factory <br> defaults. |
| Data=1 | User preference dataset | Initialize the value with the user setting value saved by H194. <br> If the user preference dataset is not saved, initialize it with Fuji <br> standard initial value (H02=0). |

For saving the user preference dataset, refer to items in function codes H 193 and H 194 .

- To initialize the motor parameters, set the related function codes as follows.

| Step | Item | Function code |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |
|  |  | Motor 1 | Motor 2 | Motor 3 | Motor 4 |  |
| $(1)$ | Motor type | Selects the motor type. | P99 | A39 | b39 | r39 |
| $(2)$ | Motor capacity | Sets the capacity (kW). | P02 | A16 | b16 | r16 |
| $(3)$ | Data <br> initialization | Initialize motor <br> parameters | H03 =2 | H03 =3 | H03 =4 | H03 =5 |

- When initialization is complete, the function code H 03 data returns to " 0 " (factory default setting).
- If $\mathrm{P} 02 / \mathrm{A} 16 / \mathrm{b} 16 / \mathrm{r} 16$ data is set to a value other than the standard nominal applied motor rating, data initialization with H03 internally converts the specified value parameters values to the standard nominal applied motor rating. (See Chapter 5 Table 5.2-2 Motor constants.)


## FUNCTION

- Motor parameters to be initialized are for motors listed below under V/f control. When the base frequency, rated voltage, and the number of poles are different from those of the listed motors, or when non-Fuji motors or nonstandard motors are used, change the rated current data to that printed on the motor nameplate.

| Motor selection P99/A39/b39/r39 |  | V/f setting |
| :--- | :--- | :--- |
| Data $=0,3$, or 4 | Fuji standard motor 8-series, other | 4 poles, $200 \mathrm{~V} / 50 \mathrm{~Hz}, 400 \mathrm{~V} / 50 \mathrm{~Hz}$ |
| Data $=1$ | HP rating motors | 4 poles, $230 \mathrm{~V} / 60 \mathrm{~Hz}, 460 \mathrm{~V} / 60 \mathrm{~Hz}$ |
| Data $=2$ | Fuji dedicated motors for vector control | 4 poles, individual |
| Data $=5$ | Fuji premium efficiency motors | 4 poles, $200 \mathrm{~V} / 50 \mathrm{~Hz}, 400 \mathrm{~V} / 50 \mathrm{~Hz}$ |
| Data $=20$ | Other, synchronous motors | 6 poles, individual |
| Data 21 to 23 | Fuji synchronous motors | 6 poles, individual |

Data can only be set to 20 to 23 with P99.
Note
By changing P02 with the keypad, take into account that the P02 data automatically updates data of P03, P05 to P23, P30, P40 to P90, and H46. Similarly, when accessing function code A16/b16/r16 for motor 2 to 4 , data of related function codes for each are automatically updated.

The function codes initialized by performing motor constant initialization are as follows.

| Motor <br> selection | Motor 1 | Motor 2 | Motor 3 | Motor 4 |
| :--- | :--- | :--- | :--- | :--- |
| Data: 0, 1, 3 <br> to 5 <br> 20 to 23 | F09, F11, P01, P03, <br> P05 to P23, P30, P40 <br> to P90, H46, d90 | A05, A07, A15, A17, <br> A19 to A37, A53 to <br> A56 | b05, b07, b15, b17, <br> b19 to b37, b53 to <br> b56 | r05, r07, r15, r17, <br> r19 to r37, r53 to r56 |
| Data: 2 | The above function <br> codes + F04, F05 | The above function <br> codes + A02, A03 | The above function <br> codes + b02, b03 | The above function <br> codes + r02, r03 |

The motor constant initialization relationship is shown in the following diagram. For motor 3 and 4 , replace the $A$ codes below with b and r .


H193, H194
User preference dataset (save, protection)
Related function codes: Initialization of $\mathrm{H02}$ and H 03 data
(initial value selection and target)
The value can be saved in the non-volatile memory in the inverter so that customers may use the setting value changed from the Fuji Electric standard factory default value as the initial value for inverter initialization.

The setting value saved and protected here can be selected as the user preference dataset for initialization with function code H 03 . When this function is used, set H 02 data $=1$.

If initialization is performed without saved/protected setting data, it is initialized to the Fuji Electric standard factory default regardless of the H 02 value.

For data initialization, refer to function codes H 02 and H 03 .
To change the data of function codes H02, H193 and H194, it is necessary to operate double keys " sioa key + -key".

To save the user setting value, set 1 (saved as the user preference dataset) to function code H 02 in advance. In addition, function code H 194 must be set to 0 (save enable).

| H02 data | H194 data | Function when 1 is set to H193 |
| :---: | :--- | :--- |
| 0 | Optional | User setting value is not saved. |
| 1 | 0: Save enable | User setting value is saved. |
|  | 1: Protected (save disable) | User setting value is not saved. |

User preference dataset save procedures
(1) Set all function codes and determine the user setting value for initialization.
(2) Set $\mathrm{H} 02=1$ and $\mathrm{H} 194=0$.
(3) Set $\mathrm{H} 193=1$. The user setting value is saved.
(4) Set $\mathrm{H} 194=1$. The user setting value is protected.

When the setting value of the function code has already saved by H 193 and the step of H 193 is repeated again, the saved data is overwritten. Be careful for error operation. To prevent overwriting by error, it is recommended to protect the data with H194 data=1 after saving.

Auto－reset（Times and reset interval）

H04 and H05 specify the auto－reset function that makes the inverter automatically attempt to reset the tripped state and restart without issuing an alarm output（for any alarm）even if any protective function subject to reset is activated and the inverter enters the forced－to－stop state（tripped state）．If the protective function is activated in excess of the times specified by H04，the inverter will issue an alarm output（for any alarm）and not attempt to auto－reset the tripped state．

Listed below are the protective functions subject to auto－reset．

| Protective function | LED monitor displays： | Protective function | LED monitor displays： |
| :---: | :---: | :---: | :---: |
| Overcurrent protection |  | Breaking resistor overheat | 回年 |
| Overvoltage protection | Aiol | Motor overload |  |
| Cooling fin overheat | 成i | Inverter overload | ［iil |
| Inverter internal overheat | 困少 | Step－out／magnetic pole position detection failure | Era |
| Motor overheat | ロッザ | Charging resistor overheat | 8ifig |

## Number of reset times（H04）

H04 specifies the number of reset times for the inverter to automatically attempt to escape the tripped state．When H04 $=0$ ，the auto－reset function will not be activated．
－Data setting range： 0 （Disable）， 1 to 20 （times）

## $\triangle C A U T I O N$

If the inverter stops due to a trip by selecting the retry function，it may automatically restart，and the motor may rotate depending on the cause of the trip．Design machines in such a way as to ensure the safety of the human body and surrounding area even when operation is resumed．

## Failure to observe this could result in an accident．

Reset interval（H05）
－Data setting range： 0.5 to 20.0 （s）

H05 specifies the reset interval time between the time when the inverter enters the tripped state and the time when it issues the reset command to attempt to auto－reset the state．Refer to＂Operation timing scheme＂below．
＜Operation timing scheme＞
－In the figure below，normal operation restarts in the 4－th retry．


- If the retry count exceeds 3 times $(\mathrm{H} 04=3)$, and an integrated alarm is output

- The auto-reset operation can be monitored from the external equipment by assigning the digital output signal TRY to any of the programmable, output terminals [Y1] to [Y4], [Y5A/C] or [30A/B/C]. Set function code E20 to E24 or E27 to "26" (during "TRY" retry operation).


## H06

Cooling fan ON-OFF control
To prolong the service life of the cooling fan and reduce fan noise during running, the cooling fan stops when the temperature inside the inverter drops below a certain level while the inverter stops.
H06 specifies whether to keep running the cooling fan all the time or to enable ON/OFF control.

| H06 data | Function |
| :---: | :--- |
| 0 | Disable (normal operation) (factory default) |
| 1 | Enable (ON/OFF controllable) |

## Cooling fan ON-OFF control "FAN" assignment (Function code E20 to E24, E27 data = 25)

With the cooling fan ON/OFF control enabled ( $\mathrm{H} 06=1$ ), this output signal is ON when the cooling fan is in operation, and OFF when it is stopped. This signal can be used to make the cooling system of peripheral equipment interlocked for an ON/OFF control.

## H07

Curve acceleration/deceleration settings are described in detail in the function code F 07 section.

## H08 <br> Rotation direction restriction

H08 inhibits the motor from running in an unexpected rotational direction due to miss-operation of run commands, miss-polarization of frequency commands, or other mistakes.

| H08 data | Function |
| :---: | :--- |
| 0 | Disable |
| 1 | Enable (reverse rotation inhibited) |
| 2 | Enable (Forward rotation inhibited) |

Under sensorless vector control, the motor may rotate a little in the direction other than that specified due to an error in the estimated speed due to a motor constant error.

H09, d67

## Starting characteristic (Auto search mode)

Related function codes: H49 (Starting mode, auto search delay time 1) H46 (Starting mode, auto search delay time 2)

Specify the mode for auto search without stopping the idling motor. The mode can be specified for each restart after momentary power failure and each start of normal operation. The starting mode can be switched by assigning "STM" to a general-purpose digital input signal. If it is not assigned, "STM" is regarded to be OFF. (Data = 26)

- H09/d67 (Starting mode, auto search) and terminal command "STM" ("Enable auto search for idling motor speed at starting")
The combination of starting characteristics H 09 and d67 data and the "STM" signal determines whether to perform the auto search when starting.

| Function code | Drive control | Factory default |
| :---: | :---: | :---: |
| H09 | V/f control (F42 = 0 to 2) | 0: Disable |
| d 67 | Sensorless vector control (F42 =5, 15) | 1: Enable (Only at restart <br> after momentary power <br> failure) |


| H09/d67 data | Starting characteristic <br> selection "STM" | Restart mode after momentary <br> power failure (F14 = 3 to 5) | For normal startup |
| :--- | :---: | :---: | :---: |
|  |  | Auto search disable | Auto search disable |
| 0: Disable | OFF | Auto search enable | Auto search disable |
| 1: Enable | OFF | Auto search enable | Auto search enable |
| 2: Enable | ON | Auto search enable | Auto search enable |
| - |  |  |  |

When "STM" is ON, auto search for idling motor speed at starting is enabled regardless of the H09 setting. ( $\mathbb{C l}$ Function codes E01 to E09 data = 26)

By setting 15 for F42, it is automatically set to 2 : This is set to enable (At normal start and at restart after momentary power failure).

## Auto search for idling motor speed to follow

Starting the inverter (with a run command ON, BX OFF, auto-reset, etc.) with STM being ON searches for the idling motor speed for a maximum of 1.2 seconds to run the idling motor without stopping it. After completion of the auto search, the inverter accelerates the motor up to the reference frequency according to the frequency command and the preset acceleration time.


## Starting mode (auto search delay time 1) (H49)

- Data setting range: 0.0 to 10.0 (s)

Auto search does not function normally when performed with the residual voltage remaining in the motor. Accordingly, time to allow the residual voltage to disappear must be ensured.
When operation is started by turning a run command ON, auto search is started after the period specified with the starting mode (auto search delay time 1) (H49) has elapsed. When switching between two inverters for controlling one motor and if the motor is coasting to stop at the time of switching to start by auto search, by specifying H49 eliminates the need for timing the run command.

## Starting mode (auto search delay time 2) (H46)

- Data setting range: 0.1 to 20.0 (s)

At the restart after a momentary power failure, at the start by turning the terminal command "BX" ("Coast to a stop") OFF and ON, or at the restart by auto-reset, the inverter applies the delay time specified by H46. Even if starting conditions are satisfied, the inverter does not start unless auto-search delay time elapses after inverter goes into OFF state. The inverter starts after elapse of auto search delay time.


Under auto search control, the inverter searches the motor speed with the voltage applied at the motor start and the current flowing in the motor, based on the model built with the motor parameters. Therefore, the search is greatly influenced by the residual voltage in the motor.

H46 is available for motor 1 only. At factory shipment, H 46 data is preset to a correct value according to the motor capacity for the general-purpose motor, and basically there is no need to modify the data.

Depending on the motor characteristics, however, it may take time for residual voltage to disappear (due to the secondary thermal time constant of the motor). In such a case, the inverter starts the motor with the residual voltage remaining, which will cause an error in the speed search and may result in occurrence of an inrush current or an overvoltage alarm.

If it happens, increase the value of H 46 data and remove the influence of residual voltage.
(If possible, it is recommended to set the value around two times as large as the factory default value allowing a margin.)

Note

- Be sure to auto-tune the inverter preceding the start of auto search for the idling motor speed.
- When the estimated speed exceeds the maximum frequency or the upper limit frequency, the inverter disables auto search and starts running the motor with the maximum frequency or the upper limit frequency, whichever is lower.
- During auto search, if an overcurrent or overvoltage trip occurs, the inverter restarts the suspended auto search.
- If the inverter starts when the motor is idling with auto search disabled, an OC, etc. may occur, and the inverter may be unable to start.

[^25]H11

## Deceleration mode

H11 specifies the deceleration mode to be applied when a run command is turned OFF.

| H11 data | Enable |
| :---: | :--- |
| 0 | Normal deceleration |
| 1 | The inverter immediately shuts down its output, so the motor stops according to the <br> inertia of the motor and machinery (load) and their kinetic energy losses. |

When reducing the reference frequency, the inverter decelerates the motor according to the deceleration commands even if $\mathrm{H} 11=1$ (Coast to stop).

## H12

Instantaneous overcurrent limiting (Mode selection)
(Refer to F43)
Refer to function code F43 and F44 sections for details on the instantaneous overcurrent limit (operation selection).

## H13, H14 <br> H15, H16

Restart mode after momentary power failure (Restart time, frequency fall rate)
Restart mode after momentary power failure (Continue to run level, allowable
momentary power failure time)
(Refer to F14)
For how to set these function codes (Restart time, Frequency fall rate, Continue to run level and Allowable momentary power failure time), refer to the description of function code F14.

## H18

Torque control (Mode selection)
Related function codes: F40, F41 (Torque limit 1-1, 1-2) d32, d33 (Speed limits / Over speed level 1 and 2)

When vector control (sensorless, with speed sensor) is selected, the inverter can control the motor-generating torque according to a torque command sent from external sources. Under torque control, the speed is automatically calculated based on the torque command, and output from the inverter.


Fig. 5.3-29 Block diagram of torque control
The following functions are disabled during torque control.
Speed control based on speed command, auto energy-saving operation, jogging operation, switching to commercial power supply, DC braking, PID control, pre-excitation, servo lock, droop, pattern operation, overload prevention control, anti-regenerative control, brake signals, position control

## Torque control (Operation selection) (H18)

H18 specifies whether to enable or disable the torque control. Enabling the torque control offers two choices: with torque current command and with torque command.

| H 18 data | Available control |
| :---: | :--- |
| 0 | Disable (Speed control) |
| 2 | Enable (Torque control with torque current command) |
| 3 | Enable (Torque control with torque command) |

## Torque command

Torque commands can be given as analog voltage input (via terminals [12] and [C1](V2 function)) or analog current input (via terminal [C1](C1 function)), or via the communications link (communication-dedicated function codes S02 and S03). To use analog voltage/current inputs, it is necessary to set E61 (for terminal [12]), E62 (for terminal [C1] (C1 function)), E63 (for terminal [V2]), or E66 (for terminal [C1] (V3 function)) data to "10" or "11."

| Input | Command form | Function code setting | Specification |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { Terminal [12] } \\ & (-10 \mathrm{~V} \text { to } 10 \mathrm{~V}) \end{aligned}$ | Torque command | E61 $=10$ | Motor rated torque: $\pm 100 \% / \pm 10 \mathrm{~V}$ |
|  | Torque current command | E61 $=11$ | Motor rated torque current: $100 \% / \pm 10 \mathrm{~V}$ |
| $\begin{aligned} & \text { Terminal [V2] } \\ & (-10 \mathrm{~V} \text { to } 10 \mathrm{~V}) \end{aligned}$ | Torque command | $\mathrm{E} 63=10$ | Motor rated torque: $\pm 100 \% / \pm 10 \mathrm{~V}$ |
|  | Torque current command | $\mathrm{E} 63=11$ | Motor rated torque current: $100 \% / \pm 10 \mathrm{~V}$ |
| Terminal [C1] (C1 function) (4 to 20 mA ) | Torque command | $\mathrm{E} 62=10$ | Motor rated torque: 100\% / 20 mA |
|  | Torque current command | E62 $=11$ | Motor rated torque current: 100\% / 20 mA |
| $\begin{aligned} & \text { Terminal [C1] (V3 } \\ & \text { function) } \\ & (-10 \mathrm{~V} \text { to } 10 \mathrm{~V}) \end{aligned}$ | Torque command | $E 66=10$ | Motor rated torque: $\pm 100 \% / \pm 10 \mathrm{~V}$ |
|  | Torque current command | $\mathrm{E} 66=11$ | Motor rated torque current: $100 \% / \pm 10 \mathrm{~V}$ |
| $\begin{gathered} \text { S02 } \\ (-327.68 \text { to } 327.67 \%) \end{gathered}$ | Torque current command | - | Motor rated torque current: $\pm 100.00 \%$ / $\pm 10000$ |
| $\begin{gathered} \text { S03 } \\ (-327.68 \text { to } 327.67 \%) \end{gathered}$ | Torque current command | - | Motor rated torque current: $\pm 100.00 \%$ / $\pm 10000$ |

## Cancel torque control "Hz/TRQ" (E01 to E09, data = 23)

When torque control is enabled ( $\mathrm{H} 18=2$ or 3 ), assigning the terminal command " $\mathrm{Hz} / \mathrm{TRQ}$ " (Cancel torque control) to any of the general-purpose digital input terminals (data $=23$ ) enables switching between speed control and torque control.

| Cancel torque control signal "Hz/TRQ" | Enable |
| :---: | :--- |
| ON | Cancel torque control (Enable speed control) |
| OFF | Enable torque control |

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
$J$ Codes
d Codes
U Codes
y Codes
K Codes

## Speed limits 1 and 2 (d32, d33)

Torque control mode controls the motor-generating torque directly, not the speed. The speed is determined secondarily by torque of the load, inertia of the machinery, and other factors. To prevent a dangerous situation, therefore, the speed limit functions ( d 32 and d 33 ) are provided inside the inverter.

The speed limit levels can be set to forward or reverse individually.

- Forward speed limit level = Maximum frequency 1 (F03) x Speed limit 1 (d32) (\%)
- Reverse speed limit level = Maximum frequency 1 (F03) x Speed limit 2 (d33) (\%)


#### Abstract

Note If switching between torque control and speed control, ensure that $\mathrm{d} 35 \neq 999$. If the overspeed level is not set, set to $120 \%$. If d35 $=999$, the overspeed level setting will be 1 or 2 under speed control, and an overspeed OS will occur at $120 \%$ of the level set at d32 and d33.


## Speed limiting "S-LIM" (E20 to E24, E27, data = 131)

If the motor speed reaches the speed limit value during torque control ( $\mathrm{H} 18=2,3$ ), "S-LIM" will turn ON during speed limiting. Speed limiting (when H18 $\neq 2$ or 3 , or when torque control cancel signal "Hz/TRQ" $=\mathrm{ON}$ ) will be disabled (OFF).

## - Analog speed limit value (E61, E62, E63, and E66)

You can also enter from the analog input the speed limit value. Refer to E61, E62, E63, and E66 for details.

- Forward speed limit level = Maximum frequency 1 (F03) x FWD speed limit value (analog input) (\%)
- Reverse speed limit level = Maximum frequency 1 (F03) x REV speed limit value (analog input) (\%)


## - Over speed detection level ( $120 \%$ of the specified speed limit levels)

If a regenerative load (which is not generated usually) is generated under droop control or function codes are incorrectly configured, then the motor may rotate at an unintended high speed. To protect the machinery, it is possible to specify the overspeed level with d32 and d33 as follows.

- Forward overspeed level = Maximum frequency (F03/A01/b01/r01) $\times$ Speed limit 1 (d32) $\times 120$ (\%)
- Reverse overspeed level = Maximum frequency (F03/A01/b01/r01) $\times$ Speed limit 2 (d33) $\times 120$ (\%)

When performing speed control, d32 and d33 are used as the overspeed ( 10 ) detection level for the forward rotation side and reverse rotation side, respectively. If switching between torque control and speed control, use d35 if an overspeed protection alarm (

## Note

## Running/stopping the motor

Under torque control, the inverter does not control the speed, so it does not perform acceleration or deceleration by soft-start and stop (acceleration/deceleration time) at the time of startup and stop. Turning ON a run command starts the inverter to run and output the commanded torque. Turning it OFF stops the inverter so that the motor coasts to a stop.

When starting torque control under sensorless vector control, the starting operation will differ depending on whether function code (d67) auto search is enabled or disabled.

| d67 data | Enable |
| :--- | :--- |
| 0: Disable <br> 1: Enable (Only at restart after <br> momentary power failure) | When starting up, the motor starts from zero <br> frequency. <br> Acceleration starts based on the torque command. <br> When starting up, be sure to use with an application <br> that involves the motor stopping. |
| 2: Enable (At normal start and at <br> restart after momentary power <br> failure) | When starting up, auto search is performed and <br> after finding the motor as it rotates, torque control <br> begins. |


| H26, A66 <br> b66, r66 | Thermistor (for motor) (Operation selection)  <br> H27, A67 <br> 67, r67 Thermistor (for motor) (Operation level) l |
| :--- | :--- |

These function codes specify the PTC (Positive Temperature Coefficient) thermistor embedded in the motor. The thermistor is used to protect the motor from overheating or output an alarm signal. If switching the motor, set the A, $b$, or $r$ function code corresponding to the motor to be selected.

- Thermistor (Operation selection) (H26 (A66, b66, r66))

H 26 selects the function operation mode (protection or alarm) for the PTC thermistor as shown below.

| H26, A66, b66, r66 data | Enable |
| :---: | :---: |
| 0 | Disable (H26 factory default) |
| 1 | When the voltage sensed by PTC thermistor exceeds the detection level, motor protective function (alarm stop state. |
| 2 | When the voltage sensed by the PTC thermistor exceeds the detection level, a motor alarm signal is output but the inverter continues running. <br> You need to assign the "Motor overheat detected by thermistor" signal ("THM") to one of the digital output terminals beforehand, by which a temperature alarm condition is indicated to the peripheral equipment (E20 to E24 and E27, data $=56$ ). |
| 3 | Set if connecting the NTC thermistor built into dedicated Fuji motors for vector control (VG motor). <br> This is used to detect the motor temperature and for control. <br> Furthermore, motor protection (alarm and exceeds the protection level, and the inverter stops due to the alarm. |
| $\begin{gathered} 100 \\ (\mathrm{~A} 66, \mathrm{~b} 66, \mathrm{r} 66 \text { only) } \end{gathered}$ | Based on H26 (factory default) <br> If the PTC thermistor is selected by setting H26 to 1 or 2 , the PTC thermistor detection voltage is also monitored when motor 2 to 4 is selected to provide protection. <br> When the NTC thermistor $(\mathrm{H} 26=3)$ is selected, only motor 1 runs, and motors 2 to 4 are disabled. |

If using a thermistor for motor 2 to 4 , operation function codes should be set individually for motor 2 (A66), motor 3 (b66), and motor 4 (r66). However, operation will be as follows if the A66, b66, and r66 factory defaults (data 100: based on H26) are set.

## FUNCTION

## Thermistor (for motor) (level) (H27)

H 27 specifies the detection level (expressed in voltage) for the temperature sensed by the PTC thermistor.

- Data setting range: 0.00 to $5.00(\mathrm{~V})$

The alarm temperature at which the overheat protection becomes activated depends on the characteristics of the PTC thermistor. The internal resistance of the thermistor will significantly change at the alarm temperature. The detection level (voltage) is specified based on the change of the internal resistance.


Suppose that the internal resistance of the PTC thermistor at the alarm temperature is Rp , the detection level (voltage) Vv 2 is calculated by the expression below. Set the value of Vv 2 to function code H 27 .

$$
\mathrm{V}_{\mathrm{v} 2}=\frac{\mathrm{Rp}}{27000+\mathrm{Rp}} \times 10.5(\mathrm{~V})
$$

Connect the PTC/NTC thermistor as shown below. The voltage obtained by dividing the input voltage on terminal [V2] with a set of internal resistors is compared with the detection level voltage specified by H27.


When using the terminal [V2] for PTC/NTC thermistor input, it is necessary to change wth switch (SW5) on the control PCB. Refer to Chapter 2 "2.2.7 Operating slide switches". for details.

## H28

## Droop control

In a system in which two or more motors drive single machinery, any speed gap between inverter-driven motors results in some load unbalance between motors. Droop control allows each inverter to drive the motor with the speed droop characteristic for increasing its load, eliminating such kind of load unbalance. This function is disabled while the starting frequency is maintained, and during deceleration.

- Data setting range: - 60.0 to $0.0(\mathrm{~Hz})$, ( 0.0 : Disable)

[^26]

Select droop "DROOP" (Function code E01 to E09, data = 76)
The terminal command "DROOP" toggles droop control on and off.

| Terminal command "DROOP" | Droop control |
| :---: | :---: |
| ON | Enable |
| OFF | Disable |

Note

## To use droop control, be sure to auto-tune the inverter for the motor.

Under V/f control, to prevent the inverter from tripping even at an abrupt change in load, droop control applies the acceleration/deceleration time to the frequency obtained as a result of droop control. This may delay reflection of the frequency compensated during droop control on the motor speed, thereby running the inverter as if droop control is disabled. Under sensorless vector control and vector control with sensor, the inverter is equipped with a current control system, and does not trip even following an abrupt change in load, ensuring that acceleration and deceleration time are not affected. Consequently, load balance can be achieved with droop control even during acceleration and deceleration.

## FUNCTION



```
Link function (Operation selection)
Link function (Actual terminal operation selection)
```


## Related function codes: y94 bus function (Operation command source selection) y98 bus function (Operation selection)

Using the RS-485 communications link, built-in CAN communications link or fieldbus (option) allows you to issue frequency settings and run operation commands (run stop/general-purpose digital input) from a computer or PLC at a remote location, as well as monitor the inverter running information and the function code data. It is possible to sets the source that specifies the frequency settings and run operation commands with $\mathrm{H} 30, \mathrm{y} 94$, and y98. H30 selects RS-485 communication, and y94 and y98 select the fieldbus setting procedure.


Table 5.3-11 Command sources selectable

| Command source | Content |
| :--- | :--- |
| Inverter itself | Sources except RS-485 communications link and fieldbus <br> Frequency setting: Specified by F01/C30, or multistep frequency command <br> Run operation command: Keypad, terminal block, etc. set at F02 |
| Via RS-485 communications link <br> (port 1) | Via RJ-45 connector for keypad connection |
| Via RS-485 communications link <br> (port 2) | Via terminal block ([DX+], [DX-], [SD]) |
| Via various types of field Bus <br> cards (Option) | Via fieldbus (DeviceNet, PROFIBUS DP, etc.) |

Table 5.3-12 Command sources specified by H30 (Communications link function, Mode selection)

| H30 data | Frequency setting | Run operation command: |
| :---: | :--- | :--- |
| 0 | Inverter itself (F01/C30) | Inverter itself (F02) |
| 1 | RS-485 communications link (port 1) | Inverter itself (F02) |
| 2 | Inverter itself (F01/C30) | RS-485 communications link (port 1) |
| 3 | RS-485 communications link (port 1) | RS-485 communications link (port 1) |
| 4 | RS-485 communications link (port 2) | Inverter itself (F02) |
| 5 | RS-485 communications link (port 2) | RS-485 communications link (port 1) |
| 6 | Inverter itself (F01/C30) | RS-485 communications link (port 2) |
| 7 | RS-485 communications link (port 1) | RS-485 communications link (port 2) |
| 8 | RS-485 communications link (port 2) | RS-485 communications link (port 2) |

Table 5.3-13 Command sources specified by y98 (Bus link function, Mode selection)

| y98 data | Frequency setting | Run operation command: |
| :---: | :--- | :--- |
| 0 | Follow H30 data | Follow H30 data |
| 1 | Via fieldbus | Follow H30 data |
| 2 | Follow H30 data | Fieldbus *1 |
| 3 | Via fieldbus | Fieldbus *1 |

*1 Of the run operation commands, if specifying run/stop commands ([FWD], [REV]) via actual terminals, and other digital input commands via a fieldbus, set F02 $=1$ and y94 $=1$.

Table 5.3-14 H30 and y98 settings by combination of sources

|  |  | Frequency setting |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Inverter itself | Via RS-485 communications link port 1 | Via RS-485 communications link port 2 | Via fieldbus (option) |
|  | Inverter itself | $\begin{aligned} & \mathrm{H} 30=0 \\ & \mathrm{y} 98=0 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=1 \\ & \mathrm{y} 98=0 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=4 \\ & \mathrm{y} 98=0 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=0(1,4) \\ & \mathrm{y} 98=1 \end{aligned}$ |
|  | Via RS-485 communications link (port 1) | $\begin{aligned} & H 30=2 \\ & y 98=0 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=3 \\ & \mathrm{y} 98=0 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=5 \\ & \mathrm{y} 98=0 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=2(3,5) \\ & \mathrm{y} 98=1 \end{aligned}$ |
|  | Via RS-485 communications link (port 2) | $\begin{aligned} & \mathrm{H} 30=6 \\ & \mathrm{y} 98=0 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=7 \\ & \mathrm{y} 98=0 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=8 \\ & \mathrm{y} 98=0 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=6(7,8) \\ & \mathrm{y} 98=1 \end{aligned}$ |
|  | Via various types of field Bus cards (Option) | $\begin{aligned} & \mathrm{H} 30=0(2,6) \\ & \mathrm{y} 98=2 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=1(3,7) \\ & \mathrm{y} 98=2 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=4(5,8) \\ & \mathrm{y} 98=2 \end{aligned}$ | $\begin{aligned} & \mathrm{H} 30=0(1 \text { to } 8) \\ & \mathrm{y} 98=3 \end{aligned}$ |

[1] For details, refer to the RS-485 Communication User's Manual or the Various types of field Bus cards (Option) Instruction Manual.

- When the terminal command "LE" ("Select link operation (RS-485, BUS option)") is assigned to a digital input terminal, turning "LE" ON makes the settings of H30 and y98 enabled. (When disabled, those settings are disabled so that both frequency settings and run operation commands specified from the inverter itself take control.)
(Function codes E01 to E09, data = 24)
No LE assignment is functionally equivalent to the "LE" being ON.


## FUNCTION

## H31: Link function (Actual terminal command operation selection)

By selecting RS-485 or fieldbus for the run command source with H 30 or y 98 , the majority of digital input terminals on the inverter actual terminal block are disabled. By setting this function code to 1 , digital input terminals with the link function and terminal [X1] to [X9] on the actual terminal block can be used together.

| H31 data | Actual terminal command |
| :---: | :---: |
| 0 (factory default) | Only some actual terminal commands are enabled when performing <br> run command source communication. |
| 1 | All actual terminal commands are enabled when performing run <br> command source communication. |

The same operation is performed for the following digital input terminals, regardless of the function code setting. For digital input terminal functions other than those below, by setting 1 for this function code, use in combination with terminal [X1] to [X9] on the actual terminal block is also possible. Refer to section 5.1 in the "RS-485 Communication User's Manual" for details.

| Terminal <br> command <br> assigned <br> No. | Run command <br> Symbol | Name | Command via <br> communications <br> link | Command from <br> actual terminal |
| :---: | :--- | :--- | :--- | :--- |
| 24 | "LE" | Link operation selection | Disable | Enable |
| 35 | "LOC" | Local (TP) command selection | Disable | Enable |
| 48 | "PIN" | Pulse train input | Disable | Enable |
| 94 | "FJOG" | Jogging forward rotation/stop <br> command | Enable | Disable |
| 95 | "RJOG" | Jogging reverse rotation/stop <br> command | Enable | Disable |
| 98 | "FWD" | Forward rotation/stop command | Enable | Disable |
| 99 | "REV" | Reverse rotation/stop command | Enable | Disable |
| 111 | "STOP-T" | STOP-T terminal | Disable | Enable |

## y94: Bus function (Operation command source selection)

Bus command enable/disable is selected all at once with a run operation command (operation stop/digital input) with y98 and H30, but if setting operation stop ([FWD], [REV]) to commands with actual terminals, set F02 = 1 and $\mathrm{y} 94=1$.


## Life prediction function

The inverter has the life prediction function for some parts which measures the discharging time or counts the voltage applied time, etc. The function allows you to monitor the current lifetime state on the LED monitor and judge whether those parts are approaching the end of their service life. The life prediction function can also issue early warning signals if the lifetime alarm command LIFE is assigned to any of the digital output terminals by any of E20 to E24 and E27. By assigning warnings with H81, LiF appears on the keypad, and warning "L-ALM" is output to notify the user.

The predicted values should be used only as a guide since the actual service life is influenced by the surrounding temperature and other usage environments.

| Object of life prediction | Prediction function | End-of-life criteria | Inspection interval | On the LED monitor |
| :---: | :---: | :---: | :---: | :---: |
| DC link bus capacitor | Calculating the capacitance of DC link bus capacitor <br> Measures the discharging time of the DC link bus capacitor when the main power is shut down and calculates the capacitance. | $85 \%$ or lower than initial capacitance at time of shipping <br> (See "[ 1] Measuring the capacitance of DC link bus capacitor in comparison with initial one at shipment" on page 5-233.) | At periodic inspection H98 bit3 $=0$ | 5.05 <br> (Rated capacity) |
|  |  | $85 \%$ or lower of the reference capacitance under ordinary operating conditions at the user site <br> (See "[ 2 ] Measuring the capacitance of DC link bus capacitor under ordinary operating conditions at power shutdown" on page 5-234.) | During ordinary operation H98 bit3 = 1 | 5 - 05 (Rated capacity) |
|  | ON-time counting of DC link bus capacitor <br> Counts the time elapsed when the voltage is applied to the DC link bus capacitor, while correcting it according to the capacitance measured above. | When 87,600 hours (10 years) of operation has been exceeded | During ordinary operation | 5.26 <br> (Elapsed time) $5 \mathrm{~S}^{7 \prime}$ <br> (Remaining hours) |
| Electrolytic capacitors on printed circuit boards | Counts the time elapsed when the voltage is applied to the capacitors, while correcting it according to the surrounding temperature. | When 87,600 hours (10 years) of operation has been exceeded | During ordinary operation | 5.06 (Cumulative run time) |
| Cooling fans | Counts the run time of the cooling fans. | When 87,600 hours (10 years) of operation has been exceeded | During ordinary operation | 5.77 <br> (Cumulative run time) |

## FUNCTION

## Capacitance of DC link bus capacitor (H42)

## Calculating the capacitance of DC link bus capacitor

- The discharging time of the DC link bus capacitor depends largely on the inverter's internal load conditions, e.g. options attached or ON/OFF of digital I/O signals. If actual load conditions are so different from the ones at which the initial/reference capacitance is measured that the measurement result falls out of the accuracy level required, then the inverter does not perform measuring.
- The capacitance measuring conditions at shipment are extremely restricted, e.g., all input terminals being OFF in order to stabilize the load and measure the capacitance accurately. Those conditions are, therefore, different from the actual operating conditions in almost all cases. If the actual operating conditions are the same as those at shipment, shutting down the inverter power automatically measures the discharging time; however, if they are different, no automatic measurement is performed. To perform it, put those conditions back to the factory default ones and shut down the inverter. For the reference capacitance setup procedure, see "[ 1 ] Measuring the capacitance of DC link bus capacitor in comparison with initial one at shipment" on page 5-233.
- To measure the capacitance of the DC link bus capacitor under ordinary operating conditions when the power is turned OFF, it is necessary to set up the load conditions for ordinary operation and measure the reference capacitance (initial setting) when the inverter is introduced. For the reference capacitance setup procedure, see "[ 2 ] Measuring the capacitance of DC link bus capacitor under ordinary operating conditions at power shutdown" on page 5-234.

Setting bit 3 of H98 data to 0 restores the inverter to the measurement in comparison with the initial capacitance measured at shipment.

When the inverter uses an auxiliary control power input, the load conditions widely differ so that the discharging time cannot be accurately measured. In this case, measuring of the discharging time can be disabled with the function code H 98 (Bit $4=0$ ) for preventing unintended measuring. (For details, refer to H98.)

## ON-time counting of DC link bus capacitor

- In a machine system where the inverter main power is rarely shut down, the inverter does not measure the discharging time. For such an inverter, the ON-time counting is provided. If the capacitance measurement is made, the inverter corrects the ON-time according to the capacitance measured. The ON-time counting result can be represented as "elapsed time" and "remaining time" before the end of life.


## [1] Measuring the capacitance of DC link bus capacitor in comparison with initial one at shipment

When bit 3 of H98 data is 0 , the measuring procedure given below measures the capacitance of DC link bus capacitor in comparison with initial one at shipment when the power is turned OFF. The measuring result can be displayed on the keypad as a ratio (\%) to the initial capacitance.

## -Capacitance measuring procedure

1) To ensure validity in the comparative measurement, put the condition of the inverter back to the state at factory shipment.

- Remove the option card (if already in use) from the inverter.
- In case another inverter is connected via the $D C$ link bus to the $P(+)$ and $N(-)$ terminals of the main circuit, disconnect the wires. It is not required to disconnect the DC reactor (optional), if any.
- Disconnect power wires for the auxiliary input to the control circuit (R0, T0).
- If the standard keypad has been replaced with multi-function keypad TP-A2SW (option) after purchasing the inverter, return to the standard keypad.
- Turn OFF all the digital input signals fed to terminals ([FWD], [REV], and [X1] to [X9]) of the control circuit.
- If a potentiometer is connected to terminal [13], disconnect it.
- If an external apparatus is attached to terminal [PLC], disconnect it.
- Ensure that transistor output signals ([Y1] to [Y4]) and relay output signals ([30A/B/C], [Y5A/C]) will not be turned ON.
- Disable the RS-485 and built-in CAN communications links.

Note If negative logic is specified for the transistor output and relay output signals, they are considered

- Keep the surrounding temperature within $25 \pm 10^{\circ} \mathrm{C}$.

2) Turn ON the main circuit power.
3) Confirm that the cooling fan is rotating and the inverter is in stopped state.
4) Turn OFF the main circuit power.
5) The inverter automatically starts the measurement of the capacitance of the DC link bus capacitor. Make sure that "...." appears on the LED monitor.

Note
If "...." does not appear on the LED monitor, the measurement has not started. Check the conditions listed in 1).
6) After "...." has disappeared from the LED monitor, turn ON the main circuit power again.
7) Select Menu \#5 "Maintenance Information" in Programming mode and note the reading (relative capacitance (\%) of the DC link bus capacitor).

## [2] Measuring the capacitance of DC link bus capacitor under ordinary operating conditions at power shutdown

When bit 3 of H 98 data is 1 , the inverter automatically measures the capacitance of the DC link bus capacitor under ordinary operating conditions when the power is turned OFF. This measurement requires setting up the load conditions for ordinary operation and measuring the reference capacitance when the inverter is introduced to the practical operation, using the setup procedure given below.

| Function code | Name | Content |
| :---: | :--- | :--- |
| H42 | Capacitance of DC link bus <br> capacitor | - Capacitance of DC link bus capacitor (measured <br> value) <br> - Start of initial capacitance measuring mode under <br> ordinary operating conditions ( 0 ) |
| - Measurement failure (1) |  |  |

When replacing parts, clear or modify the H 42 and H 47 data. For details, refer to the maintenance related documents.


1) Set function code H 98 (Protection/maintenance function) to enable the user to specify the judgment criteria for the service life of the DC link bus capacitor (Bit $3=1$ ) (refer to function code H98).
2) Turn OFF all run commands.
3) Make the inverter ready to be turned OFF under ordinary operating conditions.
4) Set both function codes H42 (Capacitance of DC link bus capacitor) and H47 (Initial capacitance of DC link bus capacitor) to "0".
5) Turn OFF the inverter, and the following operations are automatically performed.

The inverter measures the discharging time of the DC link bus capacitor and saves the result in function code H47 (Initial capacitance of DC link bus capacitor).

The conditions under which the measurement has been conducted will be automatically collected and saved.
During the measurement, " . . . " will appear on the LED monitor.
6) Turn ON the inverter again.

Confirm that H42 (Capacitance of DC link bus capacitor) and H47 (Initial capacitance of DC link bus capacitor) hold right values. Shift to Menu \#5 "Maintenance Information" and confirm that the relative capacitance (ratio to full capacitance) is $100 \%$.

If the measurement has failed, " 1 " is entered into both H 42 and H 47 . Remove the factor of the failure and conduct the measurement again.

Hereafter, each time the inverter is turned OFF, it automatically measures the discharging time of the DC link bus capacitor if the above conditions are met. Periodically check the relative capacitance of the DC link bus capacitor (\%) with Menu \#5 "Maintenance Information" in Programming mode.

[^27]- Cumulative run time of capacitors on printed circuit boards (H48)

| Function code | Name | Content |
| :---: | :--- | :--- |
| H48 | Cumulative run time of <br> capacitors on printed circuit <br> boards | Displays the cumulative run time for the capacitor on the <br> PCB . <br> - Data setting range: 0 to 99990 hours (10 hour <br> increments) |

When replacing capacitors on printed circuit boards, clearing or modifying H 48 data is required. For details, refer to the maintenance related documents.

- Cumulative run time of cooling fan (H43)

| Function code | Name | Content |
| :---: | :--- | :--- |
| H 43 | Cumulative run time of <br> cooling fan | Displays the cumulative run time for the cooling fan. <br> - Data setting range: 0 to 99990 hours (10 hour <br> increments) |

When replacing the cooling fan, clearing or modifying H 43 data is required. For details, refer to the maintenance related documents.


Counts the number of inverter starts and displays it up to 65535 times. Check the displayed number on the maintenance screen of the keypad, and use it as a guide for maintenance timing for parts such as belts. To start the counting over again, e.g. after a belt replacement, set the H 44 data to " 0 ". By assigning warnings with H 81 , and the count becomes zero, CnT appears on the keypad, and warning "L-ALM" is output to notify the user.


H45 causes the inverter to generate a mock alarm in order to check whether external sequences function correctly at the time of machine setup. Setting the H45 data to "1" displays mock alarm Err on the LED monitor. It also issues alarm output (for any alarm) "ALM" (if assigned to a digital output terminal by any of E20 to E24, and E27).

Accessing the H 45 data requires simultaneous keying of the soop key $+\uparrow$ key. After that, the H45 data automatically reverts to " 0 ," allowing you to reset the alarm.
Same as other alarms that could occur when running the inverter, the inverter saves mock alarm data, enabling you to confirm the mock alarm status.

To clear the mock alarm data, use H97. (Accessing the H97 data requires simultaneous keying of the sroo key + ( . key.) H97 data automatically returns to " 0 " after clearing the alarm data.

> Tip A mock alarm can be issued also by simultaneous keying of the key + खere key on the keypad for 5 seconds or more.
$\square$ Starting mode (Auto search delay time 2)
(Refer to H09)
Refer to the function code H 09 section for details on the starting characteristics (auto search wait time 2).


> Initial capacitance of DC link bus capacitor, Cumulative run time of capacitors on printed circuit boards
> (Refer to H42)

For details, refer to the description of H 42 .

For details, refer to the description of H 09 .

| H50, H51 <br> H52, H53 | Non-linear V/f 1 (Frequency and voltage) <br> Non-linear V/f 2 (Frequency and voltage) |
| :--- | :--- |
|  | (Refer to F04) |

For details, refer to the description of F04.

| H54, H55 |
| :--- |
| H56 |
| H57 to H60 |

> Acceleration/Deceleration time (Jogging) Deceleration time for forced stop 1st/2nd S-curve acceleration/deceleration range
(Refer to F07)
H56

For details, refer to the description of F07.
H61 UP/DOWN control (Initial frequency setting) (Refer to F01)

For details, refer to the description of F01.

| H63 | Low limiter (Mode selection) |
| :--- | :--- |

For details, refer to the description of F15.
$\square$ Low limiter (Lower limiting frequency)
H64 specifies the lower limit of frequency to be applied when the current limiter, torque limiter, or overload prevention control is activated. Basically, there is no need to modify the default setting.

- Data setting range: 0.0 to $60.0(\mathrm{~Hz})$

| H65, H66 Non-linear V/f 3 (Frequency and voltage) | (Refer to F04) |
| :--- | :--- |

The non-linear V/f pattern setting is described in detail in the function code F04 section.

| H67 Auto energy saving operation (Mode selection) | (Refer to F37) |
| :--- | :--- |

The auto energy-saving operation (mode selection) setting is described in detail in the function code F37 section.

| H68 | Slip compensation 1 (Operating conditions selection) | (Refer to F42) |
| :--- | :--- | :--- |

For details, refer to the description of F42.

## H69

Anti-regenerative control (Operation selection)
H114

## Anti-regenerative control (Operation level)

Related function codes: H76 (Torque limiter) (Frequency rising limit for braking)
Enable the automatic deceleration (anti-regenerative control) with this function code. In the inverter not equipped with a PWM converter or braking unit, if the regenerative energy returned exceeds the inverter's braking capability, an overvoltage trip occurs. Turning digital input "AR-CCL" ON cancels anti-regenerative control.

If anti-regenerative control is selected, the output frequency is controlled to suppress the regenerative energy for avoiding an overvoltage trip.

| H69 <br> LED | Function |  | Control method |
| :---: | :--- | :---: | :---: |
|  | Force-to-stop with actual deceleration time <br> exceeding 3 times the specified one |  |  |
| 0 | Disable anti-regenerative control | - | OFF |
| 2 | Torque limit control | Enable | OFF |
| 3 | DC link bus voltage control | Disable | OFF |
| 4 | Torque limit control | Disable | OFF |
| 5 | DC link bus voltage control | - | OFF |
| Not required | Disable anti-regenerative control | ON |  |

FRENIC-MEGA is equipped with two control modes: torque limiter and DC link bus voltage control.
Understand the features of the respective modes and select the appropriate one.

| Control method | Control operation | Operation mode | Characteristics |
| :--- | :--- | :--- | :--- |
| Torque limiter <br> $($ H69 = 2, 4) | Controls the output frequency <br> so that the braking torque is <br> approximately 0. | Enabled during <br> acceleration, <br> constant speed <br> operation and <br> deceleration. | Features high response and <br> makes less prone to overvoltage <br> trips under impact load. <br> The frequency operation amount <br> can be adjusted with H114. |
| DC link bus <br> voltage control <br> $(H 69=3,5)$ | Controls the output frequency <br> so that the DC link bus <br> voltage is decreased when it <br> exceeds the limit level. | Enabled only during <br> deceleration <br> Disabled during <br> constant speed <br> operation | Regenerative capability of the <br> inverter will be maximum use. <br> Deceleration time will be shorter <br> than the torque limit control. |

## Select droop "AR-CCL" (Function codes E01 to E09, data = 82)

Anti-regenerative control can be canceled with "AR-CCL". When "AR-CCL" is ON, the H69 setting is ignored, and anti-regenerative control is disabled.

- Torque limiter (Frequency rising limit for braking) (H76)
- Data setting range: 0.0 to $599.0(\mathrm{~Hz})$

With the torque limiter, the inverter increases the output frequency to limit the output torque. Excessive increase of the output frequency may cause danger, and therefore the frequency increment limit for braking ( H 76 ) is provided. This prevents the output frequency from increasing to exceed the "reference frequency +H 76 ." If the limit is reached, however, anti-regenerative control is restricted and an overvoltage trip may occur. Increasing the frequency increment limit for braking improves the anti-regenerative capability.
This function is disabled under vector control. Under vector control, torque commands are restricted. The output frequency is determined by the speed at the load side.

If a run command is turned OFF, the anti-regenerative control causes the frequency to increase and operation may not stop depending on the load conditions. For safety, a function is provided in which the anti-regenerative control is forced to be disabled if the actual deceleration time becomes three times the deceleration time currently selected forcing the operation to stop. The function can be enabled/disabled by the setting of H 69 .

## FUNCTION

F Codes
E Codes
C Codes
P Codes

## Anti-regenerative control (Operation level) (H114)

Allows the adjustment of the level when anti-regenerative control by torque limiter is performed with $\mathrm{H} 69=2,4$. Basically, there is no need to modify the setting.

| H114 data | Function |
| :---: | :--- |
| 0.0 to $50.0 \%$ | Adjusted level: Increasing the value increases the frequency operation. |
| 999 | Standard operation level (factory default) |

- The deceleration time may be automatically increased by anti-regenerative control.
- Disable the anti-regenerative control when a braking unit is connected. Otherwise, the antiregenerative control may be activated at the same time as the operation of the braking unit, resulting in a deceleration time not in accordance with the setting.
- An excessively short deceleration time causes the DC link bus voltage of the inverter to rise too fast for the anti-regenerative control to function. In that case, specify a longer deceleration time.


## H70

## Overload prevention control

Specifies the rate of decrease of the output frequency of overload prevention control. Before the inverter generates a heat sink overheat or overload trip (alarm inilif or ilit il ), the output frequency of the inverter is decreased for avoiding a trip. This is applied when operation is required to continue in a system in which the load decreases as the output frequency decreases, such as a pump.

| H70 data | Function |
| :---: | :--- |
| 0.00 | Uses the deceleration time currently selected (F08, E11, E13, E15, etc.) |
| 0.01 to 100.0 | Decelerates at a deceleration rate of 0.01 to $100.0(\mathrm{~Hz} / \mathrm{s})$. |
| 999 | Cancel overload prevention control |

## Performing overload prevention control "OLP" (Function code E20 to E24, E27, data = 36)

Outputs "OLP", which is a signal that turns ON during overload prevention control, in order to inform that the overload prevention control has been activated and the output frequency has changed.

No effect can be expected in a system in which the load does not decrease even if the output frequency decreases. Do not use this function.

| H71 |
| :--- |
| d90 |

## Deceleration characteristic (forced brake) <br> Magnetic flux level during deceleration (rate of voltage increase)

When the motor is decelerating, if regenerative energy which exceeds that which the inverter is capable of processing, intermediate DC voltage will rise, and an overvoltage trip will occur. By setting this function code to 1 or 2 , a higher output voltage than the command value is output when decelerating, motor loss is increased, and regenerative energy is consumed by the motor, allowing deceleration torque to be increased.

If $\mathrm{H} 71=1$, the rate of voltage increase can be adjusted with d90. If $\mathrm{H} 71=2$, output voltage is set proportional to the intermediate DC voltage ( $\mathrm{F} 05=0$ : same as disabling AVR) only when decelerating.

| H71 data | Function |
| :---: | :--- |
| 0 | Disable |
| 1 | Forced brake operation (rate of voltage increase is adjusted with d90) |
| 2 | Forced brake operation (output voltage proportional to intermediate DC voltage: <br> AVR disabled) |

Magnetic flux level during deceleration (rate of voltage increase) (d90)

- Data setting range: 100 to 300 (\%) (factory default: 120\%)

If too large a value is set for d90, excessive current will flow, and the motor protection electronic thermal overload relay may be triggered.

This function is valid only when the motor is decelerating, and has no effect if a braking load is applied when the motor is accelerating, or running at constant speed. When anti-regenerative control of the torque limiter is enabled ( $\mathrm{H} 69=2,4$ ), the deceleration characteristic is disabled.
By enabling H71, motor loss increases, and the electronic thermal overload relay function may be triggered, causing the inverter to trip if it decelerates frequently. If this happens, connect a braking resistor.

## H72

Main power shutdown detection (Mode selection)
This function monitors the AC input power supply of the inverter to see if the AC input power supply (main circuit power) is established and prevents inverter operation when the main circuit power is not established.

| H72 data | Function |
| :---: | :--- |
| 0 | Disables main circuit power cutoff detection |
| 1 | Enables main circuit power cutoff detection |

With power supply via a PWM converter or DC link bus, there is no AC input. When the data for H 72 is "1," the inverter cannot operate. Change the data for H 72 to " 0 ."

## Note For single-phase supply, consult your Fuji Electric representative.

| H73 |
| :--- | :--- |
| H74 |
| H75 | | Torque limiting (Operating conditions selection) |
| :--- |
| Torque limiting (Subject of control) |
| Torque limiting (Applicable quadrant) |

See F40, F41.
$\square$ Torque limiter (Braking) (Frequency rising limiter for braking)
(Refer to H69)
The torque limiting (braking) (frequency rising limiter) setting is described in detail in the function code H 69 section.

## H77

> Service life of DC link bus capacitor (Remaining time) $$
\text { Reference function code: H81 Warning selection } 1
$$

## FUNCTION

Indicates the time remaining before the end of service life of the DC link bus capacitor.
Transfer the DC link bus capacitor life data when replacing the printed circuit board.

- Data setting range: 0 to 87600 hours (set in 10 hour increments)

```
H78 Maintenance interval (M1)
H94
Cumulative motor run time 1
Reference function code: H81 Warning selection 1
```

Specify the maintenance interval in hours with the maintenance interval (M1) (H78).

- Data setting range: 1 to 99990 hours (set in 10 hour increments)


## - Maintenance timer "MNT" (Function code E20 to E24, E27, data = 84)

When the cumulative motor run time 1 (H94) reaches the value specified by the maintenance interval ( H 78 ), the inverter outputs the maintenance timer signal "MNT". Furthermore, by assigning warnings with H81, rTe appears on the keypad when the set time is reached, and warning "L-ALM" is output to notify the user.

## Cumulative motor run time 1 (H94)

The cumulative run time of the motor can be indicated by keypad operation. It can be used for management of the machinery or maintenance. Specifying an arbitrary time for the cumulative motor run time 1 (H94) allows an arbitrary value to be specified for the cumulative motor run time. It can be replaced with the initial data to use as a guide for the replacement of machine parts or inverter. Setting " 0 " allows the cumulative motor run time to be reset.
<For half yearly maintenance>


If the maintenance interval is reached, set a new value in H 78 and press the signal and restart measurement.
This function is exclusively applied to the 1st motor.

Input during operation with commercial power supply (Motor 1 to 4) "CRUN-M1 to 4" (Function code E01 to E09, data = 72 to 75)

Even when a motor is driven by commercial power, not by the inverter, it is possible to count the cumulative motor run time 1 to 4 (H94, A51, b51, r51) by detecting the ON/OFF state of the auxiliary contact of the magnetic contactor for switching to the commercial power line.


| H79 | Preset startup count for maintenance (M1) <br> Related function code: <br> Related function codes: | H44 Startup count for motor 1 <br> H81 Warning selection 1 |
| :--- | :--- | :--- |

H79 specifies the number of inverter startup times to determine the next maintenance timing, e.g., for replacement of a belt.

The maximum of 65,535 times can be set.

- Data setting range: 0 (Disable), 1 to 65,535


## - Maintenance timer "MNT" (Function code E20 to E24, E27, data = 84)

When the startup counter for motor $1(\mathrm{H} 44)$ reaches the number specified by H 79 (Preset startup count for maintenance (M1)), the inverter outputs the maintenance timer signal "MNT" (if assigned to any digital terminal with any to E20 to E24 and E27) to inform the user of the need of the maintenance of the machinery. Furthermore, by assigning warnings with H81, CnT appears on the keypad when the set number of times is reached, and warning "L-ALM" is output to notify the user.
< Maintenance every 1,000 times of startups >


If the startup counter reaches the specified value, set a new value for the next maintenance in H 79 and press the (⿺辶nat key to reset the output signal and restart counting.

This function is exclusively applied to the 1st motor.

```
H80, A41,
b41, r41
```

Current vibration damping gain 1 to 4

The inverter output current driving the motor may fluctuate due to the motor characteristics and/or backlash in the machinery (load). Modifying the H80 data adjusts the controls in order to suppress such fluctuation. However, as incorrect setting of this gain may cause larger current fluctuation, do not modify the default setting unless it is necessary.

- Data setting range: 0.00 to 1.00

H81，H82，
Warning selection 1 to 3
H83

If the inverter detects a minor abnormal state when detecting the error state，the display alternates between the warning code＊and operating status monitor（frequency display，etc．），and operation can be continued without tripping the inverter．Function codes H81，H82，and H83 specify which alarms should be categorized as a＂warning．＂
＊The alarm causes subject to selection and the display when a warning occurs are shown in the following table．

| Alarm code | Name | Overview |
| :---: | :---: | :---: |
|  | Cooling fin overheat | Cooling fin temperature increased to the trip level． |
| ［103 | External alarm | An error that has occurred in peripheral equipment turned the external alarm signal THR ON． |
| 田ザ | Inverter internal overheat | The temperature inside the inverter abnormally has increased． |
| 8176 | Charging resistor overheat | The charging resistor temperature rises abnormally due to frequent power ON／OFF． |
| －16 | Breaking resistor overheat | Estimated temperature of the coil in the braking resistor exceeded the allowable level． |
| Biil $i$ to ［17 4 | Overload of motor 1 to 4 | Motor temperature calculated with the inverter output current reached the trip level． |
| $E-4$ | Option communication error | Communications error between the inverter and an option． |
| Ers | Option error | An option judged that an error occurred． |
| $\begin{aligned} & E-B \\ & E-G \end{aligned}$ | RS－485 communications error（COM port 1，2） | RS－485 communications error in COM ports 1 or 2. |
| $E T E$ | Speed inconsistency （excessive speed deviation） | The status outside the range（ d 21 ）for which the speed regulator deviation（between speed command and estimated speed value／detected speed）is set continued for equal to or longer than the set time（d22）． |
| Era | Positioning control error | The deviation overflow value（10 times function code d78）for which the position deviation was set was exceeded when performing synchronous control． |
| C－6 | Current input wire break detection | Current input terminals［C1］，［C2］（option）signal line break |
| F\％it | Detect DC fan lock | Failure of the air circulation DC fan inside the inverter |
| Bil | Motor overload early warning | Early warning before a motor overload |
| 13i1 | Cooling fin overheat early warning | Early warning before a heat sink overheat trip |
| 116 | Lifetime alarm | It is judged that the service life of any one of the capacitors（DC link bus capacitors or electrolytic capacitors on the printed circuit boards）or cooling fan has expired． |
| TEF | Reference loss | Analog setting frequency wire break |
| P101 | PID alarm output | Warning related to PID control（absolute－value alarm or deviation alarm） |
| ［1II | Low torque detection | Output torque drops below the low torque detection level for the specified period． |
| Fir | PTC thermistor activated | The motor PTC thermistor on the motor detected overheating． |
| －1E | Inverter life（Cumulative run time） | The motor cumulative run time reached the specified level． |
| Eni | Inverter life（Number of startups） | Number of startups reached the specified level． |


| Alarm code | Name | Overview |
| :---: | :---: | :---: |
| $1 \%$ ito <br> 185 | User－defined alarm | Application alarm caused by customizable logic program |

Set data for selecting＂warnings＂in hexadecimal．For details on how to select the codes，see the next page．
－Data setting range：h． 0000 to h．FFFF（hexadecimal format）

## －Selecting warning factors

The applicable selection is set and displayed in hexadecimal format，and therefore the causes subject to selection are assigned to bits 0 to 15 as shown in Table 5．3－15 and Table 5．3－16．Set the bit that corresponds to the desired warning factor to＂1．＂Table 5．3－18 shows the relationship between each of the warning factor assignments and the LED monitor display．

Table 5．3－19 gives the conversion table from 4－bit binary to hexadecimal．
Table 5．3－15 Warning selection 1 （H81），bit assignment of selectable factors

| Bit | Symbol | Content | Bit | Symbol | Content |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | 18H6 | Charging resistor overheat | 7 |  | Motor 3 overload |
| 14 | － | － | 6 | －112 | Motor 2 overload |
| 13 | $E r \square$ | RS－485 communications error（COM port 2） | 5 | Eiti | Motor 1 overload |
| 12 | Erg | RS－485 communications error（COM port 1） | 4 | ロロイ | Breaking resistor overheat |
| 11 | ErG | Option error | 3 | － | － |
| 10 | Er－ | Option communication error | 2 | ロッシ | Inverter internal overheat |
| 9 | － | － | 1 | 17H2］ | External alarm |
| 8 | 172 | Motor 4 overload | 0 | 昭 | Cooling fin overheat |

Table 5．3－16 Warning selection 2 （H82），bit assignment of selectable factors

| Bit | Symbol | Content | Bit | Symbol | Content |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | L06 | Low battery warning | 7 | 1 IF | Lifetime alarm |
| 14 | 710 | Thermistor wire break detection | 6 | 1311） | Cooling fin overheat early warning |
| 13 | C－nic | Inverter life（Number of startups） | 5 | ${ }^{711}$ | Motor overload early warning |
| 12 | TE | Inverter life（Cumulative run time） | 4 |  | Detect DC fan lock |
| 11 | $\mathrm{FIC}^{1-1}$ | PTC thermistor activated | 3 | －1\％ | Current input wire break detection |
| 10 | H17 | Low torque detection | 2 | Era | Positioning control error |
| 9 | 910 | PID alarm output | 1 | 410 | Excessive position deviation |
| 8 | CEF | Reference loss | 0 | ErE | Speed inconsistency（excessive speed deviation） |

## FUNCTION

Table 5．3－17 Warning selection 3 （H83），bit assignment of selectable factors

| Bit | Symbol | Content | Bit | Symbol | Content |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 15 | － | － | 7 | － | － |
| 14 | rig\％ | Cooling capability drop warning | 6 | － | － |
| 13 | バロ | IGBT lifetime alarm | 5 | － | － |
| 12 | － | － | 4 | 195 | User－defined alarm 5 |
| 11 | － | － | 3 | ［84 | User－defined alarm 4 |
| 10 | － | － | 2 | ［旦う | User－defined alarm 3 |
| 9 | － | － | 1 | ［明］ | User－defined alarm 2 |
| 8 | － | － | 0 | ［日i | User－defined alarm 1 |

Table 5．3－18 Display of warning factors
（Example）Warning factors＂RS－485 communications error（COM port 2），＂＂RS－485 communications error（COM port 1），＂＂Option communications error，＂＂Overload of motor 1＂and＂Cooling fin overheat＂are selected by H81．

|  | LED No． | LED 4 |  |  |  | LED 3 |  |  |  | LED 2 |  |  |  | LED 1 |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Bit | 15 | 14 | 13 | 12 | 11 | 10 | 9 | 8 | 7 | 6 | 5 | 4 | 3 | 2 | 1 | 0 |
|  | Symbol | － | － | $\overline{\varepsilon_{r}}$ | $\begin{array}{\|l\|} \hline E_{G} \\ \hline \end{array}$ | $\begin{array}{\|c} 6, \\ 5 \end{array}$ |  | - | $\begin{array}{\|c\|c\|c\|c\|} \hline 16 \\ \hline \end{array}$ | $01$ | $\theta i t$ | Eil | 㕲号 | － | 193） | B172＇ | 㖇 1 |
|  | Binary | 0 | 0 | 1 | 1 | 0 | 1 | 0 | 0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 | 1 |
|  | Hexadeci mal <br> ＊Refer to Table 5．3－19． |  | 3 |  |  | 4 |  |  |  | $z^{\prime}$ |  |  |  |  | i |  |  |
|  | Hexadeci mal on the LED monitor |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Hexadecimal expression

A 4-bit binary number can be expressed in hexadecimal format (hexadecimal digit). The table below shows the correspondence between the two notations. If displayed at the keypad, $h$. appears in the left digit.

Table 5.3-19 Binary and hexadecimal conversion

| Binary |  |  |  | Hexadecimal | Binary |  |  |  | Hexadecimal |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | 0 | 0 | 0 | ${ }^{17}$ | 1 | 0 | 0 | 0 | $\square$ |
| 0 | 0 | 0 | 1 | i | 1 | 0 | 0 | 1 | 9 |
| 0 | 0 | 1 | 0 | $\square$ | 1 | 0 | 1 | 0 | 9 |
| 0 | 0 | 1 | 1 | 3 | 1 | 0 | 1 | 1 | $\square$ |
| 0 | 1 | 0 | 0 | 4 | 1 | 1 | 0 | 0 | $L^{-1}$ |
| 0 | 1 | 0 | 1 | 5 | 1 | 1 | 0 | 1 | $\square$ |
| 0 | 1 | 1 | 0 | 6 | 1 | 1 | 1 | 0 | $E$ |
| 0 | 1 | 1 | 1 | 7 | 1 | 1 | 1 | 1 | $F$ |

[^28]This output signal "L-ALM" comes ON when a warning occurs.

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
d Codes
U Codes
y Codes
K Codes

## H84, H85

Pre-excitation (Initial level, Time)

A motor generates torque with magnetic flux and torque current. Lag elements of the rising edge of magnetic flux causes a phenomenon in which enough torque is not generated at the moment of the motor start. To obtain enough torque even at the moment of motor start, enable the pre-excitation with H 84 and H 85 so that magnetic flux is established before a motor start.

- Pre-excitation (Initial level) (H84)

H84 specifies the forcing function for the pre-excitation. It is used to shorten the pre-excitation time.
Basically, there is no need to modify the default setting.

- Data setting range: 100 to 400 (\%) (exciting current level in percentage)
- Pre-excitation (Time) (H85)

H85 specifies the pre-excitation time before starting operation.

- Data setting range: 0.00 (Disable), 0.01 to 30.00 (s)

When a run command is inputted, the pre-excitation starts.
After the pre-excitation time specified by H85 has elapsed, the inverter judges magnetic flux to have been established and starts acceleration. Specify H85 data so that enough time is secured for establishing magnetic flux. The appropriate value for H 85 data depends on the motor capacity. Use the default setting value of H 13 data as a guide.


## Pre-excite --EXITE (E01 to E09, data = 32)

Turning this input signal ON starts pre-excitation. After the delay time for establishing magnetic flux has elapsed, a run command is inputted. Inputting the run command terminates pre-excitation and starts acceleration.

Use an external sequence to control the time for establishing magnetic flux.


Under V/f control (including auto torque boost and torque vector), pre-excitation is disabled, so use DC braking or hold the starting frequency instead.

Note
A transient phenomenon, which may occur when the losses of the machinery (load) are small, may make the motor rotate during pre-excitation. If the motor rotation during pre-excitation is not allowed in your system, install a mechanical brake or other mechanism to stop the motor.

## $\triangle$ WARNING

Even if the motor stops due to pre-excitation, voltage is output to inverter's output terminals $\mathrm{U}, \mathrm{V}$, and W .
Failure to observe this could result in electric shock.

```
H86, H89,
H90
```

For adjustment by manufacturer

H86, H89, and H90 are reserved for adjustment by the manufacturer. Unless otherwise specified, do not access these function codes.

## H91 Current input wire break detection

Terminal [C1] (C1 function) (current input) wire break can be detected and processed as an alarm.
If using an analog interface card (OPC-AIO), wire break can be detected for both terminal [C2] and terminal [C1] in the same way and processed as an alarm (Cof alarm).
If a current input wire break is detected, $Y$ terminal function "C1OFF" is output based on the o88: C1OFF signal operation selection setting.
Function code H91 specifies whether the wire break detection is enabled, and the duration of detection.
A wire break is detected if the terminal [C1] and [C2] current input is less than 2 mA .
The Cof alarm can also be assigned as a warning with H82. If a wire break is detected, cof appears on the keypad, and warning "L-ALM" is output to notify the user.

This is only effective if used with $\mathrm{C} 40=0$ or 10 ( 4 to 20 mA ).

- Data setting range: 0.0 (Disable wire break detection)
0.1 to 60.0 s (Detect wire break and issue of alarm ar within the time)
H92, H93 Continuous running at the momentary power failure ( $\mathrm{P}, \mathrm{I}$ ) $\quad$ (Refer to F 14 )

The continue to run ( $\mathrm{P}, \mathrm{I}$ ) setting is described in detail in the function code F14 section.

| H94 | Cumulative motor run time 1 |
| :--- | :--- |
| (Refer to H78) |  |

The motor cumulative run time 1 setting is described in detail in the function code H 78 section.
$\square$
The DC braking setting is described in detail in the function code F20 to F22 section.

## H96

STOP key priority/Start check function
H96 specifies a functional combination of "(soo) STOP key priority" and "Start check function" as listed below.

| H96 data | SToO STOP key priority | Start check function |
| :---: | :---: | :---: |
| 0 | Disable | Disable |
| 1 | Enable | Disable |
| 2 | Disable | Enable |
| 3 | Enable | Enable |

## STOP key priority

Even when run commands are entered from the digital input terminals or via the RS-485 communications link (link operation), pressing the keypad (sool key forces the inverter to decelerate and stop the motor. After that, Erig appears on the LED monitor.

## Start check function

For safety, this function checks whether any run command has been turned ON or not in each of the following situations. If one has been turned ON, the inverter does not start up but displays alarm code on the LED monitor.

- When the power to the inverter is turned ON.
- When the key is pressed to release an alarm status or when the digital input terminal command "RST" ("Reset alarm") is turned ON.
- When the run command source is switched by a digital input terminal command such as "LE" ("Enable communications link via RS-485 or fieldbus") or "LOC" ("Select local (keypad) operation").

| H97 Clear alarm data |  |
| :--- | :--- |
|  | Related function code: H45 Mock alarm |

Clears information (alarm history, relevant information when alarm occurs) for alarms that occur when performing machine adjustment, and returns the converter to the state before the alarm occurred.
To clear alarm data, simultaneous keying of "Eroop key + $\downarrow$ key" is required.

| H97 data | Function |
| :---: | :--- |
| 0 | Disable |
| 1 | Clear (Setting "1" clears alarm data and then returns to "0.") |

H98 specifies whether to enable or disable automatic lowering of carrier frequency，input phase loss protection， output phase loss protection，judgment threshold on the life of DC link bus capacitor，judgment on the life of DC link bus capacitor，DC fan lock detection and braking transistor error detection by setting a bit combination．

## Automatic lowering of carrier frequency（Bit 0）

This function should be used for critical machinery that requires keeping the inverter running．Even if a heat sink overheat or overload occurs due to excessive load，abnormal surrounding temperature，or cooling system failure，
 function results in increased motor noise．

## Note Under sensorless vector control（synchronous motors），the automatic carrier frequency reduction function does not work．

## Input phase loss protection（ $\mathcal{L}$ in ）（Bit 1）

This function detects the voltage unbalance between the phases and phase loss of 3－phase power supply．And an alarm displays $\dot{L}$ in to stop the inverter when it detects．

In configurations where only a light load is driven or a DC reactor is connected，phase loss or line－to－line voltage unbalance may not be detected because of the relatively small stress on the apparatus connected to the main circuit．

## Output phase loss protection（ $\mathcal{U} P_{L}$ ：Output Phase Loss）（Bit 2）

Upon detection of output phase loss while the inverter is running，this feature stops the inverter and displays an alarm inil．

Where a magnetic contactor is installed in the inverter output circuit，if the magnetic contactor goes OFF during operation，all the phases will be lost．In such a case，this protection function does not work．

## Judgment threshold on the life of DC link bus capacitor（Bit 3）

Bit 3 is used to select the threshold for judging the life of the DC link bus capacitor between the factory default setting and a user－defined setting．

## Note Before specifying a user－defined threshold，measure and confirm the reference level in advance． <br> （⿴囗㐅 Function code H42）

## Judgment on the life of DC link bus capacitor（Bit 4）

Whether the DC link bus capacitor has reached its life is judged by measuring the discharging time after power OFF． The discharging time is determined by the capacitance of the DC link bus capacitor and the load inside the inverter． Therefore，if the load inside the inverter fluctuates significantly，the discharging time cannot be accurately measured． As a result，it may be mistakenly determined that the DC link bus capacitor has reached the end of its life．To avoid such an error，you can disable the judgment based on the discharging time．（Even if it is disabled，the judgment based on the＂ON－time counting＂while the voltage is applied to the DC link bus capacitor is performed．）

## Refer to function code H 42 for details．

Since load may fluctuate significantly in the cases described below，disable the judgment on the life during operation even in user－defined setting mode．During periodical maintenance，either conduct the measurement with the judgment enabled under appropriate conditions or conduct the measurement under the operating conditions matching the actual ones．
－Auxiliary input for control power is used．
－An option card is used．
－Another inverter or equipment such as a PWM converter is connected to terminals of the DC link bus．

## DC fan lock detection (bit 5) (FRN0215G2S-2G or higher, FRN0180G2■-4G or higher)

FRN0215G2S-2G or higher, and FRN0180G2 $\square$-4G or higher inverters are equipped with an internal agitator fan. If a fan lock is detected due to an internal agitator fan fault, etc., it is possible to select whether to process this as an alarm, or to continue to run.

Alarm processing: A FAL alarm occurs, and the motor coasts to a stop.
Continue to run processing: No alarm occurs, and the inverter continues to run.
However, even if either of these settings is specified, the transistor output "LIFE" output signal turns ON if a DC fan lock is detected.

Note
If cooling fan ON-OFF control is enabled ( $\mathrm{H} 06=1$ ), depending on the conditions, the cooling fan may stop. If this happens, the inverter will judge that the fan lock detection is normal (fan stopped with fan stop command), and therefore even if the lock is applied due to such reasons as an internal agitator fan fault, the "LIFE" signal will turn OFF, allowing the FAL alarm to be cleared. (When operation is resumed, a command instructing the fan to run is issued, and the "LIFE" signal turns ON, or a FAL alarm occurs.)

If operation is continued for a long period of time with the lock applied due to such reasons as an internal agitator fan fault, there is a danger of the life expectancy of the electrolytic capacitors on the PCB being cut short due to local temperature rises. Be sure to carry out a check with the "LIFE" alarm, and replace the motor immediately.

## Braking transistor error detection ( $\mathrm{d}_{\mathrm{b}}^{\mathrm{b}} \mathrm{B}$ ) (Bit 6)

Upon detection of a built-in braking transistor error, this feature stops the inverter and displays an alarm ditin. Set data of this bit to " 0 " when the inverter does not use a braking transistor and there is no need of entering an alarm state.

## IP20/IP40 switching (bit 7) (FRN0115G2S-2G/FRN0060G2S-4G or lower basic type only)

On FRN0115G2S-2G/FRN0060G2S-4G or lower inverters, the protective construction can be changed from IP20 to IP40 with an option. However, it is necessary to change to a level of protection appropriate for IP40 due to the protective coordination relationship.

For details, refer to the IP40 Option Instruction Manual.
To set data of function code H98, assign the setting of each function to each bit and then convert the 8-bit binary to the decimal number. Refer to the assignment of each function to each bit and a conversion example below.

| Bit | Function | Data $=0$ | Data $=1$ | Factory default |
| :--- | :--- | :--- | :--- | :--- |
| Bit 0 | Lower the carrier frequency <br> automatically | Disable | Enable | 1: Enable |
| Bit 1 | Detect input phase loss | Continue to <br> run | Enter alarm <br> processing | 1: Enter alarm <br> processing |
| Bit 2 | Detect output phase loss | Continue to <br> run | Enter alarm <br> processing | 0: Continue to run |
| Bit 3 | Select life judgment threshold of DC <br> link bus capacitor | Factory <br> default | User-defined <br> setting | 0: Factory default |
| Bit 4 | Judge the life of DC link bus <br> capacitor | Disable | Enable | 1: Enable |
| Bit 5 | Charging resistor overheat <br> detection protection | Enable | Disable | 0: Enable |
| Bit 6 | Detect braking transistor breakdown | Continue to <br> run | Enter alarm <br> processing | 1: Enter alarm <br> processing |
| Bit 7 | IP20/IP40 switching | 0: IP20 | 1: IP40 | 0: IP20 |

## FUNCTION

```
H99,
H197, H198
H199
```

```
Password 2 setting/check
```

Password 2 setting/check
User password 1 (selection of protective operation, setting check)
User password 1 (selection of protective operation, setting check)
User password protection valid

```
User password protection valid
```

The password function is the function to hide the function code entirely/partially which is set for the inverter. When this function is used, perform correct settings after familiarizing yourself with the following details. If incorrect settings are made, the function code cannot be changed or checked. An alarm may also occur and the inverter may stop. Perform the operation carefully.

If the objective is to prevent inadvertent rewriting of the setting value from the keypad, it is recommended to use the data protective function with function code F00 rather than the password function. For details of the data protection, refer to the items in F00.
Note If a password is set carelessly, the setting values cannot be changed from the keypad, multi-function keypad, or external device using the link function. Be careful for setting.
Note If an incorrect password setting value is entered and you failed to decode the password, the password protection state cannot be released. In addition, failure to decode the password consecutively 5 times results in a warning.
To prevent the password decoding by an ill-disposed third party, failure to decode the password for the specified number of times results in $L_{\text {at }}^{\prime \prime}$ alarm, which disables the inverter operation. Therefore, it is recommended to decode the password during stop of the system. If it is necessary to decode the password during operation, perform decoding carefully.

We are not able to know the passwords set by customers. If you have forgotten the password setting value, the only way to decode the password is initialization of the function code. Set and control the password carefully.

## Note

 Password H198 and H99 cannot be accessed via communication.
## Password 1 (Rewrite disable protection)

Function code setting values excluding some codes can be protected as rewrite disable.
Select the target function code which is protected by H 197 and set the password (hexadecimal 4 digits) with function code H 198 . When function code H 199 is set to 1, password 1 protective status (rewrite disable protection) is active.

| No. | Name | Function, setting range |
| :---: | :---: | :--- |
| H197 | Protective operation <br> selection | 0: All function codes are disclosed, but the change is not allowed. <br> 1: Only the function code for quick setup can be disclosed/changed. <br> 2: Only the function code for customize logic setting is not disclosed/not <br> changed. |
| H198 | Setting/comparison | 0000 to FFFF |
| H199 | Protection enable | 0: Invalid <br> 1: Protection |

## Temporary disabling of password 1 （Rewrite disable protection）

When password 1 protective status is shown and the same value as the password set for function code H 198 is entered in H 198 ，password 1 protective status is temporarily released and the function code setting value can be rewritten．

If password 2 is set at the same time，it is necessary to decode password 2 with H 99 in advance．


Fig．5．3－30 Relation chart of password 1 protection status

## Password 2 （Read／write disable protection）

Setting values of all function codes not by selecting function code H 197 can be protected as read disable and rewrite disable．（Exceptionally，partial function codes are not protected．）

Set the password with function code H 99 and set function code H 199 to 1．Password 2 protective status（read／write disable protection）is active．
The function code of read／write disable does not allow writing of the setting value to the inverter with the keypad， multi－function keypad，or external device using serial communication，or reading of the setting value．

## Temporary disabling of password 2 （Read／write disable protection）

When password 2 protective status is shown and the same value as the password（hexadecimal 4 digits）set for function code H 99 is entered in H 99 ，password 2 protective status is temporarily decoded and the function code value can be read and it can be displayed on the keypad．
If password 1 protection（rewrite disable protection）is also set，the function code can be rewritten by temporarily decoding password 1 protective status continuously．

## FUNCTION

## Passwords 1, 2 temporary disabling failure

In password 1 protective status or password 2 protective status, if the password value entered in function code H198 or H99 is incorrect when trying to temporarily cancel the protective status, temporary decoding is disabled.
In both function codes H 198 and $\mathrm{H} 99,5$ consecutive failures of password input result in a warning.


Fig. 5.3-31 Relation chart of password 2 protection status

[^29]
## Setting and temporary disabling of password 1, 2 using multi-function keypad

Setting or temporary decoding of passwords 1 and 2 using the multi-function keypad is performed by the special menu on the multi-function keypad. Therefore, function codes H99, H198 and H199 are not displayed on the function code list of the function code setting menu or function code check menu on the multi-function keypad (H197 is displayed).

For the special password menu of the multi-function keypad, refer to the instruction manual of the multifunction keypad.

H101 Destination
Refer to Chapter 4 ＂4．4 Destination Setting＂．There is no need to change the setting on products for Japan．
H114 Anti－regenerative control（Operation level）Related function code：H69

This function code is described in detail at the H 69 item．

| H116 |  |  |
| :--- | :--- | ---: |
| H117 |  |  |
| H118 |  |  |
| H119 |  |  |
| H120 | Forced operation（Fire Mode） | （Operation selection） <br> （Confirmation time） <br> （Set frequency） |
| H121 | （Run direction） <br> （Starting method） <br> （Waiting time） |  |

Set when wishing to enable forced operation（Fire Mode）．With forced operation，the motor can be forcibly run at the specified speed．Even if an alarm occurs during forced operation，operation can be continued．If an alarm occurs due to a protective function such as OC（instantaneous overcurrent protection），operation is resumed with automatic reset．The time until operation is resumed can be set．If switching to forced operation，＂Fod＂is recorded in the alarm history for the purpose of retaining a record．If continuing operation with forced operation，alarms that are automatically reset are not recorded in the alarm history．

By assigning＂FMS＂to a digital input terminal and turning＂FMS＂ON，forced operation（Fire Mode）is enabled． （Function code E01 to E09，data＝134）
By assigning＂FMRUN＂to a digital output terminal，it turns ON during forced operation．（Function code E20 to E24， E 27 ，data $=95$ ）

By selecting automatic reset with forced operation，the inverter will continue to run with no protective functions，resulting in a risk of inverter damage or fire，etc．

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
d Codes
U Codes
y Codes
K Codes

## - Forced operation (Fire Mode) (Operation selection) (H116)

- Data setting range: $0,1,2,10,11,12,20,21,22$

By setting H 116 , it is possible to select from a total of nine operation modes by combining the three types of forced operation end timing (ON, toggle, latch) and three types of alarm subject to an automatic reset (FMS-1, 2, 3).


| Alarm code | Protective function | FMS-1 | FMS-2 | FMS-3 |
| :---: | :---: | :---: | :---: | :---: |
|  |  | 0: ON-1 <br> 1: Toggle method-1 <br> 2: Latch method-1 | 10: ON-2 <br> 11: Toggle method-2 <br> 12: Latch method-2 | 20: ON-3 <br> 21: Toggle method-3 <br> 22: Latch method-3 |
| OC1, OC2, OC3 | Overcurrent protection | Automatic reset | Alarm occurrence | Alarm occurrence |
| OV1, OV2, OV3 | Overvoltage protection |  | Automatic reset |  |
| LV | Undervoltage |  |  |  |
| EF | Ground fault protection |  |  |  |
| Other alarms |  | Continue to run or automatic reset |  |  |

## Forced operation (Fire Mode) (Confirmation time) (H117)

- Data setting range: 0.5 to 10.0 (s) (factory default: 3.0 s)

Sets the time at which "FMS" signal ON/OFF is established. This is ignored if "FMS" is turned ON or OFF in a time shorter than this. Turn the "FMS" signal ON for a time longer than the H117 confirmation time.

- Forced operation (Fire Mode) (Set frequency) (H118)

Sets the specified speed (set frequency) when forced operation (Fire Mode) is enabled.

| H 118 data | Function |
| :--- | :--- |
| 0.0 (factory <br> default) | This is based on the set frequency selected with Frequency setting 1 (F01) and <br> Frequency setting 2 (C30). <br> Under PID control, PID output (set frequency) is maintained when switching to <br> forced operation. |
| 0.1 to 599.0 Hz | The desired set frequency can be set in 0.1 Hz increments. |

## Forced operation (Fire Mode) (Run direction) (H119)

Sets the run command and rotation direction when forced operation (Fire Mode) is enabled.

| H119 data | Function |
| :---: | :--- |
| 0 (factory default) | Run/stop with run command (run command selected with F02) when performing <br> normal operation <br> * The motor does not run if the run command is OFF, but alarms are automatically <br> reset. |
| 2 | Operation in forward direction (FWD) <br> * The motor is forcibly rotated in the forward direction regardless of whether a run <br> command has been specified. |
| 3 | Operation in reverse direction (REV) <br> * The motor is forcibly rotated in the reverse direction regardless of whether a run <br> command has been specified. |

- Forced operation (Fire Mode) (Starting method) (H120)

Sets the starting method when forced operation (Fire Mode) is enabled.

| H120 data | Function |
| :---: | :--- |
| 0 | Starting method when performing normal operation (starting method selected with H09, <br> d67) |
| 1 | Start-up in auto search mode (retracts without stopping motor while idling) |

## Forced operation (Fire Mode) (Wait time) (H121)

- Data setting range: 0.5 to 20.0 s (factory default: 5.0 s )

Sets the wait time until an automatic reset for inverter tripping while performing forced operation (Fire Mode).

## H130 to H132 For special adjustment (Torque limiting)

This function code is used to adjust the torque limiting responsiveness for a control method other than vector control. Normally, it is not necessary to change the data of these function codes.

## H133 to H135 <br> For special adjustment (Anti-regenerative control)

This function code is used to adjust the anti-regenerative control responsiveness. Normally, it is not necessary to change the data of these function codes.

## H136, H137

For special adjustment (Current limiting)

This function code is used to adjust the current limiting responsiveness for a control method other than vector control. These are the control parameter for PMSMs. Normally, it is not necessary to change the data of these function codes.

## H147

Speed control (Jogging) (Feed forward gain)
Refer to the description of d01 to d08.

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
$J$ Codes
d Codes
U Codes
y Codes
K Codes


Torque bias value is added to the torque command (the output of ASR) before the torque limiter value. As a result of this, a significant amount of torque can be output with no speed deviation when starting. The torque bias level can be selected from the analog input value or the three fixed values which are specified with function codes and switched by the digital input signals "TB1" and "TB2". Refer to Chapter 8, "Figure 8.7-5 Vector control (torque command / torque limit) section block diagram" for block diagrams.

The direction of run command and the polarity of the torque bias determine the mode of drive operation (driving/braking). Refer to the figure below.


Torque bias (Mode selection) (H154)
This function allows to select the method of torque bias input.

| H154 data | Function |
| :---: | :--- |
| 0 | Disable torque bias (factory default) |
| 1 | H155 to H157: Enable levels 1, 2 and 3 selected by digital inputs "TB1", "TB2". |
| 2 | Enable analog input value. |
| 3 | RS-485 communications link (port 1) |
| 4 | RS-485 communications link (port 2) |
| 5 | Field bus communication |

Set level 1, 2 and 3 (H155 to H157); Select torque bias 1, 2 -- "TB1", "TB2" (E01 to E05 data = 61, 62)
The torque bias level is selected with terminal "TB1" and "TB2". This is valid only when H154 = 1 .

| Input signal |  | Torque-bias to be selected |
| :---: | :---: | :--- |
| "TB2" | "TB1" |  |
| OFF | OFF | Disable torque-bias |
| OFF | ON | H155: Torque bias level 1 |
| ON | OFF | H156: Torque bias level 2 |
| ON | ON | H157: Torque bias level 3 |

- Data setting range: -300 to $+300(\%)$ (motor rated torque reference)


## Mechanical loss compensation (H158)

Use this function to compensate the amount of the mechanical loss of a load.

- Data setting range: 0 to 300.00 (\%) of a motor rated torque


## - Torque bias hold command "H-TB" (E01 to E09, data = 62)

Turning this terminal command ON enables a torque-bias hold command. Hold is canceled by turning this terminal OFF.

## Startup timer (H159)

By simply adding the torque bias, the shock may be large. By setting the timer with this function code, the motor can be started with minimal shock. H 159 is the time to increase the bias torque from 0 to $100 \%$ of the motor rated torque. If this function code is set to " 0.00 ", the torque bias is activated immediately.

- Data setting range: 0.00 (factory default) to 1.00 (s)


## ■ Shutdown timer (H161)

By setting the shutdown timer, torque bias can be eliminated gradually in the same way as the startup timer. H161 is the time to decrease $100 \%$ of the torque. If this function code is set to " 0.00 ", the torque bias is activated immediately.

- Data setting range: 0.00 (factory default) to 1.00 (s) Analog torque bias normally uses a load, but if the sensor is faulty, there is a risk of an exce
set. By setting the torque bias limiter, the torque bias value maximum value can be limited.

Data setting range: 0 to 300(\%) (factory default: 200\%)

## H173 Magnetic flux level at light load

This function decreases the motor magnetic flux at light load and can reduce the motor noise. This can only be used under vector control with sensor. The motor magnetic flux command is controlled in proportion to torque current command that is less than $50 \%$. H173 specifies the minimum value of the flux command. Refer to the figure below.

Data setting range: 10 to 100(\%) (factory default)


## H180

Brake control signal (Check-timer for brake operation) Related function code: J68 to J72
Refer to the description of J68.

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
d Codes
U Codes
K Codes

If the motor rotation direction differs from the operation direction, using this function switches the inverter output terminal UVW phase sequence without changing the motor wiring, allowing the motor rotation direction to be aligned with the operation direction.

| H190 data | Function |
| :---: | :--- |
| 0 | No phase sequence change (factory default) |
| 1 | Terminal [U]: outputs U phase, terminal [V]: outputs W phase, terminal [W]: <br> outputs V phase |

Double key operation (soo) key + keys) is required to change function code H 190 data.

| H193, <br> H194 | User preference dataset (save, protection) | Related function code: H03 |
| :--- | :--- | :--- |

Refer to the description of $\mathrm{H} 02, \mathrm{H} 03$.

| H195 DC braking (Braking timer at the startup) |  |
| :--- | :--- | :--- |
|  | Related function code: F21 |

DC braking can be activated at startup. For details, refer to the description of F21.

| H196 For adjustment by manufacturer |
| :--- | :--- |

Do not access these function codes.

| H197, H198 <br> H199 | User password 1 (selection of protective operation, setting check) <br> User password protection valid | Related function code: | H99 |
| :--- | :--- | :--- | :--- |

Refer to the description of H99.

### 5.3.6 A, b, r codes (Motor 2 to 4 parameters)

FRENIC-MEGA allows you to switch between 4 motors and perform operation using the same inverter. Furthermore, operation can be performed by switching the control parameters and control method even for a single motor. These changes are made using terminal commands "M2", "M3", and "M4".
( $\mathbb{C l}$ Function codes E01 to E09, data $=12,36,37$ )

| Function code | Motor to drive | Remarks |
| :---: | :---: | :---: |
| F/E/P codes, etc. | Motor 1 | Including function codes commonly applied to motors 1 to 4. |
| A codes | Motor 2 |  |
| b codes | Motor 3 |  |
| r codes | Motor 4 |  |

The switching operation with "M2", "M3", and "M4" is made in order of priority from motor 1 to 4 using the following combinations. By switching the motor, the respective function codes will change, and the motor will be controlled based on the new function codes. "SWM1", "SWM2", "SWM3", and "SWM4" can be output as digital signals used to indicate the selected motor.
( $\mathbb{C}$ Function codes E20 to E23 and E27, data = 48 to 51)

| Digital input signal |  |  | Selected motor | Output signal |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| "M2" | "M3" | "M4" |  | "SWM1" | "SWM2" | "SWM3" | "SWM4" |
| OFF | OFF | OFF | Motor 1 | ON | OFF | OFF | OFF |
| ON | - | - | Motor 2 (A codes) | OFF | ON | OFF | OFF |
| OFF | ON | - | Motor 3 (b codes) | OFF | OFF | ON | OFF |
| OFF | OFF | ON | Motor 4 (r codes) | OFF | OFF | OFF | ON |

Induction motor control only. This manual describes function codes applied to motor 1 only. For ones applied to motors 2 to 4 , refer to the corresponding function codes for motor 1 in Table 5.3-21.

Synchronous motor control is possible only for motor 1 . If changes are not made to the inverter output wiring when switching to induction motor control for motors 2 to 4 , synchronous motors will be driven by induction motors, possibly leading to motor damage, and therefore caution is advised.

Note
It is necessary to confirm "M2", "M3", and "M4" within 1 ms of the run command being confirmed.

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
$J$ Codes
d Codes
U Codes
y Codes
K Codes

## A42, b42, r42

Motor/parameter switching 2, 3, 4 (Operation selection)
Related function code: d25 ASR switching time
Function codes A42, b42, and r42 determine whether the switching operation with "M2", "M3", and "M4" actually switches the motor, or switches the control parameters (function codes).

Table 5.3-20

| $\begin{gathered} \mathrm{A} 42 / \mathrm{b} 42 / \mathrm{r} 42 \\ \text { data } \end{gathered}$ | Function | Switching condition |
| :---: | :---: | :---: |
| 0 | Motor switching: Switching to motor 2, motor 3 or motor 4 | Only while stopped |
| 1 | Parameter switching: Switch to control function code data for the same motor such as turning energy saving operation ON and OFF, or changing the speed control system PI | Possible even during operation |

If motor switching is set, the function codes in the following table are switched.
Table 5.3-21 Function codes to be switched

| Name | Function code |  |  |  | Parameter switching |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Motor 1 | Motor 2 | Motor 3 | Motor 4 |  |
| Maximum output frequency | F03 | A01 | b01 | r01 |  |
| Base frequency | F04 | A02 | b02 | r02 |  |
| Rated voltage at base frequency | F05 | A03 | b03 | r03 |  |
| Maximum output voltage | F06 | A04 | b04 | r04 |  |
| Torque boost | F09 | A05 | b05 | r05 |  |
| Electronic thermal overload protection for motor (Select motor characteristics) | F10 | A06 | b06 | r06 |  |
| (Operation level) | F11 | A07 | b07 | r07 |  |
| (Thermal time constant) | F12 | A08 | b08 | r08 |  |
| DC braking (Braking starting frequency) | F20 | A09 | b09 | r09 |  |
| (Operation level) | F21 | A10 | b10 | r10 |  |
| (Braking time) | F22 | A11 | b11 | r11 |  |
| Starting frequency | F23 | A12 | b12 | r12 |  |
| Load selection/auto torque boost /auto energy-saving operation | F37 | A13 | b13 | r13 | Y |
| Starting frequency (Holding time) | F24 | A62 | b62 | r62 |  |
| Stop frequency | F25 | A63 | b63 | r63 |  |
| Stop frequency (Detection method) | F38 | A64 | b64 | r64 |  |
| Stop frequency (Holding time) | F39 | A65 | b65 | r65 |  |
| Drive control selection | F42 | A14 | b14 | r14 |  |
| Motor constants (No. of poles) | P01 | A15 | b15 | r15 |  |
| (Rated capacity) | P02 | A16 | b16 | r16 |  |
| (Rated current) | P03 | A17 | b17 | r17 |  |
| (Auto tuning) | P04 | A18 | b18 | r18 |  |
| (Online tuning) | P05 | A19 | b19 | r19 |  |
| (No-load current) | P06 | A20 | b20 | r20 |  |
| (\%R1) | P07 | A21 | b21 | r21 |  |
| (\%X) | P08 | A22 | b22 | r22 |  |

5.3 Description of Function Codes 5.3.6 A, b, r codes (Motor 2 to 4 parameters)

| Name | Function code |  |  |  | Parameter switching |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Motor 1 | Motor 2 | Motor 3 | Motor 4 |  |
| (Slip compensation gain for driving) | P09 | A23 | b23 | r23 | Y |
| (Slip compensation response time) <br> (Slip compensation gain for braking) | P10 | A24 | b24 | r24 | Y |
|  | P11 | A25 | b25 | r25 | Y |
| (Rated slip frequency) | P12 | A26 | b26 | r26 |  |
| (Iron loss factor 1) | P13 | A27 | b27 | r27 |  |
| (Iron loss factor 2) | P14 | A28 | b28 | r28 |  |
| (Magnetic saturation factor 1) | P15 | A29 | b29 | r29 |  |
|  | P16 | A30 | b30 | r30 |  |
| (Magnetic saturation factor 2) | P17 | A31 | b31 | r31 |  |
| (Magnetic saturation factor 3) | P18 | A32 | b32 | r32 |  |
| (Magnetic saturation factor 4) | P19 | A33 | b33 | r33 |  |
| (Magnetic saturation factor 5) | P20 | A34 | b34 | r34 |  |
| (Magnetic saturation expansion coefficient a) | P21 | A35 | b35 | r35 |  |
| (Magnetic saturation expansion coefficient b) | P22 | A36 | b36 | r36 |  |
| (Magnetic saturation expansion coefficient c) | P23 | A37 | b37 | r37 |  |
| (Load inertia) | P24 | A38 | b38 | r38 |  |
| Motor selection | P99 | A39 | b39 | r39 |  |
| Slip compensation (Operating conditions) | H68 | A40 | b40 | r40 | Y |
| Output current fluctuation damping gain for motor | H80 | A41 | b41 | r41 | Y |
| Speed control (Speed command filter) | d01 | A43 | b43 | r43 | Y |
| (Speed detection filter) | d02 | A44 | b44 | r44 | Y |
| (Output filter) <br> (Notch filter resonance frequency) <br> (Notch filter attenuation level) | d03 | A45 | b45 | r45 | Y |
|  | d04 | A46 | b46 | r46 | Y |
|  | d05 | A47 | d47 | r47 | Y |
|  | d06 | A48 | b48 | r48 | Y |
|  | d07 | A49 | b49 | r49 |  |
|  | d08 | A50 | b50 | r50 |  |
| Speed control (Notch filter width) | d29 | A58 | b58 | r58 |  |
| Cumulative motor run time | H94 | A51 | b51 | r51 |  |
| Number of startups | H44 | A52 | b52 | r52 |  |
| Motor constant $(\% X$ correction factor 1) <br>  $(\% X$ correction factor 2$)$ <br> (Torque current under vector control) <br> (Induced voltage factor under vector control) | P53 | A53 | b53 | r53 |  |
|  | P54 | A54 | b54 | r54 |  |
|  | P55 | A55 | b55 | r55 |  |
|  | P56 | A56 | b56 | r56 |  |
| Display coefficient for speed monitor | E50 | A60 | b60 | r60 |  |
| For manufacturer | d51 | d52 | d53 | d54 |  |
|  | P57 | A57 | b57 | r57 |  |
| Constant rate of feeding coefficient / Speed display auxiliary coefficient | E39 | A61 | b61 | r61 |  |
| Starting frequency (Holding time) | F24 | A62 | b62 | r62 |  |

## FUNCTION

| F Codes |
| :---: |
| E Codes |
| C Codes |
| P Codes |
| H Codes |
| A Codes |
| b Codes |
| r Codes |
| J Codes |
| d Codes |
| U Codes |
| y Codes |
| K Codes |


| Name | Function code |  |  |  |  |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |
|  | Motor 1 | Motor 2 | Motor 3 | Motor 4 |  |
| Stop frequency | F25 | A63 | b63 | r63 |  |
| Stop frequency (Detection method) | F38 | A64 | b64 | 64 |  |
| Stop frequency (Holding time) | F39 | A65 | b65 | r65 |  |
| Thermistor (Operation selection) | H26 | A66 | b66 | r66 |  |
| Thermistor (Operation level) | H27 | A67 | b67 | r67 |  |

The function codes listed in the following table are for motor 1, and function codes for motors 2 to 4 are disregarded, but some functions can be enabled with A98, b98, and r98.

Table 5.3-22 Function codes that are disregarded for motor 2 to 4

| Content | Function code | Operation for motor 2 onward |
| :--- | :--- | :--- |
| Non-linear V/f pattern | H50 to H53, H65, H66 | Disable |
| Motor overload early warning | E34, E35 | Disable |
| Droop control | H28 | Disable |
| UP/DOWN control | H61 | Fixed at the initial setting (0 Hz) |
| PID control | J01 to J06, J08 to J13, J15 to J19 <br> J57 to J62, J105 to J138, H91 | Disable |
| Brake control signal | J68 to J72, J95, J96 <br> d120 to d125 | Disable |
| Positioning control | d200 number unit | Disable |
| Contacting the stopper | J90 to J92 | Disable |
| Current limiter | F43, F44 | Disable |
| Rotational direction limitation | H08 | Disable |
| Maintenance Interval/ Preset <br> startup count for maintenance | H78, H79 | Disable |
| DC braking <br> (Braking timer at the startup) | H195 | Disable |

[^30]Setting range: 0 to 255 (decimal setting)
Among the functions disabled for motor 2 onward shown in Table 5.3-25, function A98 allows you to enable the functions below.

| Bit | Function | Data $=0$ | Data $=1$ | Factory default |
| :---: | :--- | :--- | :--- | :--- |
| Bit 0 | Current limiter (F43, F44) | Disable | Enable | 0: Disable |
| Bit 1 | Rotation direction limit (H08) | Disable | Enable | 0: Disable |
| Bit 2 | Non-linear V/f (H50 to H53, H65, H66) | Disable | Enable | 0 : Disable |
| Bit 3 | PID control (J01 to J62, H91) | Disable | Enable | 0: Disable |
| Bit 4 | Brake control signal | Disable | Enable | 0: Disable |
| Bit 5 | DC braking (braking time at startup) (H195) | Disable | Enable | $0:$ Disable |
| Bit 6,7 | No function assigned | - | - | 0 |

### 5.3.7 b, $r$ codes (Speed control 3 and 4 parameters)

FRENIC-MEGA has four sets of speed control parameter. They can be selected by "MPRM1", "MPRM2" signals. The selection with speed control selection signals "MPRM1" and "MPRM2" takes priority over the selection made with "M2", "M3", and "M4".

For the description of speed control parameters, refer to function code d01.

|  | Name |  | peed co | meter |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Set 1 | Set 2 | Set 3 | Set 4 |
| Speed control | (Speed command filter) <br> (Speed detection filter) | d01 | A43 | b43 | r43 |
|  |  | d02 | A44 | b44 | r44 |
|  | (P gain) <br> (Integral time) <br> (Feed forward gain) <br> (Output filter) | d03 | A45 | b45 | r45 |
|  |  | d04 | A46 | b46 | r46 |
|  |  | d05 | A47 | b47 | r47 |
|  |  | d06 | A48 | b48 | r48 |

- Select speed control parameter 1, 2 -- "MPRM1", "MPRM2" (E01 to E05 data = 78, 79)

The combination of the ON/OFF states of digital input signals "MPRM1" and "MPRM2" selects one among 4 different speed control parameter sets. d01 to d08 and A43 to A50 can be changed even when switching the motor with "M2".

| Input signal |  | Selected speed control parameter set |
| :---: | :---: | :---: |
| "MPRM2" | "MPRM1" |  |
| OFF | OFF | d01 to d06: Speed control constant 1 |
| OFF | ON | A43 to A48: Speed control constant 2 |
| ON | OFF | b43 to b48: Speed control constant 3 |
| ON | ON | r43 to r48: Speed control constant 4 |

### 5.3.8 J codes (Applied functions)

## J01 <br> PID control (operation selection)

Under PID control, the inverter detects the state of a control target object with a sensor or similar device and compares it with the commanded value (e.g., temperature control command). If there is any deviation between them, PID control operates so as to minimize it. That is, it is a closed loop feedback system that matches a controlled variable (feedback amount).
PID control expands the application area of the inverter to process control (e.g., flow control, pressure control, and temperature control) and speed control (e.g., dancer control).
If PID control is enabled ( $\mathrm{J} 01=1,2$ or 3 ), the frequency control of the inverter is switched from the drive frequency command generator block to the PID command generator block.

- Mode selection (J01)

J01 selects the PID control operation and control block

| J01 data | Function |
| :---: | :--- |
| 0 | Disable |
| 1 | Process control (normal operation) |
| 2 | Process control (inverse operation) |
| 3 | Speed control (dancer control) |

<PID process control block diagram>

<PID dancer control block diagram>


- Using J01 allows switching between normal and inverse operations for the PID control output, so you can specify an increase/decrease of the motor rotating speed depending on the difference (error component) between the commanded (input) and feedback amounts, making it possible to apply the inverter to air conditioners. The terminal command IVS can also switch operation between normal and inverse.

For details about the switching of normal/inverse operation, refer to the description of "■ Normal/inverse operation switching "IVS" assignment" (E01 to E09, data = 21).


J02 sets the source that specifies the command value (SV) under PID control.

| J02 data | Function |
| :---: | :--- |
| 0 | PID command with keypad <br> PID command with keypad |
| 1 | PID command 1 (Analog input: Terminals [12], [V2], [C1] (C1 function), [C1] (V3 function)) <br> Voltage input to terminal [12], [V2], [C1] (V3 function) (0 to $\pm 10$ VDC, 100\% PID <br> command/ $\pm 10 ~ V D C) ~$ <br> Current input to terminal [C1] (C1 function) (4 to 20 mA DC, 100\% PID command/20 mA DC) |
| 3 | Terminal command UP/DOWN <br> Using the "UP" or "DOWN" command in conjunction with PID minimum scale to maximum <br> scale (specified by J106 and J107) with which the command value is converted into a <br> physical quantity, etc., you can specify 0 to 100 \% of the PID command ( $\pm 100 \%$ for PID <br> dancer control). |
| 4 | Command via communications link <br> Use function code S13 to specify the PID command by communications. The transmission <br> data of 20000d (decimal) is equal to 100\% (maximum set point value) of the PID command. |

## [ 1] PID command with keypad ( $\mathbf{J O 2}=\mathbf{0}$, factory default)

Using the keys on the keypad in conjunction with PID minimum / maximum scale (specified by J106 and J107), you can specify 0 to $100 \%$ of the PID command ( $\pm 100 \%$ for PID dancer control) in an easy-to-understand, converted command format.

For details of operation, refer to Chapter 3 "3.3.5 Setting up PID commands from the keypad."

## ［ 2 ］PID command by analog inputs（ $\mathrm{JO2}=1$ ）

The desired value can be set for the PID command value by analog input by multiplying by the gain and adding the bias．The polarity can be selected and the filter time constant and offset can be adjusted．In addition to J02 setting， it is necessary to select PID process command 1 for analog input（function codes E61 to E63，E66）．For details， refer to the descriptions for function codes E61 to E63 and E66．

Table 5．3－23 Adjustable elements of PID command

| Input terminal | Input range | Common bias |  | Individual bias |  | Gain |  | Polarity selection | Filter | Offset |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Bias | Base point | Bias | Base point | Gain | Base point |  |  |  |
| ［12］ | $\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$ | C51 | C52 | C55 | C56 | C32 | C34 | C35 | C33 | C31 |
| ［C1］（C1） | $\begin{aligned} & 4 \text { to } 20 \mathrm{~mA}, 0 \\ & \text { to } 20 \mathrm{~mA} \end{aligned}$ |  |  | C61 | C62 | C37 | C39 | C40 | C38 | C36 |
| ［V2］ | $\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$ |  |  | C67 | C68 | C42 | C44 | C45 | C43 | C41 |
| ［C1］（V3） | $\begin{aligned} & 0 \text { to }+10 \mathrm{~V}, \\ & -10 \text { to }+10 \mathrm{~V} \end{aligned}$ |  |  | C82 | C83 | C75 | C77 | C78 | C76 | C74 |

Both the common bias and individual bias function． sent from the external equipment．
－Filters（C33，C38，C43，C76）
C33，C38，C43 and C76 provide the filter time constants for the voltage and current of the analog input．The larger the time constant，the slower the response．Specify the proper filter time constant taking into account the response speed of the machine（load）．If the input voltage fluctuates due to line noises，increase the time constant．

## －Polarity selection（C35，C45，C78）

C35，C45 and C78 configures the polarity and therefore the input range for analog input voltage．

| C35，C45，C78 data | Terminal［12］，［V2］，［C1］（V3 function）input specifications |
| :---: | :--- |
| 0：Bipolar | -10 to +10 V |
| 1：Unipolar | 0 to +10 V （Negative value of voltage is regarded as 0 V ） |

Range／polarity selection for terminal［C1］（C1 function）（C40）
C40 configures the input range for analog input current of terminal［C1］（C1 function）．
This allows analog current input to be handled as bipolar data with 12 mA or 10 mA set to 0 by setting to 10 or 11 ， and compensating with the gain and bias．

| C40 data | Terminal input range | Handling when bias value is set to minus |
| :---: | :--- | :--- |
| 0 0：Unipolar | 4 to 20 mA （factory default） | Limit below 0 point with 0 |
| 1：Unipolar | 0 to 20 mA |  |
| 10：Bipolar | 4 to 20 mA | Enable below 0 point as minus value． |
| 11：Bipolar | 0 to 20 mA |  |

## FUNCTION

F Codes
E Codes
C Codes
P Codes

## - Gain and bias


(Example) In order to allocate for the range of 0 to $100 \%$ to the range of 1 to 5 V at terminal [12], set as follows.


## [ 3 ] PID command with UP/DOWN control (J02 = 3)

When UP/DOWN control is selected as a PID speed command, turning the terminal command "UP" or "DOWN" ON causes the PID set point value to change within the range from minimum scale to maximum scale.

The PID set point value can be specified in physical quantity units (such as temperature or pressure) with the maximum scale (J106) and minimum scale (J107).
To select UP/DOWN control as a PID set point value, the "UP" and "DOWN" should be assigned to the digital input terminals [X1] to [X5]. ([a] Function codes E01 to E09 data = 17, 18)

| "UP" | "DOWN" | Enable |
| :---: | :---: | :--- |
| Data $=17$ | Data $=18$ |  |
| OFF | OFF | Retain PID set point value. |
| ON | OFF | Increase PID set point value at a rate between $0.1 \% / 0.1 \mathrm{~s}$ and $1 \% / 0.1 \mathrm{~s}$. |
| OFF | ON | Decrease PID set point value at a rate between $0.1 \% / 0.1 \mathrm{~s}$ and $1 \% / 0.1 \mathrm{~s}$. |
| ON | ON | Retain PID set point value. |

[^31]
## [4] PID command via communications link ( $\mathrm{JO2}=4$ )

Use function code S13 to specify the PID command by communications. The transmission data of 20000d (decimal) is equal to $100 \%$ (maximum set point value) of the PID command. For details of the communications format, refer to the RS-485 Communication User's Manual.


- Other than the remote command selection by J02, the PID multistep commands 1,2 or 3 (specified by J136, J137 or J138, respectively) selected by the PID multistep commands "PID-SS1" and "PID-SS2" can also be used as preset set point values for the PID command.
- In dancer control ( $\mathrm{J} 01=3$ ), the setting command from the keypad is in conjunction with the function code J57 (PID control: Dancer position set point), and it is saved as function code data.


## Selecting feedback terminals

For feedback control, determine the connection terminal according to the type of the sensor output.

- If the sensor is a current output type, use the current input terminal [C1] (C1 function) of the inverter.
- If the sensor is a voltage output type, use inverter voltage input terminal [12], [V2], or [C1] (V3 function).

DD) For details, refer to the descriptions of E61 to E63.

## <Application example: Process control> (for air conditioners, fans and pumps)

The operating range for PID process control is internally controlled as $0 \%$ through $100 \%$. For the given feedback input, determine the operating range to be controlled by means of gain adjustment.

Example: When the external sensor has the output range of 1 to 5 V :

- Use terminal [12] as the input terminal in voltage.
- Set the gain (C32 for analog input adjustment) to $200 \%$ in order to make 5 V of the maximum output of the external sensor to be $100 \%$ of input scale. For the input specification of terminal [12], 0-10 V is equivalent to $0-$ $100 \%$. Therefore the gain has to be set $200 \%$ ( $=10 \mathrm{~V} / 5 \mathrm{~V}$ *100). Note also that any bias setting does not apply to feedback control.



## FUNCTION

## <Application examples: Dancer control> (for winders)

Example 1: When an external sensor has the output range of -7 to +7 VDC:

- Use terminal [12] as the input terminal in voltage.
- When the external sensor has $\pm 7$ VDC of bipolar output, inside the inverter $\pm 7$ VDC should be equivalent to $\pm 100 \%$. To convert $\pm 7$ VDC from the output of an external sensor to $\pm 100 \%$, the gain (C32 for analog input adjustment) has to be set $143 \%$ ( $\approx 10 \mathrm{~V} / 7 \mathrm{~V} * 100$ ).


Example 2: When an external sensor has the output range of 0 to 10 VDC:

- Use terminal [12] as the input terminal in voltage.
- When the external sensor has unipolar output, inside the inverter it is controlled within the range of 0 to $100 \%$.


In this example, it is recommended that the dancer reference position is set around the $5 \mathrm{~V}(50 \%)$ point.

## PID display coefficient and monitoring

To monitor the PID command and its feedback value, set the scale to convert the values into easy-to-understand physical quantities such as temperature. The display unit cannot be used on the standard keypad. Use with the multi-function keypad (TP-A2SW).

|  | Display unit | Maximum scale | Minimum scale |
| :--- | :---: | :---: | :---: |
| Terminal [12] | C58 | C59 | C60 |
| Terminal [C1] (C1) | C64 | C65 | C66 |
| Terminal [V2] | C70 | C71 | C72 |
| Terminal [C1] (V3) | C84 | C85 | C86 |

Refer to function codes C59, C60, C65, C66, C71, C72, C85, and C86 for details on scales, and to E43 for details on monitoring.

- Display unit (J105)

J105 can select the display units for monitoring PID feedback value with the multi-function keypad (TP-A2SW). Setting " 0 " selects the factory default unit for the PID feedback value.

| J105 | Display unit | J105 | Display unit | J105 | Display unit |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 0 | * (Factory default) | 26 | GPS | 48 | inWG (pressure) |
| 1 | No unit | 27 | GPM | 49 | inHg |
| 2 | \% | 28 | GPH | 50 | WC |
| 4 | r/min | 29 | CFS | 51 | FT WG |
| 7 | kW | 30 | CFM | 60 | K (temperature) |
| 8 | HP | 31 | CFH | 61 | ${ }^{\circ} \mathrm{C}$ (temperature) |
| 10 | $\mathrm{mm} / \mathrm{s}$ | 32 | kg/s | 62 | ${ }^{\circ} \mathrm{F}$ (temperature) |
| 11 | mm/m | 33 | $\mathrm{kg} / \mathrm{m}$ | 65 | $N \cdot m$ |
| 12 | $\mathrm{mm} / \mathrm{h}$ | 34 | kg/h | 66 | lb ft |
| 13 | $\mathrm{m} / \mathrm{s}$ | 35 | $\mathrm{lb} / \mathrm{s}$ | 70 | mm |
| 14 | $\mathrm{m} / \mathrm{min}$ | 36 | $\mathrm{lb} / \mathrm{m}$ | 71 | cm |
| 15 | m/h | 37 | $\mathrm{lb} / \mathrm{h}$ | 72 | m |
| 16 | FPS | 38 | AF/Y | 73 | km |
| 17 | FPM | 40 | Pa (pressure) | 74 | in |
| 18 | FPH | 41 | kPa (pressure) | 75 | Ft |
| 20 | $\mathrm{m} 3 / \mathrm{s}$ (flow) | 42 | MPa (pressure) | 76 | Yd |
| 21 | $\mathrm{m} 3 / \mathrm{min}$ (flow) | 43 | mbar (pressure) | 77 | mi |
| 22 | $\mathrm{m} 3 / \mathrm{h}$ (flow) | 44 | bar (pressure) | 80 | ppm (concentration) |
| 23 | L/s (flow) | 45 | mmHg (pressure) | 90 | $\mathrm{m}^{3}$ |
| 24 | L/min (flow) | 46 | Psi (pressure) | 91 | L |
| 25 | L/h (flow) | 47 | mWG (pressure) | 92 | GAL |

* The unit and scale for feedback values are used.


## FUNCTION

## Maximum scale/minimum scale (J106, J107)

The PID control values can be converted to a physical quantity that is easy to recognize and displayed accordingly. Set the maximum scale "PID command value/ display for $100 \%$ of a PID feedback value" with J106 and the minimum scale "PID command value/ display for 0\% of a PID feedback value" with J107. The displayed value is determined as follows:
Display value $=($ PID command value (\%)) / 100 * (Max. scale - Min. scale) + Min. scale

- Data setting range: (Max. scale and min. scale) -999.00 to 0.00 to 9990.00

If valid PID feedback signals ( E 61 to $\mathrm{E} 63, \mathrm{E} 66=5$ ) are assigned to the analog input terminal, and $\mathrm{J} 105=0$ (factory default), the scale (C59, C60, C65, C66, C71, C72, C85, or C86) for the analog input terminal is applied for the scale.

PID multistep command 1 to 3 (J136, J137 and J138)
PID command values can be given by digital input PID multistep commands. Assign the digital input terminals with "PID-SS1" and "PID-SS2".

| PID-SS2 | PID-SS1 | PID multistep command |
| :---: | :---: | :---: |
| OFF | OFF | Not selected |
| OFF | ON | J136: PID multistep command 1 setting range: -999.0 to -0.00 to -9990.0 |
| ON | OFF | J137: PID multistep command 2 setting range: -999.0 to 0.00 to 9990 |
| ON | ON | J138: PID multistep command 3 setting range: -999.0 to 0.00 to 9990 |

```
J03 to J06 PID Control P (Gain), I (Integral time), D (Differential time), Feedback filter
 Related function codes: J59: P (Gain) 2
 J60: I (Integral time) 2
 J61: D (Differential time) }
```


## P gain (J03)

J03 specifies the proportional gain for the PID processor.

- Data setting range: 0.000 to 30.000 (times)


## P (Proportional) action

An operation in which the MV (manipulated value: output frequency) is proportional to the deviation is called P action, which outputs the MV in proportion to deviation. However, P action alone cannot eliminate deviation.
Gain is data that determines the system response level against the deviation in P action. An increase in gain speeds up response, but an excessive gain may oscillate the inverter output. A decrease in gain delays response, but it stabilizes the inverter output.
It may be necessary to adjust the P gain when performing dancer control based on differences in machine inertia associated with thick winding and thin winding, or if there is a large deviation from the reference position when the dancer starts.


## - I integral time (JO4)

J04 specifies the integral time for the PID processor.

- Data setting range: 0.0 to 3600.0 (s)
0.0 indicates that the integral component is ineffective


## I (Integral) action

An operation in which the change rate of the MV (manipulated value: output frequency) is proportional to the integral value of deviation is called I action, which outputs the MV that integrates the deviation. Therefore, I action is effective in bringing the feedback value close to the commanded value. For the system whose deviation rapidly changes, however, this action cannot make it respond quickly.

The effectiveness of I action is expressed by integral time as parameter, that is J04 data. The longer the integral time, the slower the response. The reaction to the external disturbance also becomes slow. The shorter the integral time, the faster the response. Setting too short integral time, however, makes the inverter output tend to oscillate against the external disturbance.


## FUNCTION

F Codes

- D differential time (J05)

J05 specifies the differential time for the PID processor.

- Data setting range: 0.00 to 600.00 (s)
0.00 indicates that the differential component is ineffective.


## D (Differential) action

An operation in which the MV (manipulated value: output frequency) is proportional to the differential value of the deviation is called $D$ action, which outputs the MV that differentiates the deviation. $D$ action makes the inverter quickly respond to a rapid change of deviation.

The effectiveness of $D$ action is expressed by differential time as parameter, that is J 05 data. Setting a long differential time will quickly suppress oscillation caused by P action when a deviation occurs. Too long differential time makes the inverter output oscillation more. Setting short differential time will weakens the suppression effect when the deviation occurs.


The combined uses of $P, I$, and $D$ actions are described below.

## (1) PI control

PI control, which is a combination of P and I actions, is generally used to minimize the remaining deviation caused by P action. PI control always acts to minimize the deviation even if a commanded value changes or external disturbance steadily occurs. However, the longer the integral time of I action, the slower the system response to quick-changed control. P action can be used alone for loads with very large part of integral components.

## (2) PD control

In PD control, the moment that a deviation occurs, the control rapidly generates greater MV (manipulated value: output frequency) than that generated by $D$ action alone, to suppress the deviation increase. When the deviation becomes small, the behavior of $P$ action becomes small. A load including the integral component in the controlled system may oscillate due to the action of the integral component if $P$ action alone is applied. In such a case, use PD control to reduce the oscillation caused by P action, for keeping the system stable. That is, PD control is applied to a system that does not contain any damping actions in its process.

## (3) PID control

PID control is implemented by combining $P$ action with the deviation suppression of $I$ action and the oscillation suppression of $D$ action. PID control features minimal control deviation, high precision and high stability. In particular, PID control is effective to a system that has a long response time to the occurrence of deviation.
Follow the procedure below to set data to PID control function codes.
It is highly recommended that you adjust the PID control value while monitoring the system response waveform of the PID feedback with an oscilloscope or equivalent. Repeat the following procedure to determine the optimal solution for each system.

- Increase the data of J03 (PID control P (Gain)) within the range where the feedback signal does not oscillate.
- Decrease the data of J04 (PID control I (Integral time)) within the range where the feedback signal does not oscillate.
- Increase the data of J05 (PID control D (Differential time)) within the range where the feedback signal does not oscillate.

The method for refining the system response from the waveforms is shown below.

1) Suppressing overshoot

Increase the data of J04 (Integral time) and decrease that of J05 (Differential time).

2) Quick stabilizing (Moderate overshoot is allowable.)

Decrease the data of J03 (Gain) and increase that of J05 (Differential time).

3) Suppressing oscillation whose period is longer than the integral time specified by J04 Increase the data of J04 (Integral time).

4) Suppressing oscillation whose period is approximately the same as the time specified by J05 (Differential time)
Decrease the data of J05 (Differential time).
Decrease the data of J 03 (Gain), if the oscillation cannot be suppressed even though the differential time is set at 0 sec .


## Feedback filter (J06)

J06 specifies the time constant of the filter for feedback signals under PID control.

- Data setting range: 0.0 to 900.0 (s)
- This setting is used to stabilize the PID control loop. Setting a too long time constant makes the system response slow.

[^32]

```
PID control (Pressurization frequency, Pressurization time)
 Related function codes: J15 (Low liquid level stop operating frequency level)
 J16 (Low liquid level stop elapsed time)
 J17 (Starting frequency)
 J23 (Low liquid level stop/start feedback deviation)
 J24 (Low liquid level stop/start delay time)
```


## Low liquid level stop function (J15 to J17, J23, J24)

Function codes J 15 to J 17 configure the sleep function in pump control, a function that stops the inverter when the discharge pressure increases, causing the volume of water to decrease.
When the discharge pressure has increased, decreasing the reference frequency (output of the PID processor) below the sleep level (J15) for the period specified sleep timer (J16), the inverter decelerates to stop, while PID control itself continues to operate. When the discharge pressure decreases, increasing the reference frequency (output of the PID processor) above the wakeup frequency (J17), the inverter resumes operation.

The restarting conditions can be adjusted with J23 and J24.

## - PID control (Sleep frequency) (J15)

J 15 specifies the frequency which triggers slow flowrate stop of inverter.

## - PID control (Sleep timer) (J16)

J 16 specifies the period from when the PID output drops below the frequency specified by J15 until the inverter starts deceleration to stop.

## - PID control (Wakeup frequency) (J17)

J 17 specifies the wakeup frequency. Set J 17 to a frequency higher than the sleep frequency (J15). If the specified wakeup frequency is lower than the sleep frequency, the sleep frequency is ignored; the sleep function is triggered when the output of the PID processor drops below the specified wakeup frequency.

## - PID low liquid level stop "PID-STP" assignment (Function code E20 to E24, E27, data = 44)

"PID-STP" ("Under sleep mode of PID control") is ON when the inverter is in a stopped state due to the sleep function under PID control. PID-STP should be assigned if it is necessary to output a signal to indicate that the inverter is stopped.
For the sleep function, see the chart below.


■ PID control（Wakeup level of PID error）（J23）
－PID control（Wakeup timer）（J24）
When both of the two conditions below are satisfied（AND），the inverter is restarted．
－The discharge pressure has decreased，increasing the frequency（output of the PID processor）to or above the wakeup frequency（J17）and the wakeup timer（J24）has elapsed．
－The absolute error of the PV（feedback value）against to the SV（command value）is equal to or higher than the wakeup level of PID error（J23），and the wakeup time（J24）has elapsed．


## Low liquid level stop pressurization function（J08，J09）

By setting the pressurization frequency（ J 08 ）and pressurization time（ J 09 ），pressurization control is performed after the low liquid level stop elapsed time（J16）at the low liquid level stop operating frequency level（J15）or less．Hold is applied to PID control during pressurization．
On equipment with bladder tank，by using this function to apply pressure immediately before stopping to raise the pressure，it is possible to increase the stopping time to longer than normal，realizing energy－saving operation．
By being able to adjust the pressurization frequency in the parameters，a pressure level appropriate to the equipment status can be set．

Refer to the following diagram for details on settings and operation．


Fig．5．3－32

J10 suppresses overshoot in control with the PID processor. As long as the error between the feedback and the PID command is beyond the preset range, the integrator holds its value and does not perform integration operation.

- Data setting range: 0 to 200(\%)



## J11 to J13 <br> PID Control (Select warning output, Upper limit of warning (AH) and Lower limit of warning (AL))

The inverter can output two types of warning signals (caused by process command value or PID error value) associated with PID control if the Digital output signal "PID-ALM" is assigned to any of the programmable, output terminals with any of E20 to E24, and E27 (data = 42).

J11 specifies the warning output types. J12 and J13 each specify the upper and lower limits for warnings.

- PID Control (Select warning output) (J11)

Sets the warning type. J11 specifies one of the following alarms available.

| J11 data | Alarm | Content |
| :---: | :---: | :---: |
| 0 | Warning caused by process command value | While PV < AL or $\mathrm{AH}<\mathrm{PV}$, "PID-ALM" is ON |
| 1 | Warning caused by process command value with hold | Same as above (with Hold) |
| 2 | Warning caused by process command value with latch | Same as above (with Latch) |
| 3 | Warning caused by process command value with hold and latch | Same as above (with Hold and Latch) |
| 4 | Warning caused by PID error value | While PV < SV - AL or SV + AH < PV, "PID-ALM" is ON. |
| 5 | Warning caused by PID error value with hold | Same as above (with Hold) |
| 6 | Warning caused by PID error value with latch | Same as above (with Latch) |
| 7 | Warning caused by PID error value with hold and latch | Same as above (with Hold and Latch) |

Hold: During the power-on sequence, the alarm output is kept OFF (disabled) even when the monitored quantity is within the alarm range. Once it goes out of the alarm range, and comes into the alarm range again, the alarm is enabled.

Latch: Once the monitored quantity comes into the alarm range and the alarm is turned ON, the alarm will remain ON even if it goes out of the alarm range. To release the latch, perform a reset by using the key on keypad or turning the terminal command RST ON. Resetting can be done by the same way as resetting an alarm.

## - PID Control (Upper limit of warning (AH)) (J12)

$J 12$ specifies the upper limit of warning (AH) in percentage (\%) of the feedback value.

- PID Control (Lower limit of warning (AL)) (J13)

J 13 specifies the lower limit of warning (AL) in percentage (\%) of the feedback value.
Note
The value displayed (\%) is the ratio of the upper/lower limit to the full scale ( 10 V or 20 mA ) of the feedback amount (in the case of a gain of $100 \%$ ).

Upper limit of warning (AH) and lower limit of warning (AL) also apply to the following alarms.

| Alarm | Content | How to handle the warning |  |
| :---: | :---: | :---: | :---: |
|  |  | Select warning output (J11) | Data setting |
| Upper limit (process command) | ON when J12(AH) < PV | Warning caused by process command value | $\mathrm{J} 13(\mathrm{AL})=0$ |
| Lower limit (process command) | ON when PV < J13(AL) |  | $\mathrm{J} 12(\mathrm{AH})=100 \%$ |
| Upper limit (PID error value) | ON when SV + J12(AH) < PV | Warning caused by PID error value | $\mathrm{J} 13(\mathrm{AL})=100 \%$ |
| Lower limit (PID error value) | ON when PV < SV - J13(AL) |  | $\mathrm{J} 12(\mathrm{AH})=100 \%$ |
| Upper/lower limit (PID error value) | ON when $\mid$ SV - PV\| > J13(AL) |  | $\mathrm{J} 13(\mathrm{AL})=\mathrm{J} 12(\mathrm{AH})$ |
| Upper/lower range limit (PID error value) | $\begin{aligned} & \text { ON when SV - J13(AL) < PV < SV + } \\ & \mathrm{J} 13(\mathrm{AL}) \end{aligned}$ | Warning caused by PID error value | A negative logic signal should be assigned to "PIDALM". |
| Upper/lower range limit (process command) | ON when J13(AL) < PV < J12(AH) | Warning caused by process command value |  |
| Upper/lower range limit (PID error value) | ON when SV - J13(AL) < PV < SV + J12(AH) | Warning caused by PID error value |  |


| FUNCTION |
| :---: |
| F Codes |
| E Codes |
| C Codes |
| P Codes |
| H Codes |
| A Codes |
| b Codes |
| r Codes |
| J Codes |
| d Codes |
| U Codes |
| y Codes |
| K Codes |

```
J18, J19 PID control (PID output limiter upper limit, PID output limiter lower limit)
```

The upper and lower limiters can be specified to the PID output, exclusively used for PID control. The settings are ignored when PID cancel "Hz/PID" is enabled and the inverter is operated at the reference frequency previously specified.
(띠 Function codes E01 to E09 data = 20)

- PID Control (Upper limit of PID process output) (J18)

J 18 specifies the upper limit of the PID processor output limiter in \%. If the value of " 999 " is specified to J 18 , the setting of the frequency limiter (Upper) (F15) will serve as the upper limit.

PID Control (Lower limit of PID process output) (J19)
J19 specifies the lower limit of the PID processor output limiter in \%. If the value of " 999 " is specified to J19, the setting of the frequency limiter (Lower) (F16) will serve as the lower limit.

## J21 Condensation prevention (Duty)

The motor temperature can be raised while the inverter is stopped to prevent condensation forming by supplying DC current for a fixed period of time.
This function does not work when a synchronous motor is selected.

## Enable conditions

By turning on condensation prevention "DWP" while the inverter is stopped, the condensation prevention function is started.
(Function codes E01 to E09, data $=39$ )

## - Condensation prevention (Duty) (J21)

The current flowing to the motor is based on DC braking 1 (operation level) (F21), and duty control is performed based on the condensation prevention duty (J21) ratio corresponding to DC braking 1 (time) (F22).


Fig. 5.3-33 Condensation prevention operation

## J22 Switch to commercial power sequence (Refer to E01 to E09)

Refer to the function code E01 to E09 switch to commercial power built-in sequence "ISW50" and "ISW60" items for a detailed explanation of the switch to commercial power sequence setting.

Refer to the J08 item.

## PID Control（Dancer position set point）

Related function codes：d150 PID Control（Dancer upper limit warning position） d151 PID Control（Dancer lower limit warning position）

J 57 specifies the dancer position set point in the range of $-100 \%$ to $+100 \%$ for dancer control．If $\mathrm{J} 02=0$（keypad） is selected，this function code is applied for the dancer position set point．
It is also possible to modify the set point（PID command）with the keys on the keypad．If modified，the new set point value is stored as J 57 data automatically．
For the setting procedure of the set point（PID command），refer to Chapter 3 ＂ 3.3 .5 Setting up PID commands from the keypad．＂
■ Dancer upper limit warning signal＂D－UPFL＂assignment（Function code E20 to E24，E27，data＝135）
－Dancer lower limit warning signal＂D－DNFL＂assignment（Function code E20 to E24，E27，data＝136）
■ Dancer position limit warning signal＂D－FL＂assignment（Function code E20 to E24，E27，data＝137）
－Dancer upper／lower limit warning output（d150，d151）
A dancer position upper limit position warning，lower limit position warning，and upper／lower limit position warning can be output when performing dancer control．The upper／lower limit position settings are specified in the $-100 \%$ to $+100 \%$ range in d150 and d151，respectively．
d150
d151

|  | Setting range | Factory default |
| :--- | :--- | :--- |
| PID control dancer upper limit <br> warning position | -100.0 to 100．0\％ | $100.00 \%$ |
| PID control dancer lower limit <br> warning position | -100.0 to $100.0 \%$ | $0.00 \%$ |

Table 5．3－24 Output conditions for dancer position upper／lower limit warning signals

| E20 to E24，E27 | Operating condition 1 | Operating condition 2 |
| :---: | :---: | :---: |
| ＂D－UPFL＂ <br> （Setting value：135） | This is valid when the dancer position enters the intermediate position detection range（J57 $\pm J 58$ ）after operation starts． | ON when dancer position＞dancer upper limit warning position［d150］ |
|  |  | OFF when dancer position $\leq$ dancer upper limit warning position［d150］ |
| ＂D＿DNLF＂ |  | ON when dancer position＜dancer lower limit warning position［d151］ |
| （Setting value：136） |  | OFF when dancer position $\geq$ dancer lower limit warning position［d151］ |
| ＂D＿LF＂ |  | ON when＂D＿UPLF＂＝ON or D＿DNLF＝ON |
| （Setting value：137） |  | OFF when＂D＿UPLF＂＝OFF and D＿DNLF＝OFF |



```
J58
J59 to J61
PID Control (Detection width of dancer position error)
PID Control (P (Gain) 2, I (Integral time) 2 and D (Differential time) 2)
```

When the feedback value of dancer roll position comes into the range of "Detection width of dancer position error (J58)" the inverter switches PID constants from the combination of J03, J04 and J05 to that of J59, J60 and J61, respectively in its PID processor. Giving a boost to the system response by raising the P gain may improve the system performance in the dancer roll positioning accuracy.

## - PID Control (Detection width of dancer position error) (J58)

J 58 specifies the bandwidth in the range of 1 to $100 \%$. Specifying " 0 " does not switch PID constants.

- PID control P (Gain) 2 (J59)

■ PID control I (Integral time) 2 (J60)

- PID control D (Differential time) 2 (J61)

These are the same as PID control P (Gain), I ( Integral time), and D (Differential time) (J03, J04, J05).

## J62 PID control (PID control block selection)

It is possible to select whether to add dancer control PID regulator output to the main settings, or subtract it from the main settings. It is also possible to select whether to compensate the main settings with a ratio, or with an absolute value $(\mathrm{Hz})$ for PID regulator output.

| J62 data |  |  | Block selection |  |
| :---: | :---: | :---: | :---: | :---: |
| Decimal | Bit 1 | Bit 0 | Control amount | Operation for main settings |
| 0 | 0 | 0 | Ratio control | Adder |
| 1 | 0 | 1 | Ratio control | Subtracter |
| 2 | 1 | 0 | Absolute value control | Adder |
| 3 | 1 | 1 | Absolute value control | Subtracter |

## Winding/unwinding selection

The frequency compensation direction differs depending on whether winding or unwinding is being performed. Set J62: bit $0=0$ for winding, and J62: bit $0=1$ for unwinding.


## [5] Overload stop function

J63 to J67
J90 to J92

Overload stop function (Detection value, Detection level, Operation selection, Operation mode, Timer time)
Overload stop function (Torque limiting P (Gain), Torque limiting I (Integral time), Current limiting level)

Detects an overload status and if it exceeds the specified detection level (J64) for the specified timer duration (J67), the operation is stopped based on the selected action (J65). It is used to protect the system when an unacceptable overload is applied or to lock the motor shaft by mechanically hitting it to the stopper.
This function is disabled while motor 2 to 4 is selected.

- Item selection (J63)

Select a target (detected item) to monitor the load status.

| J63 data | Detected value | Function overview |
| :---: | :---: | :--- |
| 0 | Torque | To improve the accuracy of calculated torque, perform auto-tuning. Select <br> the driving torque as the target. |
| 1 | Current | The no-load current always flows to the motor. Specify J64 (Detection <br> level) correctly considering the no-load current of the applied motor. |

## - Detection level (J64)

Set the value for overload detection level in percentage (\%) of the motor rated torque or current. When stopper contact is selected $(\mathrm{J} 65=3)$, detection is performed at motor rated torque of $100 \%$, regardless of the J64 setting.
(See Fig. 5. 3-35)

## Note <br> Under sensorless vector control (synchronous motors), the function is disabled at a speed of $10 \%$ or less of the base frequency.

Mode selection (J65)
Select an operation when the load exceeds the value specified in J64.

| J65 data | Enable | Function overview |
| :---: | :---: | :--- |
| 0 | Disable | Overload stop function operation cancel |
| 1 | Decelerate to <br> stop | Decelerates to stop the motor, as specified in deceleration time. |
| 2 | Coast to stop | Immediately shuts down the inverter, allowing the motor to coast to a stop. |
| 3 | Contacting the <br> stopper | The motor decelerates with torque limiting operation, and current control is <br> performed to ensure the holding torque. Current control continues until the <br> run command is turned OFF. Apply the brake before turning OFF the run <br> command. <br> "IOL" and "IOL2" are output during stopper contact control. <br> When stopper contact is selected, perform auto tuning. |

[^33]
## FUNCTION



Fig. 5.3-34 Operation selection $\mathrm{J} 65=1,2$


Fig. 5.3-35 Operation selection $\mathrm{J} 65=3$

## Operation Mode (J66)

J66 specifies the inverter's operation condition under which the overload stop function is activated.
Carefully make this setting so as not to activate the overload stop function when it is not necessary.

| J66 data | Operation mode |
| :---: | :--- |
| 0 | Enabled during constant speed <br> and deceleration time. |
| 1 | Enabled during constant speed |
| 2 | Enabled always |

## Timer (J67)

Apply the timer (J67) to prevent the start of the overload stop function due to the instantaneous, unintended load fluctuation. The overload stop function is activated when the operation condition has continued for specified timer J67 (if J65 = 1, 2).
If $\mathrm{J} 65=3$, the timer time will be the time until the stopper contact function is enabled after switching to J66 operation mode. Set at such times as when waiting time is necessary until the stopper contact function is enabled after the motor reaches a constant speed.

## ■ Enable overload stop "OLS" ( $\mathbb{C l}$ Function codes E01 to E09, data = 46)

Turning this terminal command ON enables the overload stop function; turning it OFF disables the function. If "OLS" is not assigned to any terminal, the overload stop function is always valid. Overload stop is not performed when OFF. By turning OFF the "OLS" signal when the motor is stopped due to an overload stop to disable overload stop, the motor will restart, and therefore caution is advised.

## Torque limiting P (Gain) (J90)

If the torque limiting operation response is slow when the stopper contact function is selected, increase the gain, and if hunting occurs, decrease the gain.

- Torque limiting I (Integral time) (J91)

If the torque limiting operation response is slow when the stopper contact function is selected, decrease the integral time, and if hunting occurs, increase the integral time.

## Current command level (J92)

Compensates the current command during current control with the stopper contact function. By increasing the setting value, the holding torque increases, but an inverter overload alarm (OLU) or motor overload alarm (OL1) may occur, possibly resulting in mechanical system vibration.

## [6] Brake control signal

| J68 to J72 |  |
| :--- | :--- |
| J95, J96 |  |
| H180 <br> d120 to d125 | Brake signal (Brake-release current, Brake-release frequency/speed, Brake-release <br> timer, Brake-apply frequency/speed, Brake-apply timer) <br> Brake signal (Brake-release torque, Operation selection) <br> Brake signal (Brake signal operation check time) |
| For brake signal reverse rotation (Brake-release current, Brake-release <br> frequency/speed, Brake-release timer, Brake-release torque, Brake-apply <br> frequency/speed, Brake-apply timer) <br> Related function codes: A98, b98, r98: Motor 2 to 3 (Function selection) |  |

The brake (release/apply) control signal is useful for lift application such as a hoist. This signal is adjustable with these function codes. It is possible to set the release and apply conditions based of these signals (current, frequency) so that a hoisted load does not fall down at the start or stop of the operation, or so that the load applied to the brake is reduced. The inverter is also equipped with dedicated reverse rotation function codes, allowing individually adjustments to be made with forward rotation or reverse rotation if conditions differ when rising and falling.

## - Brake signal "BRKS" assignment (Function code E20 to E24, E27, data = 57)

This signal outputs a brake control command that releases or applies the brake.

## Releasing the Brake

When the inverter output current and output frequency exceeds the specified level for the brake control signal (J68/J69/J95) for the period specified by J70 (Brake control signal (Brake-release timer)), the inverter judges that required motor torque is generated and turns the signal BRKS ON for releasing the brake.

This prevents a hoisted load from falling down due to an insufficient torque when the brake is released.

| Function code | Name | Data setting range | Remarks |
| :---: | :--- | :--- | :--- |
| J68 | Brake-release <br> current | 0.00 to $300.00 \%$ | Set the inverter rated current as <br> $100 \%$. |
| J69 | Brake-release <br> frequency/speed | 0.0 to 25.0 Hz |  |
| J70 | Brake-release <br> timer | 0.000 to 5.000 s | Set the motor rated torque as <br> $100 \%$. |
| J95 | Brake-release <br> torque | 0.00 to $300.00 \%$ |  |

[^34]
## FUNCTION

## Brake check signal "BRKE" (Function code E01 to E09, data = 65)

If the status of the brake signal "BRKS" fails to agree with the status of the brake check signal "BRKE" during inverter operation, the inverter enters an alarm stop state with
This signal is used as a feedback signal for the brake signal BRKS. When the mechanical brake does not operate, it causes the inverter to trip to activate the mechanical brake. The response delay time for BRKS and BRKE can be adjusted with H180: Brake response time.
H180: Brake signal operation check time, setting range: 0.00 s to 10.00 s

## Applying the brake

When the run command is OFF and the output frequency drops below the level specified by J 71 (Brake control signal (Brake-applied frequency/speed)) and stays below the level for the period specified by J72 (Brake control signal (Brake-applied timer)), the inverter judges that the motor rotation is below a certain level and turns the signal "BRKS" OFF for activating (applying) the brake.

This operation reduces the load applied to the brake, extending lifetime of the brake.

| Function code | Name | Data setting range | Remarks |
| :---: | :---: | :---: | :---: |
| J71 | Brake-apply frequency/speed | 0.0 to 25.0 Hz |  |
| J72 | Brake-apply timer | 0.000 to 5.000 s |  |
| J96 | Brake signal (mode selection) <br> (Only available when using vector control with speed sensor) | 0 to 31 (decimal format) <br> Operation speed (bit 0) <br> 0: Detected speed (default) <br> 1: Reference speed | Specifies the criteria of speed to be used for Brake-apply condition. |
|  |  | Condition of brake-apply control signal (Bit 4) <br> 0: Regardless of run command status (ON or OFF) (default) <br> 1: Only when run command is OFF | Specifies whether to turn off a brake control signal independent of a run command ON/OFF or only when a run command is OFF. When forward and reverse operations are switched, brakeapplied conditions may be met in the vicinity of zero speed. <br> For such a case, select "Only when a run command is OFF" (Bit $4=1$ ). |



* If inverter output was turned off before the timer counts up, then the brake is applied.

[^35]

Fig. 5.3-36 Operation time chart under v/f control


Fig. 5.3-37 Operation time chart under vector control with speed sensor

- J71 can be used even under vector control with speed sensor.
- If using with zero speed control under vector control with speed sensor, set the J95 brake-release torque to $0 \%$.
- If the brake is released at zero speed, use torque bias.
- If the brake is applied (brake signal OFF) to stop the motor after releasing the brake (brake signal ON) and performing operation, turn the inverter run command OFF and then back ON again in order to release the brake (brake signal ON) to resume operation.
- The brake release signal is not output during auto tuning (stop mode).


## Dedicated reverse rotation brake signal function codes

If necessary to make individual adjustments with forward rotation or reverse rotation, do so with the following dedicated reverse rotation function codes. If data $=999$ (factory default), operation will be performed with the J code function code setting value.

| Function code | Name | Data setting range | Remarks |
| :---: | :---: | :---: | :---: |
| d120 | Brake-release current | 0.00 to $300.00 \%$, 999: operation based on J68 setting value | $100 \%$ = inverter rated current |
| d121 | Brake-release frequency/speed | 0.0 to 25.0 Hz , 999: operation based on J69 setting value |  |
| d122 | Brake-release timer | 0.000 to $5.000 \mathrm{~s}, 999$ : operation based on J70 setting value |  |
| d123 | Brake-release torque | 0.00 to $300.00 \%$, 999: operation based on J95 setting value | 100\% = motor rated torque |
| d124 | Brake-apply frequency/speed | 0.0 to 25.0 Hz , 999: operation based on J71 setting value |  |
| d125 | Brake-apply timer | 0.000 to $5.000 \mathrm{~s}, 999$ : operation based on J72 setting value |  |

Overload stop function（Torque limiting P（Gain），Torque limiting I（Integral time）， Current limiting level）

Refer to the J68 item．

```
J97 to J99
d27 to
d28
```

$$
\begin{aligned}
& \text { Servo lock (Gain, Completion timer, Completion range) } \\
& \text { Servo lock (Gain switching time, Gain 2) }
\end{aligned}
$$

## Servo lock

This function holds the motor within the positioning completion range specified by J 99 for the period specified by J98 even if an external force applies to the motor．The servo lock function is available only at vector control with speed sensor（F42＝6，16）．By assigning servo lock command＂LOCK＂to the digital input terminal and turning it ON， the servo lock function is enabled．

Note
The servo lock operates at low speed，and if used with an external force applied for a long period of time， there is a risk of overheat protection being triggered．Inverter output will be at low frequency when the servo lock is applied，and therefore the servo lock should be used in the current rating $150 \% / 3 \mathrm{~s}$ ， $80 \% /$ continuous range to act as inverter thermal limiting．（The carrier frequency is automatically limited to the upper limit of 5 kHz ．）
－Startup conditions of servo lock

|  | Servo lock control starts when the following conditions are met： |  |
| :---: | :--- | :--- |
|  | F38 $=0$ <br> （Use actual speed as a decision criteria） | F38＝1 <br> （Use reference speed as a decision criteria） |
| 1 | Run command OFF，or Reference frequency＜Stop frequency（F25） |  |
| 2 | ＂LOCK＂（＂Servo lock command＂）ON（Assignment of＂LOCK＂（E01 to E05 data＝47）） |  |
| 3 | The actual speed is less than the stop <br> frequency（F25）． | The reference speed is less than the stop <br> frequency（F25）． |

## －Operation examples



Fig．5．3－38 Typical control sequence of servo lock


## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
J Codes
d Codes
U Codes
K Codes

## Specifying servo lock control

In-position signal "PSET" assignment (E20 to E24, E27: function code data = 82), servo lock (completion timer) (J98), servo lock (completion range)(J99)
When the servo lock ends, and the motor is held in the range set at servo lock (completion range) (J99) for the length of time set at servo lock (completion timer) (J98), an ON signal is output as the in-position signal.

Data setting range J98: 0.000 to 1.000 (s) (factory default: 0.100 )
Data setting range J99: 0 to 9999 (pulses) (factory default: 10)

## - Servo lock (Gain) (J97), (Gain 2) (d28)

J97 specifies the gain of the servo lock positioning to adjust the stop behavior and shaft holding torque against an external force. If the mechanical stiffness is not high, J97 is difficult to set larger. Switching is possible in 2 steps with the digital input servo lock gain selection (SLG2) (E01 to E09 = 110). If the load inertia changes, and control is difficult with one type of servo lock gain, switch to gain 2.

| J97, d28 | Small $\longleftrightarrow$ Large |
| :--- | :---: |
| Stop behavior | Response slow, but smooth $\leftrightarrow$ Response quick, but hunting might occur. |
| Shaft holding <br> torque | Small $\leftrightarrow$ Large |

Data setting range: 0.000 (servo lock disabled), 0.001 to 9.999 (times) (factory default: 0.010 )
Note: Resolution of J97 and factory default value is different from the FRENIC-MEGA (G1) series.

## Servo lock gain selection "SLG2" (Function code E01 to E09, data = 110)

Servo lock gain (J97) is selected when OFF, and servo lock gain 2 (d28) is selected when ON.
Switching is possible while the servo lock is applied.

## - Servo lock gain switching time (d27)

If the servo lock gain is switched while the servo lock is applied with the servo lock gain selection "SLG2" signal, vibrations may occur if the change is made in steps, and therefore the servo lock gain should be changed with the servo lock gain switching time (d27) lamp function to suppress vibrations.

Data setting range: 0.000 to 1.000 (s) (factory default: 0.000 )


| Setting value |  | SLG2 |  |
| :---: | :---: | :---: | :---: |
| J97 | d28 | OFF | ON |
| 0 | 0 | Servo lock disable (does not start) |  |
| $\neq 0$ | 0 | Servo lock applied with J97 | Servo lock disable (does not start) |
| 0 | $\neq 0$ | Servo lock disable (does not start) | Servo lock applied with d28 |
| $\neq 0$ | $\neq 0$ | Servo lock applied with J97 | Servo lock applied with d28 |

## Servo lock precautions

(1) Positioning control error

If a positioning error exceeds the value equivalent to four rotations of the motor shaft when the inverter is servo locked, the inverter issues a positioning control error signal ero.
(2) Stop frequency (F25) under servo lock

Since servo lock starts when the output frequency is below the stop frequency (F25), it is necessary to specify such F25 data that does not trigger Era (that is, specify the value equivalent to less than 4 rotations of the motor shaft).
Stop frequency (F25) < (4 x Gain (J97) x Maximum frequency)
(Example) When Gain (J97) $=0.01$ and Maximum frequency (F03) $=60 \mathrm{~Hz}$, specify F25 data $<2.4 \mathrm{~Hz}$.
(3) The following functions are ignored in the servo lock mode

- Frequency/speed control specified with the stop frequency
- Rotation direction limitation

Refer to the description of J02.


MV is forcibly changed under the actual load, speed step changes are repeated several times, the feedback signal change status is observed, each of the P, I, and D constants of PID control are estimated, and then they are automatically written to each function code.

Short-time response tuning and long-time response tuning can be used based on the feedback signal time constant. Furthermore, the step change amount can be set as the tuning operation amount.

If a tuning error occurs, the user will be notified with an error code. Take appropriate measures based on the content of the error code. Refer to the explanation on each function code for details on each of the P, I, and D constants.
PID control then continues when tuning is complete.

- PID control 1 (Tuning) (J108)

| J108 data | Function |
| :---: | :--- |
| 0 | No tuning |
| 1 | Time constant for short-time response: approx. 30 s or less (required time: approx. 10 s to <br> 8 min) |
| 2 | Time constant for long-time response: approx. 30 s or more (required time: approx. 3 min to <br> 90 min) |
| 100 | Tuning cancel: Tuning is canceled when the run command turns OFF, PID control is <br> canceled, forced operation is performed, or an alarm, etc. occurs. |
| 101 | Mode unmatch: The time constant is too long or too short. If performed with J108 set to 1, <br> try again with 2, and if performed with J108 set to 2, reset to 1 and try again. |
| 102 | MV too small: The feedback signal is almost unchanged. Increase operation amount J109, <br> and perform tuning again. |
| 104 | MV too large: The feedback signal change is too large. Decrease operation amount J109. |
| 105 | MV change: Operation limiting such as torque limiting (F40, F41) or current limiting (F43) <br> occurs, the speed changes, and normal tuning is not possible. Disable limiting, decrease <br> the limiting values, or decrease operation amount J109. This error code may occur even if <br> tuning is canceled. |
| 106 | PV too large or too small: Feedback signal PV lies outside the 0 to 100\% range, and <br> therefore tuning cannot be performed. Review scaling. |
| 107 | PV unstable: Increase filters such as J06, C33, or C38 so that the PV value stabilizes. |
| 102 | Other: Cases where tuning is not possible due to such reasons as no terminal with PV <br> assigned, turning started during operation at the upper limit frequency |
| 10 |  |

## PID control 1 (Tuning operation amount) (J109)

Sets the amount of speed change when performing tuning. Outputs the frequency to which J109 is added to the frequency currently output the moment J 108 is set.

- Data setting range: 10 to $100 \%$ (maximum frequency: $100 \%$, initial value: $10 \%$ )


## Preparation for PID tuning

- Perform a test run under speed control to ensure that there is nothing to hinder operation with the actual load.
- Specify feedback signal related signals, and ensure that it is possible to monitor the signal level at the inverter.
- Specify PID control related settings, and ensure that PID control can be performed.
- The speed is changed in steps when tuning, and therefore the tuning operation amount should be studied, and the result set in J 109 so that the feedback signal (PV) does not drop to $0 \%$ or lower, or $100 \%$ or higher.
- Ascertain the approximate time constant for the feedback signal beforehand by changing the speed control speed, and decide whether to perform short-time response tuning or long-time response tuning.


## PID tuning procedure

(1) Turn ON the run command to run the inverter.
(2) PID control is performed, and the feedback signal (PV) stabilizes.
(3) Set J108 to 1 (short-time response) or 2 (long-time response).
(4) Return the keypad display to the operation monitor. " $F$ " performed. The display returns to the specified monitor when tuning is complete.
(5) The J 108 setting value returns to 0 when tuning is successfully completed. If an error occurs, "Rabrt" is displayed on the keypad, and the error code is stored in J108. Take measures to eliminate the cause, and perform tuning again.

## PID tuning precautions

- Tuning involves changing in steps by running the motor with an actual load, and therefore steps should be taken to ensure that the run command is turned OFF immediately, or the motor immediately coasts to a stop in preparation for unforeseen circumstances.
- If performing tuning with $\mathrm{J} 108=2$ (long-time response), set a large value for J 06 (feedback filter), and perform tuning with the feedback signal (PV) stable. If PV is unstable, the system may continue to wait for long-time PV to stabilize.


## J136 to J138

PID control 1 (PID multistep command 1 to 3 )
Refer to the description of J02.

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
d Codes
U Codes
y Codes
K Codes

### 5.3.9 d codes (Applied functions 2)

## [1] Speed control

```
d01/A43/ b43/r43
d02/A44/ b44/r44
d03/A45/ b45/r45
d04/A46/ b46/r46
d05/A47/ b47/r47
d06/A48/ b48/r48
```


## Speed control 1 to 4 (Speed command filter) (Speed detection filter) ( P gain) (I integral time) (FF gain) <br> (Output filter)

Reference function code: $d 25$ : ASR switching time

These function codes are used to adjust speed control constants, allowing optimum speed control to be performed under V/f control with speed sensor, vector control with speed sensor, or sensorless vector control.

- Block diagram of the speed control algorithm



## Selected speed control parameter set

In preparation for situations where it is necessary to change speed control constants due to changes in the load or machine conditions, FRENIC-MEGA is equipped with 4 sets of speed control constants, allowing changes to be made with digital input terminal "MPRM1" and "MPRM2".

## - Speed command filter (d01/A43/b43/r43)

d01 specifies the time constant determining the first order delay of the speed command filter.

- Data setting range: 0.000 to 5.000 (s)

Modify this data when an excessive overshoot occurs against the change of the reference speed.
Increasing the filter time constant stabilizes the reference speed and reduces overshoot against the change of the reference speed, but it slows the response speed of the inverter.

- Speed detection filter (d02/A44/b44/r44)
d02 specifies the time constant determining the first order delay of the speed detection filter.
- Data setting range: 0.000 to 0.100 (s)

Modify this data when the control target (machinery) is oscillatory due to deflection of a drive belt or other causes so that ripples (oscillatory components) are superimposed on the detected speed, causing hunting (undesirable oscillation of the system) and blocking the PI processor gain from increasing (resulting in a slow response speed of the inverter). In addition, if a low encoder (PG) resolution makes the system oscillatory, try to modify this data.

Increasing the time constant stabilizes the detected speed and allows to raise the PI processor gain even with ripples superimposed on the detected speed. However, speed detection itself is delayed, resulting in a slower speed response, larger overshoot, or hunting.

■ $P($ Gain ) (d03/A45/b45/r45), l(integral time) (d04/A46/b46/r46)
d03 and d04 specify the gain and integral time of the speed regulator (ASR), respectively.
By setting d04 $=999$, the speed regulator (ASR) configuration can be changed from a PI regulator to a P regulator, allowing the integral term to be disabled.

- Data setting range: (d03) 0.1 to 200.0 (times)
(d04) 0.001 to 9.999 (s), 999 (Cancel integral term)
$P$ (Gain)
Definition of " $P$ gain $=1.0$ " is that the torque command is $100 \%$ (100 \% torque output of each inverter capacity) when the speed deviation (reference speed - detected speed) is $100 \%$ (equivalent to the maximum speed). If the maximum output frequency F03 setting is changed, the P gain $=1.0$ definition will change, and therefore the setting value should be reviewed.

Determine the P gain according to moment of inertia of machinery loaded to the motor output shaft. Larger moment of inertia needs larger $P$ gain to keep the flat response during whole operation.

Specifying a larger $P$ gain improves the quickness of control response, but may cause a motor speed overshooting or hunting (undesirable oscillation of the system). Moreover, mechanical resonance or vibration sound on the machine or motor could occur due to excessively amplified noise. If it happens, decreasing $P$ gain will reduce the amplitude of the resonance/vibration. A too small $P$ gain results in a slow inverter response and a speed fluctuation in low frequency, which may prolong the time required for stabilizing the motor speed.

## I (Integral time)

Specifying a shorter integral time shortens the time needed to compensate the speed deviation, resulting in quick response in speed. Specify a short integral time if quick arrival to the target speed is necessary and a slight overshooting in the control is allowed; specify a long time if any overshooting is not allowed and taking longer time is allowed.

If a mechanical resonance occurs and the sound from the motor or gears is abnormal, setting a longer integral time can transfer the resonance point to the low frequency zone and suppress the resonance in the high frequency zone.

## FF gain (d05/A47/b47/r47)

The inverter operates the feed forward (FF) control that adds the acceleration torque calculated from the variation of speed command to torque command directly.

The PI control of ASR is feed back control and it makes the compensation operation against the result (actual speed detection value). Therefore it can control against the disturbance or the uncertain characteristic of controlled object also. However it becomes a follow-up control even if the variation of speed command is already-known. The feed forward control can calculate the torque command related to the already-known variation of speed command. This is the function code that can make the feed forward control. Feed forward (FF) control is used to add the torque determined from the speed command change to the direct torque command.

## Setting range: 0.00 to 99.99 (s)

This is valid if the load inertia is known beforehand. Conceptually, as it is shown in the following figure, the followup speed behavior against the actual speed command is clearly different between feed forward control valid and invalid. However, to get the maximum effect, it is necessary to adjust this function code setting and the PI control settings value of the ASR.


The above mentioned effect can be obtained by setting the $P$ gain of ASR higher. However the response of the system becomes faster in this setting and there is the possibility that it affects negatively due to generation of vibration.

## FUNCTION

## Output filter (d06/A48/b48/r48)

This specifies the time constant for the primary delay filter for speed regulator output.
Setting range: 0.000 to 0.100 (s)
This is used when machine resonance such as hunting or vibrations cannot be suppressed by adjusting the $P$ gain or integral time. Generally speaking, the resonance amplitude can be decreased by increasing the output filter time constant, but increasing it too much may cause the system to become unstable.

## Select speed control parameter 1, 2 -- "MPRM1", "MPRM2" (E01 to E09 data = 78, 79)

The combination of the ON/OFF states of digital input signals "MPRM1" and "MPRM2" selects one of 4 different level speed control parameter sets. These parameters are valid under vector control with speed sensor, V/f control with speed sensor, and sensorless vector control.

| Input signal |  | Speed control constant |
| :---: | :---: | :---: |
| "MPRM2" | "MPRM1" |  |
| OFF | OFF | Speed control constant 2: A43 to A48 |
| OFF | ON | Speed control constant 3: b43 to b48 |
| ON | OFF | Speed control constant 4: r43 to r48 |
| ON | ON |  |

## Relationship between motor switching and speed control constant selection

If neither speed control constant 1 "MPRM1" nor speed control constant 2 "MPRM2" has been assigned to an input terminal, by switching the motor with input terminal "M2", "M3", or "M4", speed control constants 1 to 4 are assigned to motor 1 to motor 4 .

If speed control constant 1 "MPRM1" or speed control constant 2 "MPRM2" has been assigned to an input terminal, by switching the motor with input terminal "M2", "M3", or "M4", speed control constants 1 to 4 can be selected with the terminal "MPRM1" or "MPRM2". Furthermore, the parameter switching function (A42, b42, r42 = 1) will be invalid, and only the motor switching function will be valid (normally equivalent to $\mathrm{A} 42, \mathrm{~b} 42, \mathrm{r} 42=0$ ).

## - ASR switching time (d25)

Speed control parameters switching by "MPRM1" and "MPRM2" signals is possible even during motor drive operation. For example, speed control P (Gain) and I (Integral time) listed can be switched. Switching these parameters during operation may cause an abrupt change of torque and result in a mechanical shock, depending on the driving condition of the load.
To reduce such a mechanical shock, the inverter decreases the abrupt torque change using the ramp function of ASR switching time (d25).

- Data setting range: 0.000 to 1.000 (s)


## d07/A49/ b49/r49 d08/A50/ b50/r50 d29/A58/ b58/r58

## Speed control 1 to 4 (Notch filter resonance frequency) Speed control 1 to 4 (Notch filter attenuation level) Speed control 1 to 4 (Notch filter width) <br> Reference function code: d25: ASR switching time

These function codes specify speed control using notch filters. The notch filters make it possible to decrease the speed loop gain only in the vicinity of the predetermined resonance points, suppressing the mechanical resonance. The notch filters are available only under "vector control with speed sensor." Setting the speed loop gain at a high level in order to obtain quicker speed response may cause mechanical resonance. If it happens, decreasing the speed loop gain the speed response will be slower in the whole operating range. In such a case, using the notch filter makes it possible to decrease the speed loop gain only in the vicinity of the predetermined resonance points and set the speed loop gain at a high level in other operating points, enabling a quicker speed response in the whole operating range.

4 resonance frequencies can be set, allowing the respective attenuation level and width to be set.
Table 5.3-25

|  | Function code | Name | Data setting range | Unit | Default setting |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Notch filter 1 | d07 | Speed control 1 (Notch filter resonance frequency) | 1 to 500 | Hz | 200 |
|  | d08 | Speed control 1 (Notch filter attenuation level) | 0 to 40 | dB | 0 (Disable) |
|  | d29 | Speed control 1 (Notch filter width) | $\begin{aligned} & 0 \text { (narrow) to } 3 \\ & \text { (wide) } \end{aligned}$ | - | 2 |
| Notch filter 2 | A49 | Speed control 2 (Notch filter resonance frequency) | 1 to 500 | Hz | 200 |
|  | A50 | Speed control 2 (Notch filter attenuation level) | 0 to 40 | dB | 0 (Disable) |
|  | A58 | Speed control 2 (Notch filter width) | $\begin{aligned} & 0 \text { (narrow) to } 3 \\ & \text { (wide) } \end{aligned}$ | - | 2 |
| Notch filter 3 | b49 | Speed control 3 (Notch filter resonance frequency) | 1 to 500 | Hz | 200 |
|  | b50 | Speed control 3 (Notch filter attenuation level) | 0 to 40 | dB | 0 (Disable) |
|  | b58 | Speed control 3 (Notch filter width) | 0 (narrow) to 3 (wide) | - | 2 |
| Notch filter 4 | r49 | Speed control 4 (Notch filter resonance frequency) | 1 to 500 | Hz | 200 |
|  | r50 | Speed control 4 (Notch filter attenuation level) | 0 to 40 | dB | 0 (Disable) |
|  | r58 | Speed control 4 (Notch filter width) | 0 (narrow) to 3 (wide) | - | 2 |

Setting the notch filter attenuation level to " 0 " ( dB ) disables the corresponding notch filter.
All 4 notch filters can be used for motor 1, and they can also be used for motors 1 to 4 .
Table 5.3-26

| Setting condition | Notch filter 1 | Notch filter 2 | Notch filter 3 | Notch filter 4 |
| :---: | :---: | :---: | :---: | :---: |
|  | d07, d08, d29 | A49, A50, A58 | b49, b50, b58 | r49, r50, r58 |
| Motor selection ("M2", "M3", "M4") is not used. <br> (E01 to E09, E98, E99 $=12,36,37$ ) | Set 4 types of notch filter for motor 1. |  |  |  |
| Set "motor/parameter switching" for all parameter switching. $(\mathrm{A} 42, \mathrm{~b} 42, \mathrm{r} 42=1)$ |  |  |  |  |
| Other than above | For motor 1 | For motor 2 | For motor 3 | For motor 4 |

## FUNCTION

| d09 to d13 |  |
| :--- | :--- |
| H147 | Speed control (Jogging) <br> (Speed command filter, Speed detection filter, P (Gain), I (Integral time), Output filter) <br> Speed control (Jogging) (FF gain), |

These function codes are used to set up the speed control during jogging operation.
The block diagrams and function codes related to jogging operation are the same as for normal operation.
Since this speed control setting is exclusive to jogging operations, specify these function codes to obtain higher speed response to obtain smooth jogging operation.
For details, refer to the corresponding descriptions (d01 to d06) about the speed control sequence for normal operation.

Jogging operation is valid when the following run commands turn ON.
■ Jogging operation "JOG" (Function code data = 10)

- Jogging forward operation/stop command "FJOG", Jogging reverse operation/stop command "FJOG" (Function code data $=94,95$ )The jogging operation method can be performed from the keypad. Refer to Chapter 3 "3.3.6 Jogging operation" for details.
d14 to d18

> PG option Ch2 (Feedback input) $$
\begin{array}{l}\text { (Pulse input method), (Encoder pulse count), (Pulse scaling factor 1), } \\ \text { (Pulse scaling factor 2), (Pulse train command filter time constant) }\end{array} .
$$

Sets speed feedback input under vector control with speed sensor and V/f control with speed sensor.

- PG option Ch2 (Pulse input method) (D14)
d14 specifies the speed feedback input format.

| d14 data | Pulse input mode | Remarks |
| :---: | :---: | :---: |
| 0 | Frequency and direction |  |
| 1 | Forward and reverse pulse |  |
| 2 | Quadrature A/B signal <br> (B phase lead) | If using a dedicated Fuji motor for vector control, set to " 2 ". |
| 3 | Quadrature $A / B$ signal <br> (A phase lead) | This setting is the inversion of $\mathrm{d} 14=2$. (Lead phase A Forward rotation) <br> In case that $Y A$ and $Y B$ are reversely connected to the specified terminals, setting " 3 " to this function code can reverse the polarity of detected speed (position) without changing the connection. |
| 4 | A, B phase $90^{\circ}$ phase difference <br> (B phase lead) UVW signal (for synchronous motors) | If using a synchronous motor with UVW encoder, set to " 4 ". |

## - Feedback Input, Encoder pulse resolution (d15)

Set the encoder pulse count for speed feedback input.

- Data setting range: h. 0014 to h.EA60 (hexadecimal fomat)
( 20 to 60000 ( $\mathrm{P} / \mathrm{R}$ ) when the above range is expressed in decimal format.)
If using a dedicated Fuji motor for vector control, set to "0400 (1024 P/R)".


## Feedback Input, Pulse scaling factor 1 (d16) and Pulse scaling factor 2 (d17)

d 16 and d17 specify the factors to convert the speed feedback input pulse rate into the motor shaft speed (min-1).

- Data setting range: 1 to 32767

Specify the data according to the transmission ratios of the pulley and gear train as shown below.


Fig. 5.3-39 An example of a closed loop speed control system (conveyor)

Listed below are expressions for conversion between the speed feedback input pulse rate and the motor shaft speed.


Note

- Under vector control with speed sensor, either mount the speed detector pulse encoder directly on the motor shaft, or mount it on a shaft with similar level of rigidity. A backlash, slip or deflection being on the mounting shaft could interfere with normal control. If the reduction ratio of the shaft with encoder is high, or the encoder pulse count is low, it may not be possible to perform control correctly.
- If using a dedicated Fuji motor for vector control, the encoder is mounted directly on the motor shaft, and therefore " 1 " should be set for both Pulse scaling factor 1 (d16) and Pulse scaling factor 2 (d17).
- PG option Ch2 (Pulse input filter time constant) (d18)

A filter can be applied to pulse input by setting a time constant.

- Data setting range: 0.000 to 5.000 s
d21, d22
d23

Speed mismatch (Detection width, Detection timer) Detection mismatch error selection

Speed agreement signal "DSAG" (Function code E20 to E24, E27 (data = 71))

- Speed agreement signal (Detection width) (d21), (Detection timer) (d22)
- Data setting range: (d21) 0.0 to 50.0 (\%), in (\%) of the maximum speed
(d22) 0.00 to 10.00 (s)
If the speed regulator's deviation (between the reference speed and detected one) is within the specified range (d21), the signal "DSAG" turns ON. If the deviation is out of the specified range (d21) for the specified period (d22), the signal turns OFF. This signal allows the user to check whether the speed regulator works properly or not.

Speed mismatch error "PG-ERR" (Function code E20 to E24, E27 (data = 76))

- Speed agreement/PG error (Detection width (d21), Detection timer (d22), PG error (d23)
- Data setting range (d21) 0.0 to 50.0 (\%), in (\%) of the maximum speed
(d22) 0.00 to 10.00 (s)
(d23) 0 to 5

| d23 data | Function |
| :---: | :---: |
| 0 | Continue to run 1 |
| 1 | Alarm (ErE) stop 1 |
| 2 | Alarm (ErE) stop 2 |
| 3 | Continue to run 2 |
| 4 | Alarm (ErE) stop 3 |
| 5 | Alarm (ErE) stop 4 |

If the status outside the range (d21) for which the speed regulator deviation (between speed command and estimated speed value/detected speed) is set continues for equal to or longer than the set time (d22), the inverter judges that a PG error has occurred.
However, the detection conditions (exception conditions), processing after detection, and error detection width will differ depending on the d 23 setting.

| d23 <br> data | Detection conditions | Processing after error detection | Error detection width with speed <br> command $>$ F04 | | |
|---|---|---|---|---|---|
| 0 | When the inverter cannot follow <br> the reference speed (even after <br> soft-starting) due to a heavy <br> overload or similar, so that the <br> detected speed is less than the <br> reference speed, the inverter <br> does not interpret this situation <br> as a PG error. | The inverter outputs the PG <br> error detected signal "PG-ERR"" <br> and continues to run. | The inverter initiates a motor <br> coast to stop, with the <br> alarm. |
| 2 | Hysteresis width $=$ d21 $x$ <br> Maximum frequency, which is <br> constant, even if the speed <br> command is above the base <br> frequency (F04). |  |  |
| 3 | No exception. |  |  |
| 4 | When the inverter cannot follow <br> the reference speed (even after <br> soft-starting) due to a heavy <br> overload or similar, so that the <br> detected speed is less than the <br> reference speed, the inverter <br> does not interpret this situation <br> as a PG error. | The inverter outputs the PG <br> error detected signal "PG-ERR"" <br> and continues to run. | The inverter initiates a motor <br> coast to stop, with the <br> alarm. | | If the speed command is |
| :--- |
| below the base frequency |
| (F04), hysteresis width $=$ d21 |
| x Maximum frequency, which |
| is constant. |
| If it is above the base |
| frequency, hysteresis width $=$ |
| d21 x Speed command $x$ |
| Maximum frequency/Base |
| frequency (F04). |

## FUNCTION

Enabling an operation limiting function such as the torque limit and droop control will increase the deviation caused by a huge gap between the reference speed and detected one. In this case, the inverter may trip interpreting this situation as a PG error, depending on the running state. To avoid this incident, set the d23 data to " 0 " (Continue to run) to prevent the inverter from tripping even if any of those limiting functions is activated.
d24 Zero speed control $\quad$ (Refer to F23)

Refer to the description of F23.
d25 ASR switching time $\quad$ (Refer to d01)

Refer to the description of A42.

## d27, d28 Servo lock (Gain switching time, Gain 2) (Refer to J97)

Servo lock (Gain switching time, Gain 2) is described in detail in the Function code J97 section.

\section*{| d29 | Speed control 1 (Notch filter width) (Refer to d07) |
| :--- | :--- |}

Speed control 1 (Notch filter width) is described in detail in the Function code d07 section.

Under speed control, the over speed detection levels are specified with $120 \%$ of these function codes.
The other hand, these function codes specifies the speed limit value under torque control.
Refer to the description of H 18 .

| d35 | Over speed detection level |
| :--- | :--- |
| (Refer to H18) |  |

d35 specifies the over speed detection level by percentage of the maximum frequency.
Overspeed level = Maximum frequency (F03/A01/b01/r01) x d35(\%)
Setting d35 data to " 999 (factory default)" causes the inverter to issue an over speed alarm if either of the above conditions are satisfied.
or
Overspeed detection level
600 Hz
Maximum frequency (F03/A01/b01/r01) x (d32 for forward rotation) x 120(\%)
Maximum frequency (F03/A01/b01/r01) x (d33 for reverse rotation) x 120(\%)
(Maximum frequency (F03/A01/b01/r01) + torque limiting (braking) (frequency rising limiter) H 76 ) $\times 120(\%)$
Lowest level of the above

## d41

Application specific function selection
d41 selects/deselects line speed control or master-follower operation (immediate synchronization mode at the start, start after synchronization).

Line speed control suppresses an increase in line speed resulting from the increasing radius of the take-up roll in a winder system.
Master-follower operation drives two or more shafts of a conveyer while keeping their positions in synchronization.

## Application specific function selection (d41)

Sets whether to enable/disable constant surface speed control and master-follower operation (immediate synchronization mode at the start, start after synchronization).

| d41 data | Function |
| :---: | :--- |
| 0 | Invalid |
| 1 | Line speed control with speed sensor <br> Note: This control is valid only when "V/f control with speed sensor" or "Vector control <br> with speed sensor (with auto torque boost)" is selected with F42, A14, b14, or r14 (data = 3 <br> or 4). |
| 2 | Master-follower operation (Immediate synchronization mode at the start, without Z phase) |
| 3 | Master-follower operation (Follow-up mode during acceleration) |
| 4 | Master-follower operation (Immediate synchronization mode at the start, with Z phase) |

In a winder system (e.g., roving frames, wiredrawing machines), if the inverter continues to run the motor at a constant speed, the take-up roll gets bigger with materials (roving, wire, etc.) and its radius increases so that the winding speed of the take-up roll increases. To keep the line speed (winding speed) constant, the inverter detects the winding speed using a speed sensor (encoder) and controls the motor rotation according to the encoder feedback.

## FUNCTION

| F Codes |
| :---: |
| E Codes |
| C Codes |
| P Codes |
| H Codes |
| A Codes |
| b Codes |
| r Codes |
| J Codes |
| d Codes |
| U Codes |
| y Codes |
| K Codes |

## [ 2 ] Line speed control

## Machinery configuration of winder system and function code settings

Shown below is a machinery configuration of a winder system for which it is necessary to configure the function codes as listed below.


- Speed reduction ratio between motor shaft and take-up roll shaft $a: b$
- Speed reduction ratio between speed detector shaft and encoder shaft c : d
- Radius of take-up roll before winding $\mathrm{r}_{1}[\mathrm{~m}]$
- Radius of speed detector $r_{2}[m]$

Table 5.3-27 Setting the reduction ratio

| Function <br> code | Name | Setting |
| :---: | :--- | :--- |
| d 15 | Encoder pulse resolution | Encoder pulse resolution (P/R) |
| d 16 | Pulse scaling factor 1 | Speed reduction ratio of the whole machinery (load) <br> $\mathrm{K}_{2}$ <br> $\mathrm{~K}_{1}$$=\frac{\mathbf{r}_{\mathbf{2}}}{\mathbf{r}_{\mathbf{1}}} \times \frac{\mathbf{b}}{\mathbf{a}} \times \frac{\mathbf{d}}{\mathbf{c}}=\frac{\mathbf{d 1 7}}{\mathbf{d 1 6}}$ |

## Line speed command

Under line speed control, speed commands should be given as line speed commands.

## Setting with digital inputs

To digitally specify a line speed in $\mathrm{m} / \mathrm{min}$, make the following settings.

| Function <br> code | Name | Setting |
| :---: | :--- | :--- |
| E48 | LED monitor details | 5: Line speed |
| E50 | Display coefficient for <br> speed monitor | $\mathrm{K}_{\mathrm{s}}=\frac{240 \pi \times \mathrm{a} \times \mathrm{r}_{1}}{\mathrm{p} \times \mathrm{b}}$ <br> $\mathrm{Ks:} \quad$ Display coefficient for transport time (E50) <br> $\mathrm{p}: \quad$ Number of motor poles <br> $\mathrm{a}, \mathrm{b}:$Components of speed reduction ratio between motor shaft and <br> take-up roll shaft (When the motor shaft rotates " b " times, the <br> take-up roll shaft rotates "a" times.) |
|  |  | $\mathrm{r}_{1}: \quad$ Radius of take-up roll before winding (initial value) in m |

## Setting with analog inputs

To specify a line speed using analog inputs, set an analog input (0 to 100\%) based on the following equation.

$$
\text { Analog input }(\%)=\frac{\mathrm{p} \mathrm{xb} \mathrm{\times 100}}{240 \pi \times r 1 \times a \times f_{\max }} \times V
$$

V : Line speed in $\mathrm{m} / \mathrm{min}$
$f_{\max }$ : Maximum frequency 1 (F03)

## - Adjustment

Like usual speed controls, it is necessary to adjust the speed command filter, speed detection filter, P gain, and integral time in the speed control sequence that controls the line speed at a constant level.

| Function <br> code | Name | How to adjust |
| :---: | :--- | :--- |
| d01 | Speed control <br> (Speed command filter) | If an excessive overshoot occurs for a speed command change, <br> increase the filter constant. |
| d02 | Speed control <br> (Speed detection filter) | If ripples are superimposed on the speed detection signal so that the <br> speed control gain cannot be increased, increase the filter constant to <br> obtain a larger gain. |
| d03 | Speed control P (Gain) | If hunting is caused in the motor speed control, decrease the gain. If <br> the motor response is slow, increase the gain. |
| d04 | Speed control I <br> (Integral time) | If the motor response is slow, decrease the integral time. |

## - Cancel line speed control -- "Hz/LSC" (Function code E01 to E09, data = 70)

Turning ON Hz/LSC cancels line speed control. This disables the frequency compensation of PI operation, resulting in no compensation for a take-up roll getting bigger and an increase in the winding speed. Use this signal to temporarily interrupt the control for repairing a thread break, for example.

| "Hz/LSC" | Function |
| :---: | :--- |
| OFF | Enable line speed control (depending on d41 setting) |
| ON | Cancel line speed control (V/f control, without compensation for a take-up roll getting <br> bigger) |

## FUNCTION

F Codes E Codes C Codes P Codes H Codes

Hold line speed control frequency in the memory -- "LSC-HLD" (Function code E01 to E09, data = 71)
If "LSC/HLD" is ON under line speed control frequency, stopping the inverter (including an occurrence of an alarm and a coast to stop command) or turning OFF "Hz/LSC" saves the current frequency command compensating for a take-up roll getting bigger, in the memory. At the time of restart, the saved frequency command applies and the inverter keeps the line speed constant.

| "LSC-HLD" |  |
| :---: | :--- |
| OFF | Disable (No saving operation) |
| ON | Enable (Saving the frequency command compensating for a take-up roll getting bigger) |

Shutting down the inverter power during operation stop loses the frequency compensation data saved in the memory. At the time of restart, therefore, the inverter runs at the frequency without compensation so that a large overshoot may occur.
(1) Function codes d153, d154, and d158 to d169 have been added to extend the constant surface speed control function. These extension functions are used when wishing to perform constant surface speed control with an encoder mounted on the motor shaft, or when wishing to perform operation by calculating the roll winding diameter to compensate the line speed setting.

## d49 to d55 For manufacturer

These function codes are reserved for particular manufacturers. Unless otherwise specified, do not access these function codes.

| d59 to d63 | PG option Ch1/X terminal (Pulse train input) <br> (Input method, Encoder pulse count, Filter time constant, Pulse scaling factor 1, 2) <br> (Refer to F01) |
| :--- | :--- |

Refer to the description of the function code F01 for details on the pulse rate input.

```
d67
Starting characteristic (Auto search mode: for speed sensorless vector control)
```

Refer to the description of function code H 09 for details on starting characteristics.

## d68 to d69 For manufacturer

These function codes are reserved for particular manufacturers. Unless otherwise specified, do not access these function codes.

## d70 <br> Speed control limiter

d70 specifies a limiter for the PI value output calculated in speed control sequence under "V/f control with speed sensor" or "dynamic torque vector control with speed sensor."

A PI value output is within the "slip frequency x maximum torque (\%)" in a normally controlled state.
If an abnormal state such as a temporary overload arises, the PI value output greatly fluctuates and it may take a long time for the PI value output to return to the normal level. Limiting the PI value output with d70 suppresses such abnormal operation.

- Data setting range: 0 to 100 (\%) (assuming the maximum frequency as $100 \%$ )


## [ 3] Master-follower operation

## d71 to d78 Master-follower operation

With master-follower operation, the speed and position of the master shaft being run by another inverter is detected with an encoder (PG), and the speed and position of the follower shaft being run by this inverter are synchronized. Depending on the synchronization method, there are 4 methods: "Speed synchronization (tuning) operation" and "Immediate synchronization mode at the start (without Z-phase compensation)" that do not require the Z-phase, and "Start after synchronization" and "Simultaneous start synchronization operation (with Z-phase)" with Z-phase compensation.
PG option card OPC-PG or OPC-PG22 is required to allow a 2-system encoder to be connected.
Input the master side motor PG signals are input to terminal [XA], [XB], and [XZ], and the follower side motor PG signals to terminal [YA], [YB], and [YZ].
However, if "Without Z-phase compensation" is selected, it is not a problem if terminal [XZ] and [YZ] are not connected.

| Master-follower operation method | Synchronization system | Z-phase signal connection | Master side = follower side (Required/Not required) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Number of motor poles | Motor reduction ratio | Encoder pulse count | Encoder reduction ratio |
| Speed synchronization (tuning) | Speed synchronization | Not required | Not required |  |  |  |
| Master-follower (with Zphase compensation) | Position synchronization*1 | Required | Not required*3 |  | Required*2 |  |
| Immediate synchronization mode at the start (without Zphase compensation) |  | Not required |  |  | Not required*3 |  |
| Immediate synchronization mode at the start (with Zphase compensation) |  | Required |  |  | Required*2 |  |

*1 When performing position master-follower operation, control is performed so that the machine speed/position is synchronized with the encoder detected speed/position, and therefore the relationship between the machine speed/position and encoder detected speed/position should be master side $=$ follower side. If this relationship is not observed, it will not be possible to perform position master-follower operation.
*2 When performing position master-follower operation, configure so that master side = follower side for the encoder pulse count and encoder reduction ratio.
*3 It is recommended that master side = follower side for the number of motor poles and motor reduction ratio, but if the configuration is such that the master side machine speed/position and follower side machine speed/position relationship is equal, the master side does not have to be equal to the follower side. By applying a scaling factor to pulse detection from the master side encoder, it is also possible to synchronously control the machine speed/position ratio for the master side and follower side.

- Application-defined control (d41)

| d41 data |  |
| :---: | :--- |
| 0 | Spunction |
| 2 | Immediate synchronization mode at the start, without Z phase |
| 3 | Synchronized operation (Start after synchronization mode (with Z-phase)) |
| 4 | Immediate synchronization mode at the start, with Z phase |

Table 5.3-28 Specifications of master-follower operation

|  | Item | Specification | Remarks |
| :---: | :--- | :---: | :--- |
| control | Speed control range <br> under V/f control with <br> speed sensor <br> Speed control range <br> under vector control with <br> speed sensor <br> Position control accuracy | $1: 100$ | 4P motor, <br> When using 1024P/R encoder <br> Speed reduction ratio $=1: 1$ <br> During running at constant speed |
| Electrical <br> specification | Input pulse rate | $10 \mathrm{p} / \mathrm{s}$ to $100 \mathrm{kp} / \mathrm{s} * 1$ | Maximum wiring length: 100 m <br> $(328 \mathrm{ft})$ <br> When using an AB phase encoder |

*1 For PGs with an open collector output, the input pulse rate is $30 \mathrm{kp} / \mathrm{s}$ or below and the maximum wiring length is 20 m (66 ft).

## Related function code list

The following table shows a list of function codes used for master-follower operation.
Table5.3-29 Function code list

| Function Code | Name | Data setting range <br> * Lists only those which are related | Unit | Factory default | Change when running |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { F01, } \\ & \text { C30 } \end{aligned}$ | Frequency setting 1, 2 | 0 to 12 <br> 12: Pulse train input | - | $\begin{aligned} & 0 \\ & 2 \end{aligned}$ | N |
| $\begin{aligned} & \text { F31 } \\ & \text { F61 } \end{aligned}$ | Terminal [FM1] <br> (Function selection) <br> Terminal [FM2] <br> (Function selection) | 17: Master-follower angle deviation -100 to 0 to $100 \%$ <br> -180 to 0 to +180 deg | - | 0 | Y |
| F42 | Drive control selection | 3, 4, 6 (speed control with speed sensor) | - | 0 | N |
| $\begin{gathered} \text { E01 to } \\ \text { E09 } \\ \text { E98, E99 } \end{gathered}$ | Terminal [X1] to [X9] *1 <br> [FWD] [REV] <br> (Function selection) | 11(1011): "Hz2/Hz1" <br> Frequency setting 2, 1 | - | - | N |
| $\begin{gathered} \text { E20 to } \\ \text { E24 } \\ \text { E27 } \end{gathered}$ | Terminal [Y1] to [Y4] [Y5A/C], [30ABC] <br> (Function selection) | 29(1029): "SY" Synchronization complete | - | - | N |
| $\begin{gathered} \text { d01/A43/ } \\ \text { b43/r43 } \end{gathered}$ | Speed control <br> (Speed command filter) | 0.000 to 5.000 | S | 0.020 | Y |
| $\begin{gathered} \mathrm{d} 02 / \mathrm{A} 44 / \\ \mathrm{b} 44 / \mathrm{r} 44 \end{gathered}$ | (Speed detection filter) | 0.000 to 0.100 | S | 0.005 | Y |
| $\begin{gathered} \mathrm{d} 03 / \mathrm{A} 45 / \\ \mathrm{b} 45 / \mathrm{r} 45 \end{gathered}$ | P (Gain) | 0.01 to 200.0 | Times | 10.00 | Y |
| $\begin{gathered} \text { d04/A46/ } \\ \text { b46/r46 } \end{gathered}$ | I (Integral time) | 0.000 to 5.000 | S | 0.100 | Y |
| d70 |  | 0.00 to 100.00 | \% | 100.00 | Y |


| Function Code | Name | Data setting range <br> * Lists only those which are related | Unit | Factory default | Change when running |
| :---: | :---: | :---: | :---: | :---: | :---: |
| d14 | PG option Ch2 <br> (Pulse input format) | 0: Pulse train sign/pulse train input <br> 1: Forward/reverse pulse <br> 2: A, B phase $90^{\circ}$ phase difference <br> (B phase lead) <br> 3: A, B phase $90^{\circ}$ phase difference <br> (A phase lead) <br> 4: A, B phase $90^{\circ}$ phase difference <br> (B phase lead) UVW signal | - | 2 | N |
| d15 | (Encoder pulse resolution)*2 | 0014 to EA60 (hexadecimal format) (20 to 60000 (decimal format)) | P/R | $\begin{gathered} 0400 \\ (1024) \end{gathered}$ | N |
| d16 | (Pulse scaling factor 1 ) | 1 to 32767 | - | 1 | N |
| d17 | (Pulse scaling factor 2) | 1 to 32767 | - | 1 | N |
| d18 | (Pulse train command filter time constant) | 0.000 to 5.000 | S | 0.000 | Y |
| d59 | PG option Ch1/X terminal (Pulse input format) | 0 : Pulse train sign/pulse train input <br> 1: Forward/reverse pulse <br> 2: A, B phase $90^{\circ}$ phase difference <br> (B phase lead) <br> 3: A, B phase $90^{\circ}$ phase difference (A phase lead) | - | 0 | N |
| d60 | (Encoder pulse resolution)*2 | 0014 to 0E10 (hexadecimal format) <br> (20 to 3600 (decimal format)) | P/R | $\begin{gathered} 0400 \\ (1024) \end{gathered}$ | N |
| d61 | (Pulse train command filter time constant) | 0.000 to 5.000 | S | 0.005 | Y |
| d62 | (Pulse scaling factor 1) | 1 to 32767 | - | 1 | N |
| d63 | (Pulse scaling factor 2) | 1 to 32767 | - | 1 | N |
| d41 | Application control selection (Operation selection) | 0: Disable <br> 2: Master-follower operation (Immediate synchronization mode at the start (without $Z$ phase)) <br> 3: Master-follower operation (start after synchronization) <br> 4: Master-follower operation (Immediate synchronization mode at the start (with Z phase)) | - | 0 | N |
| d71 | Master follower operation <br> (Main speed regulator gain) | 0.00 to 1.50 | Times | 1.00 | Y |
| d72 | (APR P gain) | 0.00 to 200.00 | Times | 15.00 | Y |
| d73 | (APR output + side limiter) | 20 to 200, 999: No limiter | \% | 999 | Y |
| d74 | (APR output - side limiter) | 20 to 200, 999: No limiter | \% | 999 | Y |
| d75 | (Z phase alignment gain) | 0.00 to 10.00 | - | 1.00 | Y |
| d76 | (Offset angle between master and follower) | 0 to 359 | deg | 0 | Y |
| d77 | (Synchronous completion detection angle) | 0 to 100 | deg | 15 | Y |
| d78 |  | 0 to 65535 (1 = 10 pulses) | - | 65535 | Y |

*1: Pulse train input for terminal [X6] and [X7] is disabled when the PG interface card is installed.
*2: When performing master-follower operation ( $\mathrm{d} 41=2,3,4$ ), use a PG with same pulse count of 20 to 3000 $P / R$ for both the master side and follower side.

## Data setting for master-follower operation

F01 Frequency setting 1
C30 Frequency setting 2
Select the pulse train input ( $\mathrm{F} 01 / \mathrm{C} 30=12$ ) as a reference command source.
Switching between master-follower operation and individual operation is possible using the "Hz2/Hz1" terminal command (see Figure 5.325 and Figure 5.3 26). A switching example is given below.
(Example)Turning terminal [X1] ON for individual operation during which a digital frequency command drives the inverter
Set F01 and C30 data to " 12 " and " 0 ", respectively. And set E01 data to " 11 " to assign the "Hz2/Hz1" command to terminal [X1].
It is recommended to perform switching between master-follower operation and individual operation when the inverter is stopped. Switching when the inverter is running may activate the protective function. To avoid it, decrease the difference between the output frequency and the reference frequency to apply after switching.

F07/E10/E12/E14 Acceleration time
F08/E11/E13/E15 Deceleration time

Also in master-follower operation, the inverter controls the output frequency according to the acceleration /deceleration time as usual. Set the acceleration/deceleration time as short as possible. Be careful that, setting the acceleration/deceleration time longer than that of the reference inverter loses the following capability of the follower motor.

Selecting "Vector control for induction motor with speed sensor" (F42 = 6) ignores the acceleration
Tip /deceleration times specified by the function codes, running the motor with the acceleration/deceleration time 0.0 s .

```
F23, F24 Starting frequency, Starting frequency (Holding time)
F25, F39 Stop frequency, Stop frequency (Holding Time)
```

Set the starting frequency and stop frequency as low as possible to the extent that the motor can generate enough torque. During master-follower operation, basically set the holding times for the starting frequency and stop frequency at 0.0 s . Running at a frequency lower than the stop frequency or starting frequency the master cannot be followed. Be careful that specifying the holding time deteriorates the following capability at the time of startup or stop.

Selecting "Vector control for induction motor with speed sensor" (F42 = 6) ignores the starting/stop frequencies (holding time) specified by the function codes, running the motor with the holding time 0.0 s .

By setting "17: Master-follower angle deviation" for F31 and F61, the master-follower angle deviation is output to analog output. An example when voltage output is set is shown in the following diagram.

| F29, F32 <br> Terminal [FM1], [FM2] (Operation selection) | Voltage output |
| :---: | :---: |
| 0 : Voltage output (0 to +10 VDC) |  |
| 4: Voltage output ( 0 to $\pm 10$ VDC) |  |

Fig. 5.3-40 Master-follower angle deviation monitoring with analog output voltage

F42 Drive control selection
To perform master-follower operation, select a control mode with speed sensor ( $\mathrm{F} 42=3,4$ or 6 ). Usually, select "V/f control with speed sensor" (F42 = 3).

| d01 to d05 | Speed Control <br> (Speed command filter, Speed detection filter, P (Gain), I (Integral time), FF(Gain)) |
| :--- | :--- |

These function codes set up the speed control response. Refer to d01.

| d14 to d17 | PG option Ch2 (Feedback input) <br> (Pulse input method), (Encoder pulse count), (Pulse scaling factor 1), (Pulse scaling factor 2), |
| :--- | :--- |

These function codes specify the speed feedback input under vector control with speed sensor ( $\mathrm{F} 42=3,4$ or 6 ).
Refer to d14 to d17.

## d18 PG option Ch2 (Feedback input) (Filter time constant)

Sets the filter time constant for feedback input. The larger the time constant, the slower the response. Specify the proper filter time constant taking into account the response speed of the machine (load). If the pulse is lower and frequency command fluctuates, set larger time constant.

## FUNCTION

| F Codes |
| :---: |
| E Codes |
| C Codes |
| P Codes |
| H Codes |
| A Codes |
| b Codes |
| r Codes |
| J Codes |
| d Codes |
| U Codes |
| y Codes |
| K Codes |

```
d59, d60 PG option Ch1/X terminal (Pulse train input)
d62, d63 (Pulse input method, Encoder pulse count, Pulse scaling factor 1, Pulse scaling factor 2)
```

These function codes specify the command frequency to apply to the inverter. The setting items are the same as for feedback input (d14 to d17).

Refer to F01.
d61 PG option Ch1/X terminal (Pulse train input) (Filter time constant)

Set filter time constant for pulse train input. The larger the time constant, the slower the response. Specify the proper filter time constant taking into account the response speed of the machine (load). If the pulse is lower and frequency command fluctuates, set larger time constant.
d71 Master follower operation (Main speed regulator gain)
d71 adjusts the main speed regulator gain to control the response and the steady-state deviation. Usually, it is not necessary to change the factory default. Selecting simultaneous start synchronization without Z phase compensation ( $\mathrm{d} 41=2$ ) only enables the setting made with d 71 .

## d72 Master-follower operation APR P gain

d72 determines the response of the automatic position regulator (APR). (See Fig. 5.3-51 and Fig. 5.3-52)
If the APR output comes to be a single rotation of the encoder shaft per second when the phase angle error (position deviation) between the master and follower PGs becomes equal to a single rotation of the encoder shaft, that gain is assumed to be 1.0.

Setting a too large value to the gain data easily causes hunting, and setting a too small value results in a large steady-state deviation. Adjust the gain, referring to Fig. 5.3-41 as a guide. If the d72 setting is adjusted, it is recommended to adjust also the d02 setting as shown in Fig. 5.3-41.


Fig. 5.3-41 d72 setting guide

| d73 | Master follower operation (APR positive output limiter) |
| :--- | :--- |
| d74 | Master follower operation (APR negative output limiter) |

These function codes specify the limits of APR output relative to the master motor speed. (See Fig. 5.3-51 and Fig. 5.3-52)

Specification of " 999 " disables the limiter.


Fig. 5.3-42 Operation of APR output limiter
d75 Master follower operation (Z phase alignment gain)

If the APR output reaches the maximum frequency when the phase angle error between the master and follower PGs (position deviation) becomes $10 \%$ of the pulse rate at the maximum frequency, that gain is assumed to be 1.0.
Usually, it is not necessary to change the factory default.
If the reduction ratio is small and the encoder pulse count is low, it is necessary to decrease the $Z$ phase alignment gain relative to the factory default.
d76 Master follower operation (Offset angle between master and follower)
In follow-up mode during acceleration, the follower inverter delays starting to synchronize the $Z$ phase with that of the master motor by the offset angle specified by this function code.
d77 specifies the synchronization completion detection angle. If the absolute value of the phase angle error (position deviation) between the master and follower PGs becomes equal to or below the synchronization completion detection angle specified by d77, the inverter issues a synchronization completed signal "SY", provided that the E20 to E24 or E27 data (Terminal function) is set to "29" (Synchronization completed).
Once turned ON, the synchronization completed signal "SY" is kept ON for 100 ms .


Fig. 5.3-43 Synchronization complete detection signal "SY"
d78 Master-follower operation (Excessive error detection level )
d78 specifies the detection level for excessive error alarm (Era). If the absolute value of the phase angle deviation (position deviation) between the master and follower PGs exceeds 10 times the d78 setting, the inverter issues an alarm $E[$ and shuts down its output.

During master-follower operation, the inverter always monitors an excessive deviation. The d78 setting should be made taking into account that the deviation temporarily increases immediately after the start of running.


Fig. 5.3-44 Excessive error alarm Erロ

## Checking the encoder connection method and rotation direction

Before beginning master-follower operation, be sure to check the machine system travel direction and run command direction for both the master side and follower side, the motor rotation direction, and the rotation direction with encoder pulses.

If these are not set correctly, it will not be possible to perform operation correctly when performing master-follower operation.


Fig. 5.3-45 Conveyor synchronization system configuration example
Refer to the instruction manual for PG interface card "OPC-PG"or "OPC-PG22" for details on how to install the PG interface card in the inverter.
Connect the master side motor encoder output to terminal [XA], [XB], and [XZ], and connect the follower side motor encoder output to terminal [YA], [YB], and [YZ].
The motor and encoder forward direction is rotation to the left (CCW) as viewed from the shaft. When rotating in the forward direction (CCW), either connect so that encoder output pulses are forward rotation signals (B phase leads A phase by $90^{\circ}$ ), or switch the A phase and B phase by switching the d14 and d59 setting values.


Motor and encoder forward direction


Encoder rotation direction and output signals

Master side inverter

| Inverter | Run command source | Forward rotation (FWD) When FWD-CM shorted |  | Reverse rotation (REV) When REV-CM shorted |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Connection to motor | Connection in UVW phase order | Connection not in UVW phase order | Connection in UVW phase order | Connection not in UVW phase order |
| Motor | Rotation direction | CCW | CW | CW | CCW |
|  |  | CW | CCW | CCW | CW |
| Master side conveyor | Rotation direction | Forward direction | Reverse direction | Reverse direction | Forward direction |
| Master side encoder | Rotation direction | CW | CCW | CCW | CW |
|  | Output signal | A phase lead | B phase lead | B phase lead | A phase lead |
| PG option card (OPC-PG) | When XA-A phase, XB-B phase connected I/O check: "4_15" polarity | -: Reverse rotation (REV) | +: Forward rotation (FWD) | +: Forward rotation (FWD) | -: Reverse rotation (REV) |
|  | When XA-B phase, XB-A phase connected I/O check: "4_15" polarity | +: Forward rotation (FWD) | -: Reverse rotation (REV) | -: Reverse rotation (REV) | +: Forward rotation (FWD) |

CW: Clockwise (right rotation) as viewed from shaft side
CCW: Counterclockwise (left rotation) as viewed from shaft side
$\square$ shows the rotation direction for the configuration example in Fig. 5.3-45.

Follower side inverter

| Inverter | Run command source | Forward rotation (FWD) When FWD to CM shorted |  | Reverse rotation (REV) When REV-CM shorted |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Connection with motor | Connection in UVW phase order | Connection not in UVW phase order | Connection in UVW phase order | Connection not in UVW phase order |
| Motor | Rotational direction | CCW | CW | CW | cCW |
|  |  | CW | CCW | CCW | CW |
| Follower side conveyor | Rotation direction | Forward direction | Reverse direction | Reverse direction | Forward direction |
| Follower side encoder | Rotational direction | CCW | CW | CW | CCW |
|  | Output signal | B phase lead | A phase lead | A phase lead | B phase lead |
| PG option card (OPC-PG) | When YA-A phase, YBB phase connected I/O check: "4_17" polarity | +: Forward rotation (FWD) | -: Reverse rotation (REV) | -: Reverse rotation (REV) | +: Forward rotation (FWD) |
|  | When YA-B phase, YBA phase connected I/O check: "4_17" polarity | -: Reverse rotation (REV) | +: Forward rotation (FWD) | +: Forward rotation (FWD) | -: Reverse rotation (REV) |

CW: Clockwise (right rotation) as viewed from shaft side
CCW: Counterclockwise (left rotation) as viewed from shaft side
$\square$ shows the rotation direction for the configuration example in Fig. 5.3-45.

If the master side and follower side encoder detected rotation direction differs from that of the follower side motor rotation direction, wire correctly taking the following wiring example into consideration. When $\mathrm{d} 41=0,2$, there is no need for Z-phase wiring.

Table 5.3-30 System configuration and encoder wiring method
(if running follower side conveyor in forward direction with $\mathrm{d} 41=2,3,4$ forward command)


## FUNCTION

$\left(^{*}\right)$ With this machine configuration, only if d41 $=2$ (master-follower operation (immediate synchronization mode at the start (without Z-phase)), master-follower conveyor operation can be performed in forward direction by setting the run command for the follower side to reverse rotation (REV) without "connecting as is". If $d 41=3,4$ for this machine configuration, and if $\mathrm{d} 41=2,3$, or 4 in other machine configuration examples, by setting the follower side run command to forward rotation (FWD), master-follower conveyor operation can be performed in the same direction.

If the run command differs from the conveyor movement direction, it will be necessary to either switch the motor wiring (e.g., U-phase-U-phase, V-phase-V-phase, W-phase-W-phase $\leftrightarrow$ U-phase-U-phase, V-phase-W-phase, W-phase-V-phase), or switch the run command (FWD $\leftrightarrow R E V$ ).

If the rotation direction detected by the encoder differs after switching the conveyor movement direction, switch the encoder wiring again (A-phase-A-phase, B-phase-B-phase $\leftrightarrow A$-phase-B-phase, B-phase-A-phase), or switch the d14 and d59 setting values (" 2 " $\leftrightarrow$ " 3 ").

## Rotation direction

The rotation direction in master-follower operation is determined by the run command and the rotation direction detected by the encoder for the master side and follower side. If the position synchronization system is selected, the motor may stop due to a deviation overflow alarm (EIG).

| Follower side <br> Run command | Master side independent rotation detection direction <br> I/O check <br> " $4 \_15$ " polarity | Follower side independent rotation detection direction I/O check "4_17" polarity | Follower side rotation direction when performing master-follower operation |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | - Speed synchronization <br> - Immediate synchronization mode at the start (without Z-phase) | - Start after synchronization <br> - Immediate synchronization mode at the start (with Z phase) |
| Forward rotation (FWD) <br> When FWD to CM shorted | +: Forward rotation (FWD) | +: Forward rotation (FWD) | Forward rotation (FWD) | Forward rotation (FWD) |
|  |  | -: Reverse rotation (REV) | Reverse rotation (REV) | Stop* |
|  | -: Reverse rotation (REV) | +: Forward rotation (FWD) | Reverse rotation (REV) | Stop* |
|  |  | -: Reverse rotation (REV) | Forward rotation (FWD) | Reverse rotation (REV) |
| Reverse rotation (REV) When REV-CM shorted | +: Forward rotation (FWD) | +: Forward rotation (FWD) | Forward rotation (FWD) | Forward rotation (FWD) |
|  |  | -: Reverse rotation (REV) | Reverse rotation (REV) | Stop* |
|  | -: Reverse rotation (REV) | +: Forward rotation (FWD) | Reverse rotation (REV) | Stop* |
|  |  | -: Reverse rotation (REV) | Forward rotation (FWD) | Reverse rotation (REV) |

* If the master side rotates in the direction in which the follower side inverter stops, pulses are counted, and therefore a deviation overflow alarm ( $E \subset \square)$ occurs. If the master side then returns in the follower side inverter rotation direction, synchronization is resumed from the position where the deviation is 0 .


## Reduction ratio setting

With master-follower operation, it is necessary to set the reduction ratio appropriately for the motor-machine system and encoder-machine system based on the system configuration.

| Synchronization system |  |  | Speed synchronization | Position synchronization |
| :---: | :---: | :---: | :---: | :---: |
| Master side | Command encoder pulse count | d60 | - If same as follower side encoder d60 $=$ d15 <br> - If different from follower side encoder <br> d60 $=$ Master side encoder pulse count | Be sure to set the same encoder pulse count as the follower side. $d 60=\text { d15 }$ <br> * If the master side and follower side differ, position synchronization will not be possible. |
|  | Command pulse scaling factor 1, 2 | $\begin{aligned} & \mathrm{d} 62 \\ & \mathrm{~d} 63 \end{aligned}$ | $\frac{d 63}{d 62}=\frac{1}{S_{m} \times C_{p}}$ <br> $\mathrm{S}_{\mathrm{m}}$ : Follower side machine system reduction ratio <br> $\mathrm{C}_{\mathrm{p}}$ : Master side encoder reduction ratio | $\frac{d 63}{d 62}=\frac{1}{S_{m} \times C_{p}}$ <br> $\mathrm{S}_{\mathrm{m}}$ : Follower side machine system reduction ratio <br> $\mathrm{C}_{\mathrm{p}}$ : Master side encoder reduction ratio <br> Master side/follower side reduction ratio (pulse scaling factor) <br> - If synchronization performed at 1:1 ratio Same configuration ( $\mathrm{C}_{\mathrm{p}}=\mathrm{S}_{\mathrm{p}}$ ) <br> - If synchronization performed at $1 / n$ master side/follower side ratio Set the scaling factor only to ( $C_{p}=S_{p} \times 1 / n$ ) with configuration left unchanged. |
| Follower side | Feedback encoder pulse count | d15 | Set the follower side encoder pulse count. | Set the follower side (= master side) encoder pulse count. |
|  | Feedback pulse scaling factor 1, 2 | $\begin{aligned} & \mathrm{d} 16 \\ & \mathrm{~d} 17 \end{aligned}$ | $\frac{d 17}{d 16}=\frac{1}{S_{m} \times S_{p}}$ <br> $\mathrm{S}_{\mathrm{m}}$ : Follower side machine system reduction ratio <br> $\mathrm{S}_{\mathrm{p}}$ : Follower side encoder reduction ratio | $\frac{d 17}{d 16}=\frac{1}{S_{m} \times S_{p}}$ <br> $\mathrm{S}_{\mathrm{m}}$ : Follower side machine system reduction ratio <br> $\mathrm{S}_{\mathrm{p}}$ : Follower side encoder reduction ratio The same configuration is recommended for the master side/follower side reduction ratio (pulse scaling factor). |
| Number of motor poles |  | P01 | Set the number of motor poles at the follower side. | It is recommended that the number of poles for each motor be the same at both the master side and follower side. If the number of poles is different, depending on the machine system configuration (e.g., reduction ratio), construct the system so that the machine speed/position becomes equal for the master side and follower side. |

## Checking the encoder pulse count

Before beginning master-follower operation, be sure to check the encoder pulse count for both the master side and follower side. If the encoder pulse count is not correctly detected, it will not be possible to perform operation correctly when performing master-follower operation.

If the encoder pulse count is not correctly detected, it means that the number of motor poles (P01/A15), encoder pulse count ( $\mathrm{d} 15, \mathrm{~d} 60$ ), and pulse scaling factor $1 / 2$ ( $\mathrm{d} 16 / \mathrm{d} 17, \mathrm{~d} 62 / \mathrm{d} 63$ ) settings do not match that of the actual machine configuration.

Check the PG pulse count at " 4 _15: PG Detected Pulse Count (Command (Master) Side AB-Phase))" and " 4 _17: PG Detected Pulse Count (Feedback (Follower Side AB-Phase))" at keypad menu No. 4"//O Check". Refer to "3.4.4 Checking the input signal status" in this manual for details on the pulse count display method.

| Specification | Symbol, calculation formula | Calculation example |
| :--- | :--- | :--- |
| Operating frequency [Hz] | fset | $20[\mathrm{~Hz}]$ |
| Number of motor poles | P01/A15 | 4 poles |
| Encoder pulse count [P/r] | $\mathrm{d} 15 / \mathrm{d} 60$ | $1000[\mathrm{P} / \mathrm{r}]$ |
| Pulse scaling factor $1 / 2$ | $\mathrm{~d} 16 / \mathrm{d} 17, \mathrm{~d} 62 / \mathrm{d} 63$ | $1 / 30$ |
| Motor speed [r/min] | $120 \times$ fset / P01 | $600[\mathrm{r} / \mathrm{min}]$ |
| Motor speed [r/s] | $2 \times$ fset / P01 | $10[\mathrm{r} / \mathrm{s}]$ |
| I/O check 4_15 [kP/s] <br> $\mathrm{I} / \mathrm{O}$ check 4_17 [kP/s] | Motor speed [r/s] x Encoder pulse count [P/r] <br> x Pulse scaling factor $1 / 2 / 1000$ | $0.333[\mathrm{kP} / \mathrm{s}]$ |

## Speed master-follower operation

With speed master-follower operation, master-follower operation is performed in such a way as to keep the difference in speed between the master side and follower side to 0 .
The follower side speed is controlled to ensure that the deviation between the master side pulse frequency and follower side pulse frequency is 0 , but phase difference synchronization is not performed. Furthermore, even if the speed deviation nears 0 , an "SY" synchronization complete signal is not output.


Fig. 5.3-46 Speed synchronization system configuration example (when using gears)

Table 5.3-31 Encoder connection

| Master (command) side connection | Follower (feedback) side connection |
| :--- | :--- |
|  |  |

(Note 1) With speed synchronization, there is no need to connect to terminal [XZ] and [YZ].
(Note 2) By switching the d14 and d59 setting values (" 2 " $\leftrightarrow$ " 3 ") with $X A=A$-phase and $X B=B$-phase, it is possible to switch between A-phase and B-phase.

Table 5.3-32 Settings for speed master-follower operation

| Function code |  | Setting value | Remarks |
| :---: | :---: | :---: | :---: |
| F01 | Frequency setting 1 | 12 | Pulse train input |
| F42 | Drive control selection 1 | 3 4 | V/f control with speed sensor <br> Dynamic torque vector control with speed sensor |
| P01 | Number of motor poles | 4 | Sets the number of poles for the follower side motor. With speed synchronization, this does not necessarily have to match the number of motor poles for the master side. |
| d41 | Application selection | 0 | Disable (normal control) |
| d15 | Feedback (feedback input) <br> (Encoder pulse resolution) <br> (Pulse scaling factor 1) <br> (Pulse scaling factor 2) | $03 E 8$ (hexadecimal format) (1000) | With speed synchronization, this does not necessarily have to match the master side pulse count. |
| d16 |  | 1 | d17 1 |
| d17 |  | 15 | $\overline{\mathrm{d} 16}=\overline{S_{\mathrm{m}} \times \mathrm{S}_{\mathrm{p}}}=\frac{\overline{\frac{1}{5} \times \frac{1}{3}}}{}=\overline{1}$ |
| d60 | Command (pulse train input) (Encoder pulse resolution) <br> (Pulse scaling factor 1 ) <br> (Pulse scaling factor 2) | 07d0 (hexadecimal format) (2000) | With speed synchronization, this does not necessarily have to match the follower side pulse count. |
| d62 |  | 1 | $\begin{array}{lllll}\text { d63 } & 1 & 10\end{array}$ |
| d63 |  | 10 | $\overline{\mathrm{d} 62}=\overline{\mathrm{S}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{p}}}=\frac{1}{\frac{1}{5} \times \frac{1}{2}}=\overline{1}$ |

## Immediate synchronization mode at the start operation

With immediate synchronization mode at the start operation ( $\mathrm{d} 41=2,4$ ), master-follower operation is performed in such a way as to maintain the phase difference between the master side and follower side the moment operation is changed from independent operation to master-follower operation. The follower side speed and position are controlled to ensure that the deviation between the master side pulse total value and follower side pulse total value is 0 . If the deviation reaches the synchronization complete detection angle (function code d77) or lower, an "SY" synchronization complete signal is output. Furthermore, if synchronization shifts, and the deviation exceeds the set deviation overflow value ( 10 times function code d78), an error alarm occurs, and output is cut off.

If $\mathrm{d} 41=4$, if a miscount occurs due to such reasons as noise in the total $A / B$-phase count, error correction is performed based on the phase difference for the Z-phase.

While the follower side run command is ON, the phase difference continues to be monitored even when the master side has stopped (provided that operation is not changed to independent operation), and when operation at the master side resumes, control is performed in such a way as to ensure that the phase difference for the Z-phase is kept constant again for both the master side and follower side.


## Start after synchronization operation

Start after synchronization operation ( $\mathrm{d} 41=3$ ) involves control which ensures that each Z-phase matches bases on the initially detected master side and follower side Z-phase (position) after operation starts. At this time, the follower side is delayed by a maximum of 1 rotation when starting up (start after synchronization operation). Once start after synchronization is complete, start after synchronization operation is never performed again provided that master-follower operation (Note 1) is not canceled.

By changing the function code d76 setting, the Z-phase synchronization angle with the master side and follower side can be adjusted.
The follower side speed and position are controlled to ensure master side position and follower side position are added up inside the inverter, and the difference (hereinafter referred to as deviation) is always 0 .

If a miscount occurs due to such reasons as noise in the total $A / B$ phase count, error correction is performed based on the phase difference for the Z-phase.

If the deviation reaches the synchronization complete detection angle (function code d77) or lower, an "SY" synchronization complete signal is output.
If synchronization shifts, and the deviation exceeds the set deviation overflow detection value ( 10 times function code d78), an error alarm occurs, and output is shut off.


## Note: Master-follower operation cancellation conditions

Master-follower operation is canceled in the following cases.

- When the follower side run command turns OFF
- When the "BX" coast to stop command turns ON, and the "STOP" forced stop command turns ON
- When an alarm occurs
- When switching to independent operation (realized by switching between F01 and C30 using "Hz2/Hz1" terminal)
- During torque control, during operation with commercial power supply


## FUNCTION

## Setting example

Setting example for master-follower operation without Z-phase compensation (d41 = 2) -(1)-


Fig. 5.3-47 Master-follower operation system configuration example (without Z-phase compensation)

Table 5.3-33 Settings when performing master-follower operation ( $\mathrm{d} 41=2$ )

|  | Function code | Setting value | Remarks |
| :---: | :---: | :---: | :---: |
| P01 | Number of motor poles | 4 | Sets the number of poles for the follower side motor. |
| d15 | Follower pulse (encoder pulse count) | 03E8 <br> (hexadecimal format) (1000) | When performing master-follower operation, the pulse count must be the same for the master side and follower side. |
| d16 d17 | (Pulse scaling factor 1) <br> (Pulse scaling factor 2) | $\begin{gathered} 1 \\ \hline 10 \end{gathered}$ | $\frac{d 17}{d 16}=\frac{1}{S_{m} \times S_{p}}=\frac{1}{\frac{1}{5} \times \frac{1}{2}}=\frac{10}{1}$ |
| d60 | Master pulse (encoder pulse count) | 03E8 <br> (hexadecimal format) <br> (1000) | Set the same value as d15. |
| d62 d63 | (Pulse scaling factor 1) <br> (Pulse scaling factor 2) | 1 15 | $\frac{d 63}{d 62}=\frac{1}{S_{m} \times C_{p}}=\frac{1}{\frac{1}{5} \times \frac{1}{3}}=\frac{15}{1}$ |

Table 5.3-34 Rotational direction

| Master side motor rotation direction | Master side PG rotation direction | Follower side PG rotation direction | Follower side run command |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Forward rotation command (FWD) | Reverse rotation command (REV) |
| Forward rotation (FWD) | Forward | Forward | Forward | Reverse rotation |
| Reverse rotation (REV) | Reverse rotation | Reverse rotation | Reverse rotation | Forward |

Setting example for master-follower operation without Z-phase compensation (d41 = 2) -(2)-


Fig. 5.3-48 Master-follower operation system configuration example (without Z-phase compensation)

Table 5.3-35 Settings when performing master-follower operation ( $\mathrm{d} 41=2$ )

| Function code |  | Setting value | Remarks |
| :---: | :---: | :---: | :---: |
| P01 | Number of motor poles | 4 | Sets the number of poles for the follower side motor. |
| d15 | Follower pulse (encoder pulse count) <br> (Pulse scaling factor 1) <br> (Pulse scaling factor 2) | 07d0 (hexadecimal format) (2000) | When performing master-follower operation, the pulse count must be the same for the master side and follower side. |
| d16 d17 |  | 20 | $\frac{\mathrm{d} 17}{\mathrm{~d} 16}=\frac{1}{\mathrm{~S}_{\mathrm{m}} \times \mathrm{S}_{\mathrm{p}}}=\frac{1}{\frac{1}{5} \times \frac{1}{4}}=\frac{20}{1}$ |
| d60 | Master pulse (encoder pulse count) <br> (Pulse scaling factor 1) <br> (Pulse scaling factor 2) | 07d0 (hexadecimal format) (2000) | Set the same value as d15. |
| d62 d63 |  | 1 | $\frac{\mathrm{d} 63}{\mathrm{~d} 62}=\frac{1}{\mathrm{~S}_{\mathrm{m}} \times \mathrm{C}_{\mathrm{p}}}=\frac{1}{\frac{1}{5} \times \frac{1}{3}}=\frac{15}{1}$ |

Table 5.3-36 Rotational direction

| Master side motor rotation direction | Master side PG rotation direction | Follower side PG rotation direction | Follower side run command |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Forward rotation command (FWD) | Reverse rotation command (REV) |
| Forward rotation (FWD) | Reverse rotation | Forward rotation | Reverse rotation | Forward rotation |
| Reverse rotation (REV) | Forward rotation | Reverse rotation | Forward rotation | Reverse rotation |

## FUNCTION

Setting example for master-follower operation with Z-phase compensation ( $\mathrm{d} 41=3,4$ ) -(1)-


Fig. 5.3-49 Master-follower operation system configuration example (with Z-phase compensation)

Table 5.3-37 Settings when performing master-follower operation ( $\mathrm{d} 41=3,4$ )

|  | Function code | Setting value | Remarks |
| :---: | :---: | :---: | :---: |
| P01 | Number of motor poles | 6 | Sets the number of poles for the follower side motor. |
| d15 | Follower pulse (encoder pulse count) | 07d0 <br> (hexadecimal format) (2000) | When performing master-follower operation, the pulse count must be the same for the master side and follower side. |
| d16 | (Pulse scaling factor 1 ) | 1 | Each reduction ratio from the pulley radius is obtained as follows: <br> Follower side motor reduction ratio $S_{m}=\frac{r_{S m b}}{r_{S m a}}=\frac{30}{150}=\frac{1}{5}$ |
| d17 | (Pulse scaling factor 2) | 10 | Follower side encoder reduction ratio $S_{p}=\frac{r_{\mathrm{Spb}}}{r_{\mathrm{Spa}}}=\frac{40}{80}=\frac{1}{2}$ <br> d16 and d17 are as follows: $\frac{\mathrm{d} 17}{\mathrm{~d} 16}=\frac{1}{S_{m} \times S_{p}}=\frac{1}{\frac{1}{5} \times \frac{1}{2}}=\frac{10}{1}$ |
| d60 | Master pulse (encoder pulse count) | 07 d 0 (hexadecimal format) $(2000)$ | Design the machine configuration so that the reduction ratio (synchronized machine shaft - encoder shaft) is the same at the master side and follower side, and set the same values as d15, d16, and d17. |
| d62 | (Pulse scaling factor 1) <br> (Pulse scaling factor 2) | 1 |  |
| d63 |  | 10 |  |

Table 5.3-38 Rotational direction

| Master side motor <br> rotation direction | Master side PG <br> rotation direction | Follower side PG <br> rotation direction | Follower side run command |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Reverse rotation <br> command (REV) |  |
| Forward rotation (FWD) | Forward rotation | Forward rotation | Forward rotation | Stop |
| Reverse rotation (REV) | Reverse rotation | Reverse rotation | Stop | Reverse rotation |

Setting example for master-follower operation with Z-phase compensation ( $\mathrm{d} 41=3,4$ ) -(2)-


Fig. 5.3-50 Master-follower operation system configuration example (with Z-phase compensation)

Table 5.3-39 PG connection

| Master (command) side connection | Follower (feedback) side connection |
| :---: | :---: |
|  |  |

Table 5.3-40 Settings when performing master-follower operation ( $\mathrm{d} 41=3,4$ )

|  | Function code | Setting value | Remarks |
| :---: | :---: | :---: | :---: |
| P01 | Number of motor poles | 4 | Sets the number of poles for the follower side motor. |
| d15 | Follower pulse (encoder pulse count) <br> (Pulse scaling factor 1) <br> (Pulse scaling factor 2) | 03E8 <br> (hexadecimal <br> format) <br> (1000) | When performing master-follower operation, the pulse count must be the same for the master side and follower side. |
| d16 |  | 1 | $\frac{\mathrm{d} 17}{\mathrm{~d} 16}=\frac{1}{\mathrm{~S}_{\mathrm{m}} \times \mathrm{S}_{\mathrm{p}}}=\frac{1}{\frac{1}{3} \times \frac{1}{2}}=\frac{6}{1}$ |
| d17 |  | 6 |  |
| d60 | Master pulse (encoder pulse count) | 03E8 <br> (hexadecimal format) (1000) | Design the machine configuration so that the reduction ratio (synchronized machine shaft encoder axis) is the same at the master side and follower side, and set the same values as d15, d16, and d17. |
| d62 | (Pulse scaling factor 1) <br> (Pulse scaling factor 2) | 1 |  |
| d63 |  | 6 |  |

Table 5.3-41 Rotational direction

| Master side motor rotation direction | Master side PG <br> rotation direction | Follower side PG rotation direction | Follower side run command |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  |  | Forward rotation command (FWD) | Reverse rotation command (REV) |
| Forward rotation (FWD) | Reverse rotation | Forward rotation | Forward rotation | Stop |
| Reverse rotation (REV) | Forward rotation | Reverse rotation | Stop | Reverse rotation |

## Control block diagrams



Fig. 5.3-51 d41 $=2$ Master-follower operation without Z-phase compensation control block diagram


Chap 5 FUNCTION CODES

## FUNCTION

| F Codes |
| :---: |
| E Codes |
| C Codes |
| P Codes |
| H Codes |
| A Codes |
| b Codes |
| r Codes |
| J Codes |
| d Codes |
| U Codes |
| y Codes |
| K Codes |

Fig. 5.3-52 Master-follower operation with Z-phase compensation control block diagram (d41=3 or 4)

## Operation monitor for master-follower operation

The master-follower operation target position, current position, and current deviation (in angle units or pulse units) can be monitored from the keypad. Furthermore, the master-follower operation current control status can be monitored.

## Monitor content

Table 5.3-42 Operation monitor content for standard keypad

| Standard touch panel | Multi-function keypad TP-A2SW |  | Item | Unit | Description |
| :---: | :---: | :---: | :---: | :---: | :---: |
| LED monitor display | Page No. | Symbol |  |  |  |
| 3 | 8 | E | Target position pulse (master-follower operation) | Pulse | Displays the target position pulse count (master side position). |
| 7-1昭 | 8 | P | Current position pulse (master-follower operation) | Pulse | Displays the current position pulse count (follower side position). |
| 719 | 8 | dp | Current deviation pulse (master-follower operation) | Pulse | Displays the current position deviation pulse count. |
| 37 | 8 | MODE | Control status monitor (master-follower operation) | - | Displays the current control status. Refer to page 5-333 for details. |
|  | 8 | SY-d | Position deviation (master-follower operation) | deg | Displays the current angle deviation. |

## Displaying system on the LED monitor

The pulse count range from $-9,999,999$ pulses to $+9,999,999$ pulses is handled at the standard keypad operation monitor pulse count display. To display it, the 4-digit LED monitor shows alternately the upper and lower four digits for one second and three seconds, respectively.
The display repeatedly alternates between higher order digits $1 \mathrm{sec} \rightarrow 4$ lower order digits $3 \mathrm{sec} \rightarrow$ higher order digits $1 \mathrm{sec} \rightarrow 4$ lower order digits $3 \mathrm{sec} \rightarrow \ldots$
Multi-function keypad TP-A2SW displays all digits simultaneously.
Table 5.3-43 Displaying system for pulse count

| Pulse count | LED monitor at standard keypad, multi-function keypad, operation monitor at standard keypad |  | Remarks |
| :---: | :---: | :---: | :---: |
|  | 4 higher order digits | 4 lower order digits |  |
| +9,999,999 | +999 | 9999. | Maximum display value |
| +19,999 | +1 | 9999. | High order at 0 <br> Digits are not filled in. |
| +10,000 | +1 | 0000. |  |
| +9,999 | +0 | 9999. |  |
| +10 | +0 | 0010. |  |
| 0 | 0 | 0000. |  |
| -10 | -0 | 0000. |  |
| -9,999 | -0 | 9999. |  |
| -10,000 | -1 | 0000. |  |
| -19,999 | -1 | 9999. |  |
| -9,999,999 | -999 | 9999. | Minimum display value |

## Master-follower operation status

With master-follower operation, the running status can be monitored. Fig. 5.3-53 shows a status example, and Table 5.3-44 shows the content.


Fig. 5.3-53 Master-follower operation status

Table 5.3-44 Master-follower operation status

| Master-follower <br> operation status | Status <br> Name*1 | Status <br> No.*2 | Description |
| :--- | :--- | :---: | :--- |
| Master-follower <br> operation disable | STOP | 0 | With the function code set, master-follower operation is not <br> selected. If d41 is set to "Master-follower operation: 2 to 4", <br> and F01 or C30 is set to "Pulse train command: 12 ", the <br> setting changes to "Master-follower operation stop: 21". |
| Master-follower <br> operation cancel | SCAN | 20 | Master-follower operation output is not enabled for reasons <br> such as PID control being enabled, or torque control being <br> enabled. |
| Master-follower <br> operation stop | SOFF | 21 | The run command has not been input. <br> If the run command is ON, and operation is being performed <br> with Z-phase compensation, if operation is performed <br> without Z-phase compensation for "22: Waiting Z-phase <br> detection", the setting changes to "26: Synchronization <br> complete". |
| Awaiting Z-phase <br> detection | WA.Z | 22 | The Z-phase has not been detected for either the master or <br> the follower side. |
| Master side Z- <br> phase detection | IN.M | 23 | The master side Z-phase is detected, and the system is <br> waiting on the follower side Z-phase to be detected. |
| Follower side Z- <br> phase detection | IN.S | 24 | The follower side Z-phase is detected, and the system is <br> waiting on the master side Z-phase to be detected. |
| During master- <br> follower operation | SY | 25 | Displays the during master-follower operation status. <br> However, the position deviation does not converge within <br> the synchronization complete detection width. |
| During master- <br> follower operation <br> (synchronization <br> complete) | SY-C | 26 | Displays the synchronization complete status. Outputs <br> terminal output "SY". |

*1:The status name can be referenced in the "Drive Monitoring" menu on the LCD monitor of multi-function keypad TP-A2SW.
*2:The status number can be referenced in Menu 3_20 "Drive Monitoring" on the LCD monitor of multi-function keypad TP-A2SW.

## Alarm protective function

If the inverter protective function is triggered and an alarm occurs, an alarm code appears on the keypad LED monitor, and inverter output is shut off. As a result, the motor will coast to a stop.
Alarms relating to this option are shown in Table 5.3-45. Refer to "Chapter 6 TROUBLESHOOTING" for details.
Table 5.3-45 List of option related alarms

| Alarm code | Alarm name | Function for which alarm occurred |  |
| :---: | :---: | :---: | :---: |
|  |  | Master-follower operation (without Z-phase compensation) | Master-follower operation (with Z-phase compensation) |
| 175 | Overspeed protection | A | A |
| ErE | Speed mismatch/excessive speed deviation | Y | Y |
| Era | Deviation overflow alarm | A | A |
| Fr\|\%* | PG wire break detection alarm | - | A |

*1 This alarm occurs if the follower side PG Z-phase detection is as follows during master-follower operation.

- If the Z-phase for 2 rotations or more is not detected since the last Z-phase detection.
- The Z-phase for 2 rotations or more has not been detected since the last Z-phase wire break detection alarm occurred.
The alarm subcode can be used to determine whether a master side Z-phase wire break or follower side Z-phase wire break has occurred.

| Alarm subcode 10 | Master side Z-phase wire break |
| :--- | :--- |
| Alarm subcode 11 | Follower side Z-phase wire break |

A: When the function is selected, a beneficial alarm is always displayed.
Y: Provided that the function is selected, and a function code that enables the alarm function is set, an alarm indicating that the alarm protective function will be enabled is displayed. The alarm protective function is enabled by factory default.
-: When the function is selected, an unrelated alarm is displayed.

## Unavailable function codes

During master-follower operation, the following functions are not available.

| F16 | Frequency Limiter (Low) |
| :--- | :--- |
| C01 to | Jump frequency |
| C04 |  |

Selecting "Vector control for induction motor with speed sensor" (F42 = 6) disables the settings of the following functions during master-follower operation, as well as making the above functions unavailable.

| F07, F08 | Acceleration Time <br> 1/Deceleration Time 1 <br> E10, E11 <br> Acceleration Time <br> 2/Deceleration Time 2 |
| :--- | :--- |
| E13, E14 | Acceleration Time <br> 3/Deceleration Time 3 |
| E15, E16 | Acceleration Time <br> 4/Deceleration Time 4 <br> F24Starting frequency (Holding <br> time) <br> Stop frequency (Holding <br> time) |
| F39 |  |

During master-follower operation, the following control should be disabled $(\mathrm{H} 18=0, \mathrm{~J} 01=0)$.

| H18 | Torque control |
| :--- | :--- |
| J01 | PID control |

To perform master-follower operation, be sure to select a control mode with speed sensor ( $\mathbf{F 4 2}=3,4$ or 6 ) and configure the function codes given in this section. Set other function codes based on the following function code setting procedure.

## Motor 1 (Synchronous motor magnetic pole position draw-in frequency)

Related function code: P30 Motor 1 (Synchronous motors, Magnetic pole position detection mode)

Under vector control with PM sensor, if using an encoder with A/B-phase and Z-phase output, the magnetic pole position will be unknown immediately after turning ON the power, and therefore magnetic pole position draw-in operation is performed at the frequency set at d80 until the Z-phase is detected. After the Z-phase is detected, the magnetic pole position based on the magnetic pole position sensor offset set in P95 is established, and operation switches to normal operation.

Basically, there is no need to modify the setting.
Data setting range:0.1 to 10.0 Hz (Factory default: 1.0 Hz )

| d82 |
| :--- |
| d83 |

> Magnetic flux weakening control (Speed sensorless vector control)
> Magnetic flux weakening lower limit (Speed sensorless vector control)

By setting d82 to "1" (enable), the motor magnetic flux is controlled based on the command torque. If the command torque is low, the motor magnetic flux is weakened with d83 as the lower limit, and control stability is improved.
Set the magnetic flux weakening lower limit in \% units at d83. If the value is too small, problems such as hunting or speed stagnation may occur. As long as there are no problems, use with the factory default of " $40 \%$ ".

## d86

Acceleration/deceleration output filter
This code is described in detail at the F07 item.


High-efficiency synchronous motor control is performed with motor constants. If wishing to run a synchronous motor without knowing the motor constants, or when unable to perform rotation tuning, operation may be possible by disabling high-efficiency control.

| Setting <br> value | Synchronous motor high-efficiency control |
| :---: | :--- |
| 0 | Disable |
| 1 | Enable (factory default) |

## d90 <br> Magnetic flux level during deceleration

This code is described in detail at the H 71 item.

```
d79, d81
d84, d85
d88
d91 to d97
```

For manufacturer

These function codes are displayed, but are for use by the manufacturer. Unless otherwise specified, do not access these function codes.
$\square$

## For special adjustment

These function codes are reserved for special adjustment. There is normally no need to change these codes.

```
d99
```


## Extension function 1

To enable the jogging operation "JOG" from communication, set bit 3=1 for this function. d99 data can be changed using the "(roop key + key", or "(roo) key + $\odot$ key" double operation.

Bits other than bit 3 of this function code are reserved bits. Do not access these function codes.

| d 120 to d 125 | For brake signal reverse rotation <br> (Discharge current, Discharge frequency/speed, Discharge timer, Discharge torque, <br> ON frequency/speed, ON timer) |
| :--- | :--- |

These codes are described in detail at the J68 item.

| d152 PID control (Line speed lower limit for dancer PID output) | Related function codes: <br> J01 PID control (Operation selection) |
| :--- | :--- |
| J62 PID Control (PID control block selection) |  |

If PID control (PID control block selection) J62 bit $1=0$ (ratio control), PID regulator output compensates the line speed setting as a ratio for the line speed setting (main setting). Consequently, if low speed is specified for the line speed setting, the amount compensated by PID control will also be proportionately low, and the length of time until the dancer returns to the reference position (J57 position) will become longer. Even if low speed is specified for the line speed setting, by setting d152 to other than 0.0 Hz , and setting a lower limit, the amount compensated by the PID regulator can be adjusted so that it is not too small.

- Data setting range: 0.0 to $599.0(\mathrm{~Hz})$



## Constant surface speed control (Line speed compensation gain)

Related function codes:
d41 (Application control selection)
E50 (Speed display coefficient function code)
By using the winding diameter calculation function, constant surface (line speed) speed control can be performed even if the winding diameter ratio changes significantly. This gain is used to further compensate the result of converting the inverter setting frequency to line speed.
LED monitor details (Speed monitor selection) If the line speed is set with E48 $=5$, the line speed can be provided from the keypad. In this case, the line speed $[\mathrm{m} / \mathrm{min}]=$ setting frequency $[\mathrm{Hz}] \times \mathrm{E} 50 \times \mathrm{d} 153$.

- Data setting range: 0.0 to 200.0 (\%)

Refer to the LED monitor (display selection) function code E43, LED monitor (stoppage display) function code E44, LED monitor details (Speed monitor selection) function code E48, and Display coefficient for speed monitor function code E50 for details on the line speed setting and monitor.


Constant surface speed control (Selector switch)
Related function codes:
d41 (Application control selection) J01 PID control (Operation selection)

By using winding diameter calculation, constant surface (line speed) speed control can be performed even if the roll winding diameter ratio changes significantly. If using winding diameter calculation, set d154 to 1 .

- Data setting range: 0 to 1

| Bit 0: <br> Winding diameter <br> compensation | 0: Disable <br> (factory <br> default) | Disables winding diameter calculation, and runs the <br> inverter at the frequency setting from the host controller. <br> The frequency setting for which winding diameter <br> compensation was performed at the host controller is <br> used. |
| :--- | :--- | :--- |
|  | 1: Enable | Enables winding diameter calculation, and runs the <br> inverter with the frequency command for which <br> compensation was performed with the winding diameter <br> calculated by the inverter. The line speed setting is used <br> for the inverter. |

## d158 to d166

## Winding diameter calculation

Related function codes: d41 (Application control selection) J01 PID control (Operation selection)

Calculates the roll winding diameter for constant surface speed control from the peripheral speed (line speed) setting and roll rotation speed, compensates the output frequency even if the roll winding diameter changes, and controls the speed so that the peripheral speed (line speed) remains constant when winding and unwinding. Winding diameter calculation is valid only when PID control for dancer control is enabled ( $\mathrm{J} 01=3$ ).


| d158, <br> d159 | Winding diameter calculation (Moving average count) <br> Winding diameter calculation (Dead zone) <br> Related function code: $d 41$ (Application control selection) |
| :--- | :--- |

## d158 Winding diameter calculation (Moving average count)

If there are fluctuations in the line speed setting or roll section detected speed, these can be smoothed with a moving average filter. Set the moving average count in d158.

- Data setting range: 0 to 100 (times)


## d159 (Winding diameter calculation (Dead zone)

If the difference between the roll section detected speed x winding diameter calculated value and the line speed setting is low, the winding diameter calculation value can be held. Set the ratio to line speed setting as the dead zone width in d159.

- Data setting range: 0.000 to 10.000 (\%)

| d160 | Winding diameter (Calculation gain) <br> Related function code: $d 41$ (Application control selection) |
| :--- | :--- |

Calculates the roll winding diameter calculation to obtains the relationship roll section detected speed x winding diameter calculation value $=$ line speed setting.
The winding diameter calculation compensation time can be adjusted with the calculation gain. If the winding diameter rate of change is low, and the winding diameter is small, set a small value for d160 if the detected speed is easily affected, allowing the impact on the calculation to be minimized.

- Data setting range: 0.00 to 1.00


If there is an error between the actual machine and function code such as the reduction ratio set for the inverter, an error will also occur in the winding diameter calculation. Adjust if compensating by setting the inverter winding diameter calculation value to the same as the actual value.

- Data setting range: 0.000 to 10.000


If the line speed setting is low, this holds the winding diameter calculation value to stabilize the motor speed. Set the line speed for holding the winding diameter calculation value at the ratio to the maximum speed.

- Data setting range: 0.00 to $100.00(\%)$
 diameter, Initial winding diameter)

Related function code: d41 (Application control selection)
Set the minimum winding diameter d163 which acts as the reference for the winding diameter calculation, the maximum winding diameter d164 which is the winding diameter calculation upper limit, and the initial diameter [d165] set when setting the initial winding diameter. All of these items are set in mm .
The upper limit for winding diameter calculation is 100 times the maximum diameter $\mathrm{d} 163 /$ minimum diameter d 164 .

- Data setting range: 1 to 65535 (mm)

Note The winding diameter calculation is not memorized when the inverter power is turned OFF. By stopping the machine during winding/unwinding, and turning the inverter power OFF, the value returns to the initial winding diameter when the power is turned ON again. To set the initial winding diameter as the winding diameter when the inverter power is turned OFF, record the winding diameter at the host controller, and set this for d 165 when the power is turned ON again.

Initial diameter set command "D-SET"(Function codes E01 to E09, data = 169)
By setting the initial winding diameter d165, and turning ON the initial position set command "D-SET" (E01 to E09: 169), the winding diameter calculation can be initialized.

| "D-SET" | Function |
| :---: | :--- |
| OFF | Disable |
| ON | Enable (Initializes the winding diameter calculation value with initial winding diameter <br> d165) |

## Winding diameter calculation hold command "D-HLD" (Function codes E01 to E09, data = 170)

By turning ON the winding diameter calculation hold command "D-HLD" signal during constant surface speed control, updating of the winding diameter calculation result is canceled. The inverter setting frequency is calculated from the winding diameter calculation value and line speed setting when the winding diameter calculation hold command "D-HLD" signal is ON.

| "D-HLD" |  |
| :---: | :--- |
| OFF | Disable |
| ON | Enable (Holds the winding diameter calculation value.) |

## d166

## Winding diameter calculation (FM output gain)

Related function code: d41 (Application control selection)

If monitoring the winding diameter ratio in the 0 to 10 [V] range with analog outputs (terminal [FM1], [FM2]), this adjustment gain sets how many times the winding ratio with respect to the minimum winding diameter ratio to output the 10 [ V$]$.

- Data setting range: 0.0 to 100.0


## Example:

If outputting 4.0 times the winding diameter ratio with respect to the minimum winding diameter d164 setting value as $10[\mathrm{~V}]$, set d166 $=4.0$, and if outputting 10.0 times the winding diameter ratio as $10[\mathrm{~V}]$, set d166 $=10.0$.


If outputting the winding diameter ratio to terminal [FM1] and [FM1], set 25 for function code F31 and F61, respectively. The gain can be adjusted even with function code F30 and F60 for terminal [FM1] and [FM2] side.

## d167 to d169

Maximum line speed
Line speed command (Acceleration time, Deceleration time)
Related function code: J01 PID control (Operation selection)

If performing PID control for dancer control, the PID output will be the frequency setting, and therefore acceleration/deceleration time 1 to 4 (F07, F08, etc.) will apply. Acceleration/deceleration time 1 to 4 is normally set to 0.00 (s), and therefore by using the main settings in step form, the output frequency will also change to step form. Even if the main settings are used in step form, set the respective acceleration time and deceleration time for d168 and d169 to allow acceleration and deceleration to be performed for the set acceleration/deceleration time for PID control for dancer control.

## ■ d167 Maximum line speed

Sets the maximum value for the line speed. This setting is used to limit the line speed command (acceleration/deceleration time) d168/d169 settings and setting values.

- Data setting range: 0.0 to $6553.5(\mathrm{~m} / \mathrm{min})$


## - d168 Line speed command (Acceleration time)

Sets the time that the machine shaft (line speed axis) accelerates from $0[\mathrm{~m} / \mathrm{min}]$ to the maximum line speed (d169) setting value $[\mathrm{m} / \mathrm{min}]$.

## FUNCTION

## d169 Line speed command (Deceleration time)

Sets the time that the machine shaft (line speed axis) decelerates from the maximum line speed (d169) setting value $[\mathrm{m} / \mathrm{min}]$ to $0[\mathrm{~m} / \mathrm{min}]$.

- Data setting range: 0.00 to 6000 (s)



## [4] Hoist function

## d170 to d189 Hoist function

The inverter is equipped with a convenient function for application for motors used to wind hoists.

| Name | Description | Function code |
| :--- | :--- | :--- |
| Load detection <br> function | The hoisted load can be estimated, and monitoring is possible. | d 170 to d174 |
| Light load <br> automatic double <br> speed operation <br> function | This function increases the winding and lower speed for light <br> suspended loads, improving the hoist work efficiency. | d 175 to d185, <br> d 189 |
| Overload stop <br> function | This function prohibits winding if the suspended load is a heavy <br> object. | d 186 to d188 |

With the hoist function, hoisting is performed with forward rotation, and lowering is performed with reverse rotation.

## - Load detection function

The torque is proportional to the load while moving at constant speed, and therefore the torque calculation value (torque command value) is compensated using the gain and an offset to detect the load. On systems with no counterweight, drive operation is applied for hoisting, and braking operation is applied for lowering, and therefore a separate gain and offset has been set for hoisting and lowering.

## Function code

| Function <br> code | Name | Fata setting range <br> default | Change <br> during <br> operation |  |
| :---: | :--- | :--- | :--- | :---: |
| d170 | After detected load compensation (dedicated <br> monitor function code) | -327.68 to $327.67 \%$ | - | - |
| d 171 | Load conversion gain (hoisting) | 0.00 to $200.00 \%$ | 100.00 | Y |
| d 172 | Load conversion offset (hoisting) | -100.0 to $100.0 \%$ | 0.0 | Y |
| d 173 | Load conversion gain (lowering) | 0.00 to $200.00 \%$ | 100.00 | Y |
| d 174 | Load conversion offset (lowering) | -100.0 to $100.0 \%$ | 0.00 | Y |

## Conversion formula

| Enable | Conversion formula |
| :---: | :---: |
| Hoisting | $\mathrm{d} 170[\%]=\frac{\mathrm{d} 171}{100} \times($ Torque calculation value $[\%]+\mathrm{d} 172)$ |
| Lowering | $\mathrm{d} 170[\%]=\frac{\mathrm{d} 173}{100} \times($ Torque calculation value $[\%]+\mathrm{d} 174)$ |

## Gain, offset derivation

The factory default values for gain and the offset are $100 \%$ and $0 \%$, respectively, and d170 displays the torque calculation values. In this condition, the d170 monitor value when hoisting at constant speed with no load is defined as $\mathrm{T}_{0} \%$. Furthermore, the d170 monitor value when hoisting the rated load at constant speed with no load is defined as $\mathrm{T}_{1} \%$. The detected load is $100 \%$ at $\mathrm{T}_{1}$, and the detected load is $0 \%$ at $\mathrm{T}_{0}$. The offset and gain can be calculated with the following formula. The same applies to lowering.
d171,d173: gain $[\%]=\frac{100}{\mathrm{~T}_{1}-\mathrm{T}_{0}}$
d172, d174: offset [\%]= $-T_{0}$


## Light load automatic double speed operation function

This function increases the speed to improve work efficiency when the load is light.
By turning ON digital input "LAC-ENB", automatically double speed operation is enabled. By setting a light load detection level and heavy load detection level, loads are distinguished in 3 levels (light load < medium load < heavy load), and with light and medium loads, the motor runs at higher than the set frequency at the double speed rate. Digital output "LAC" indicating that the motor is running at double speed turns ON at this time. However, double speed operation is not performed if the set frequency is equal to or higher than the base frequency. With heavy loads, the motor runs at the set frequency. By setting 999 for the double speed rate, the speed at which the motor runs is automatically calculated from the load and a safety factor. In the interests of safety, adjustment of the load detection function gain and offset (d171 to d174) must be complete to use this function.


## Function code

| Function code | Name | Data setting range | Factory default | Change during operation |
| :---: | :---: | :---: | :---: | :---: |
| E01 to <br> E09, <br> E98, <br> E99 | ```Terminal [X1] to [X9] (Function selection) Terminal [FWD] (Function selection) Terminal [REV] (Function selection)``` | 105 (1105): Light load automatic double speed judgment permission "LAC-ENB" | - | N |
| E20 to E24, E27 | $\begin{aligned} & \text { Terminal [Y1] to [Y4] (Function selection) } \\ & \text { Terminal [Y5A/C] (Function selection) } \\ & \text { Terminal [30A/B/C] (Function selection) } \end{aligned}$ | 159 (1159): Performing light load automatic double speed operation "LAC" | - | N |
| d175 | Light load speed multiplying factor (hoisting) | 100.0 to 300.0\%, 999 (automatic) | 100.0 | Y |
| d176 | Light load speed multiplying factor (lowering) | 100.0 to 300.0\%, 999 (automatic) | 100.0 | Y |
| d177 | Medium load speed multiplying factor (hoisting) | 100.0 to 300.0\%, 999 (automatic) | 100.0 | Y |
| d178 | Medium load speed multiplying factor (lowering) | 100.0 to 300.0\%, 999 (automatic) | 100.0 | Y |
| d179 | Speed multiplying factor safety factor | 1.0 to 4.0 | 1.0 | Y |
| d180 | Load judgment delay time (hoisting) | 0.00 to 10.00 s | 2.00 | Y |
| d181 | Load judgment delay time (lowering) | 0.00 to 10.00 s | 2.00 | Y |
| d182 | Light load detection level (hoisting) | 5.0 to 100.0\%, 999 (disable) | 25.0 | Y |
| d183 | Light load detection level (lowering) | 5.0 to 100.0\%, 999 (disable) | 25.0 | Y |
| d184 | Heavy load detection level (hoisting) | 5.0 to 100.0\%, 999 (disable) | 25.0 | Y |
| d185 | Heavy load detection level (lowering) | 5.0 to 100.0\%, 999 (disable) | 25.0 | Y |


| Function <br> code | Name | Data setting range | Factory <br> default | Change <br> during <br> operation |
| :--- | :--- | :--- | :--- | :---: |
| d189 | Hoist function auxiliary settings | 0000H to 00FFH (hexadecimal format) <br> Bit 0: Medium load speed multiplying factor <br> selection <br> 0: Fixed multiplying factor, 1: Proportional to <br> load | 0000 H | Y |

## Operation details

If operation is started, the set frequency is reached, and light load automatic double speed judgment permission "LAC-ENB" is ON after load judgment delay time d180 and d181 have elapsed, load judgment is performed, and the mode changes to double speed mode. Loads are classified into light load, medium load, and heavy load with light load detection level d182 and d183, and heavy load detection level d184 and d185 for load judgment, and double speed operation can be performed for light loads and medium loads.

## - Light load automatic double speed judgment permission "LAC-ENB" assignment (Function code data

 = 105)This is a permission command used to perform load judgment for automatic double speed operation for light loads. Load judgment is performed while the motor is running at constant speed, and therefore this signal should be turned ON before and after reaching the set frequency. If this signal is not assigned, load judgment is not performed even if the setting conditions are established for a light load. If this signal is ON while the motor is running at constant speed, and light load judgment delay time d180 and d181 have elapsed, load judgment is performed. If the detected load is smaller than heavy load detection level d184 and d185 when performing load judgment, the mode changes to double speed mode.
Double speed mode is ended when "LAC-ENB" turns OFF, or the set frequency is changed, and the motor decelerates to the set frequency in the deceleration time.
Load type and speed multiplying factor

| Load type | Type condition |  | Speed multiplying factor*1 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Hoisting | Lowering | Hoisting | Lowering |
| Light load | $0[\%] \leq$ load $\leq \mathrm{d} 182$ | $0[\%] \leq$ load $\leq \mathrm{d} 183$ | d 175 | d 176 |
| Medium <br> load | $\mathrm{d} 182<$ load $\leq$ <br> d 184 | $\mathrm{~d} 183<$ load $\leq \mathrm{d} 185$ | $\mathrm{d} 175, \mathrm{~d} 177$, <br> automatically <br> calculated based on <br> load*2 | $\mathrm{d} 176, \mathrm{~d} 178$, <br> automatically <br> calculated based on <br> load*2 |
| Heavy <br> load | $\mathrm{d} 184<$ load | $\mathrm{d} 185<$ load | $100[\%]$ | $100[\%]$ |

Load type speed multiplying factor (if heavy load detection level = 999 (disable))

| Load type | Type condition |  | Speed multiplying factor *1 |  |
| :---: | :---: | :---: | :---: | :---: |
|  | Hoisting | Lowering | Hoisting | Lowering |
| Light load | $0[\%] \leq$ load $\leq \mathrm{d} 182$ | $0[\%] \leq$ load $\leq \mathrm{d} 183$ | d 175 | d 176 |
| Heavy <br> load | $\mathrm{d} 182<$ load | $\mathrm{d} 183<$ load | $100[\%]$ | $100[\%]$ |

## - Performing light load automatic double speed operation "LAC" assignment (Function code data =159)

By assigning this signal to a digital output, the inverter is able to monitor that the motor is performing double speed operation. This signal turns ON when in double speed mode, and turns OFF when double speed mode ends.

## FUNCTION

## Speed multiplying factor safety factor

If using the motor with a frequency higher than the base frequency, the motor will run with fixed output characteristics, and therefore the output torque will decrease.
The maximum frequency at which the output torque can rise is calculated as the torque reduction characteristic equal to or higher than the base frequency,
Reduction torque $=\frac{\text { Base frequency }}{\text { Operating frequency }} \mathbf{x}$ Motor rated torque
but since the actual reduction torque is dependent on the motor, the torque may become lower than the reduction torque mentioned above. In a case such as this, setting the safety factor in d179, and reducing the maximum frequency at which the output torque can rise prevents loads falling due to insufficient output torque.

## - Hoist function auxiliary setting

It is possible to select whether to set the double speed rate when moving medium loads to a fixed value, or to set the double speed rate proportional to the load with bit 0 .
Bits 1 to 7 are for use by the manufacturer, and should not be changed.


Bit 0: Medium load speed multiplying factor selection (0: Fixed multiplying factor (factory default))
Bit 0: Medium load speed multiplying factor selection (1: Proportional to load)
If 1 (proportional to load) is selected at bit 0 , refer to the following diagram for the double speed rate.

(Note 1) The operating frequency multiplied by the double speed rate is always limited to the "maximum frequency at which the output torque can rise" ((1) in figure).
(Note 2) The double speed rate in the medium load area is the multiplying factor obtained through linear interpolation from the medium load double speed rate to the light load double speed rate. ((3) in figure) If 999 is set for the double speed rate (d175 or d176) only, the multiplying factor obtained through linear interpolation to the double speed rate determined by "maximum frequency at which the output torque can rise $\div$ safety factor" equivalent to the light load detection level (d182, d183) is used. ((4) in figure)
(Note 3) If set with the light load detection level (d182, d183) $\geq$ heavy load detection level (d184, d185), the setting will be disabled (equivalent to double speed rate of $100 \%$ ) in the same way as when the medium load area is set to 999.
(Note 4) By setting the double speed rate to 999 for both light and medium loads, the setting will be automatically calculated so that the motor is run at the "maximum frequency at which the output torque can rise $\div$ safety factor" ((2) automatic operating frequency in figure) in all areas from the output torque based on the motor rated torque and the safety factor (d179). The lower limit for the automatic operating frequency is the base frequency.


## FUNCTION

## Overload stop function

Load judgment is performed when the judgment delay time after reaching speed (d186) is passed when hoisting (FWD), and operation is stopped due to an overload if the overload detection level (d187) is exceeded. It is recommended that judgment be based on the low speed frequency to ensure that overloads can be detected when hoisting grounded loads.
Digital output "LLIM" is turned ON at the same time as the overload is detected, and " $E-\frac{1}{-1}$ " is displayed on the keypad. If lowering (REV) is possible, and the REV command is turned OFF after the load has been lowered to the floor, "LLIM" turns OFF, and " $E-1$ il " disappears. In the interests of safety, adjustment of the load detection function gain and offset (d171 to d174) must be complete to use this function.


## Function code

| Function <br> code | Name | Data setting range | Factory <br> default | Change <br> during <br> operation |
| :--- | :--- | :--- | :--- | :---: |
| E20 to <br> E24, <br> E27 | Terminal [Y1] to [Y4] (Function selection) <br> Terminal [Y5A/C] (Function selection) <br> Terminal [30A/B/C] (Function selection) | 158 (1158): Overload detection signal "LLIM" | - | N |
| d186 | Overload judgment delay time | 0.00 to 10.00 s |  |  |
| d187 | Overload detection level | 1.0 to $250.0 \%, 999$ (disable) | 0.50 | Y |
| d188 | Overload detection monitor | Dedicated monitor function code: -327.68 to <br> $+327.67 \%$ | - | - |

## Overload detection "LLIM" assignment (Function code data = 158)

By assigning this signal to a digital output, the inverter is able to monitor that an overload has been detected. The signal turns ON when an overload is detected, the REV command is turned ON to lower the load, and when lowering stops (REV = OFF), this signal also turns OFF.

| d192, d198, <br> d199 | For manufacturer |
| :--- | :--- |

These function codes are displayed, but are for use by the manufacturer. Unless otherwise specified, do not access these function codes.

```
d193
d194, d195,
d196, d197
 Special adjustment (Torque scaling factor for high load)
 Special adjustment (Torque scaling factor for high load (for driving, braking))
 Special adjustment (Torque scaling effective speed for high load (for driving, braking))
```

These are special adjustment function codes used to adjust the torque-speed accuracy for overload areas such as those in which the motor output torque exceeds $100 \%$. If the overload area is used when accelerating or decelerating, there is no need to adjust these function codes.
It is necessary to understand the torque-speed characteristic for the motor overload area beforehand in order to adjust these function codes. When adjustment is necessary, consult your Fuji Electric representative.

## [5] Position control

## d201 to d299

Position control

Position control can be performed using a feedback signal with PG. Feedback signal pulses are counted at the inverter, and operation is performed so that the amount of travel is based on the specified position data. Application is possible under vector control with speed sensor or under V/f control with speed sensor. If performing position control using a synchronous motor, use an encoder with A-phase, B-phase, Z-phase, and U-phase, V-phase, Wphase output for the magnetic pole position sensor. With encoders with only an A-phase, B-phase, and Z-phase, it is not possible to perform position control with a synchronous motor.

An orientation function has also been prepared as a position control response function.
The system configuration is shown in the following diagram.


Note
Do not set direction limit [H08] to 1 or 2 when performing position control. Position control will not function normally.

The control specifications are shown in the following table.

| Item | Specification | Remarks |
| :---: | :---: | :---: |
| Speed control range | $\begin{array}{ll}\text { Vector control with speed sensor: } & \text { 1:1500 } \\ \text { V/f control with speed sensor: } & \text { 1:200 }\end{array}$ | PG: 1024P/R direct connection |
| Position control accuracy | - Motor shaft direct connection: <br> $\pm 1$ pulse <br> - Machine shaft (vector control): <br> $\pm 3$ pulses <br> - Machine shaft (dynamic torque vector control with speed sensor): <br> $\pm 5$ pulses | PG: when 1024P/R used <br> Control accuracy when multiplying by 4 <br> Reduction ratio: 1 (excl. gear backlash) |
| Position data range | -99,999,999 to 99,999,999 (user value) | The user value is based on the electronic gear setting. |

## Function code list

The following table contains a list of related function codes used for position control.
Table 5.3-46 Related function codes to used for position control

| Function code | Name | Data setting range | Unit | Factory default | Change during operation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \mathrm{E} 01 \\ \text { to } \\ \mathrm{E} 09, \\ \mathrm{E} 98, \\ \mathrm{E} 99 \end{gathered}$ | Terminal [X1] to [X9] (Function selection) <br> Terminal [FWD] <br> (Function selection) <br> Terminal [REV] <br> (Function selection) | 42 (1042): Home position limit switch "LS" <br> 119 (1119): Speed regulator P operation "P-SEL" <br> 135 (1135): Travel/absolute position switching "INC/ABS" <br> 136 (1136): Orientation command "ORT" <br> 137 (1137): Position control/speed control switching "POS/Hz" <br> 138 (1138): Homing command "ORG" <br> 139 (1139): + direction overtravel "+OT" <br> 140 (1140): - direction overtravel "-OT" <br> 141 (1141): Position clear command "P-CLR" <br> 142 (1142): Position preset command "P-PRESET" <br> 143 (1143): Teaching command "TEACH" <br> 144 (1144): Positioning data change command "POS-SET" <br> 145 (1145): Positioning data selection 1 "POS-SEL1" <br> 146 (1146): Positioning data selection 2 "POS-SEL2" <br> 147 (1147): Positioning data selection 4 "POS-SEL4" | - | - | N |
| E20 to E24, E27 | Terminal [Y1] to [Y4] (Function selection) Terminal [Y5A/C] (Function selection) Terminal [30A/B/C] (Function selection) | 82 (1082): Position control complete signal"PSET" <br> 151 (1151): Overtravel detection "OT-OUT" <br> 152 (1152): Forced stop detection "STOP-OUT" <br> 153 (1153): Pass point detection 1 "PPAS1" <br> 154 (1154): Pass point detection 2 "PPAS2" | - | - | N |
| d201 | Position feed forward gain | 0.00 : Feed forward disable 0.01 to 1.50 | - | 0.00 | Y |
| d202 | Position feed forward command filter | 0.000 to 5.000 | S | 0.500 | Y |
| d203 | Position regulator gain 1 (low speed range) | 0.1 to 300.0 | Times | 1.0 | Y |
| d204 | Position regulator gain 2 (high speed range) | 0.1 to 300.0 | Times | 1.0 | Y |
| d205 | Position regulator gain switching frequency | 0.0 to 599.0 | Hz | 0.0 | Y |
| d206 | Electronic gear denominator | 1 to 65535 | - | 1 | N |
| d207 | Electronic gear numerator | 1 to 65535 | - | 1 | N |
| d208 | Orientation mode selection | 0 : With shortcut (run command direction and with reverse rotation) <br> 1: Without shortcut (run command direction) | - | 1 | N |

## FUNCTION

| Function code | Name | Data setting range | Unit | Factory default | Change during operation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| d209 | Homing mode selection | 0 to 15 <br> Bit 0: Homing starting direction <br> 0: Forward rotation direction <br> 1: Reverse rotation direction <br> Bit 1: Homing direction <br> 0: Forward rotation direction <br> 1: Reverse rotation direction <br> Bit 2: Homing OT operation selection <br> 0 : Reverse rotation following OT detection <br> 1: Stop following OT detection <br> Bit 3: Home position LS timing selection <br> 0 : ON edge detection <br> 1: OFF edge detection <br> Bit 7: Z-phase compensation <br> 0 : Disable <br> 1: Enable | - | 0 | N |
| d211 | Homing reference signal | 0: Encoder Z-phase <br> 1: Home position LS 2: +OT 3: -OT | - | 1 | Y |
| d212 | Homing shift reference signal | 0: Encoder Z-phase <br> 1: Home position LS valid edge <br> 2: +OT <br> 3: -OT <br> 4: Stopper (contact) | - | 0 | Y |
| d213 | Homing frequency/orientation frequency | 0.1 to 599.0 | Hz | 5.0 | Y |
| d214 | Homing creep frequency | 0.1 to 599.0 | Hz | 0.5 | Y |
| d215 | Homing deceleration time/orientation deceleration time | $0.00 \text { to } 6000$ <br> * When set to 0.00 , acceleration/deceleration time is canceled. | s | 6.00 | Y |
| d216 | Positioning data teaching | 0: Disable <br> 1 to 8: Enable (writes feedback current position written to positioning data 1 to 8 ) | - | 0 | Y |
| d217 | Homing shift teaching | 0: Disable <br> 1: Enable (writes feedback current position to homing shift) | - | 0 | Y |
| d218 | Software OT detection position teaching | 0: Disable <br> 1: Enable (writes feedback current position to +OT detection position) <br> 2: Enable (writes feedback current position to -OT detection position) | - | 0 | Y |
| d219 | Pass point detection position teaching (number designation) | 0: Disable <br> 1: Enable (writes feedback current position to pass point 1) <br> 2: Enable (writes feedback current position to pass point 2) | - | 0 | Y |
| d220 | Feedback current position memory selection | 0: Do not memorize <br> 1: Memorize following undervoltage | - | 0 | Y |
| d221 | Position clear signal (PCLR) operation selection | 0 : Clears when edge detected <br> 1: Clears when level detected | - | 0 | Y |
| d222 | Software OT operation selection | 0 : Disable software OT (endless) <br> 1: Limit target position with software OT <br> 2: Emergency stop when software OT detected | - | 0 | Y |

5.3 Description of Function Codes 5.3.9 d codes (Applied functions 2)

| Function code | Name | Data setting range | Unit | Factory default | Change during operation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| d223 | Deviation detection overflow value - 4 higher order digits | 0 to 9999 * Disable when 0 for both d223, d224 | U | 0 | Y |
| d224 | Deviation detection overflow value - 4 lower order digits | 0 to 9999 * Disable when 0 for both d223, d224 | U | 0 | Y |
| d225 | + software OT detection position-4 higher order digits | -9999 to +9999 | U | +9999 | N |
| d226 | + software OT detection position-4 lower order digits | 0 to 9999 | U | 9999 | N |
| d227 | - software OT detection position-4 higher order digits | -9999 to +9999 | U | -9999 | N |
| d228 | - software OT detection position-4 lower order digits | 0 to 9999 | U | 9999 | N |
| d229 | Pass point detection position 1-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d230 | Pass point detection position 1-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d231 | Pass point detection position 2-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d232 | Pass point detection position 2-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d237 | Positioning data type (INC/ABS switching) | 0 : Handle positioning data as absolute position (ABS) <br> 1: Handle positioning data as travel (INC) | - | 0 | Y |
| d238 | Positioning data selection signal agreement timer | 0.000 to 0.100 | S | 0.000 | Y |
| d239 | In-position range | 0 to 9999 | U | 1 | Y |
| d240 | Preset position - 4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d241 | Preset position - 4 lower order digits | 0 to 9999 | U | 0 | Y |
| d242 | Homing shift - 4 higher order digits | 0 to 9999 | U | 0 | Y |
| d243 | Homing shift - 4 lower order digits | 0 to 9999 | U | 0 | Y |
| d244 | Positioning data 1-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d245 | Positioning data 1-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d246 | Positioning data 2-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d247 | Positioning data 2-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d248 | Positioning data 3-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d249 | Positioning data 3-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d250 | Positioning data 4-4 higher order digits | -9999 to +9999 | U | 0 | Y |

## FUNCTION

| Function <br> code | Name | Data setting range | Unit | Factory <br> default |
| :---: | :--- | :---: | :---: | :---: |
| Change |  |  |  |  |
| during |  |  |  |  |
| operation |  |  |  |  |$|$

Unit $U$ indicates the user value.

## Input terminal functions

Table 5.3-47 Input terminal function list

| LED | Terminal function | Terminal name | Description |
| :---: | :---: | :---: | :---: |
| 42 | Home position limit switch | "LS" | After detecting the "LS" valid edge during homing operation, the motor moves from the first PG Z-phase by the homing shift and stops, and homing is performed. |
| 119 | Speed regulator P operation | "P-SEL" | By turning "P-SEL" ON, the speed regulator integration term is canceled, and $P$ operation is performed. If the machine brake is applied during position control, the motor will not be able to rotate even if a positional displacement exists, and as a result, the integration term accumulates, possibly causing an overload trip. This function is used in cases such as this. |
| 135 | Travel/absolute position switching | "INC/ABS" | Positioning data is set as the relative position from the current point when this signal turns ON, and is set as the absolute position from the home position when the signal turns OFF. |
| 137 | Position control/speed control switching | "POS/Hz" | The mode changes to position control mode when this signal turns ON. The mode changes to speed control mode when the signal turns OFF. Operation is also possible while the motor is running. <br> The servo lock is applied after positioning with position control. (under vector control) <br> DC braking is applied under V/f control. |
| 138 | Homing command | "ORG" | The mode changes to homing mode when this signal turns ON. |
| 139 | +direction overtravel | "+OT" | Inputs a plus direction overtravel detection signal. This setting is enabled (contact b) when OFF. This is used for emergency stops and homing. |
| 140 | -direction overtravel | "-OT" | Inputs a minus direction overtravel detection signal. This setting is enabled (contact b) when OFF. This is used for emergency stops and homing. |
| 141 | Position clear command | "P-CLR" | Clears the current position to 0 when ON. |
| 142 | Position preset command | "P-PRESET" | Sets the current position to the preset position (d240, d241) when ON. |
| 143 | Teaching signal | "TEACH" | Stores the current position in position data 1 to 8 when ON (teaching operation). The position data 1 to 8 selection is made at d216. |
| 144 | Positioning data change command | "POS-SET" | The target position is changed, and the motor starts moving to the new target position when ON. |
| $\begin{aligned} & 145 \\ & 146 \\ & 147 \end{aligned}$ | Positioning data selection 1 Positioning data selection 2 Positioning data selection 4 | $\begin{aligned} & \text { "POS-SEL1" } \\ & \text { "POS-SEL2" } \\ & \text { "POS-SEL4" } \end{aligned}$ | Select position data 1 to 8 with a combination of these. |

## Output terminal functions

Table 5.3-48 Output terminal function list

| LED | Terminal function | Terminal name | Description |
| :---: | :--- | :--- | :--- |
| 82 | In-position signal | "PSET" | Turns ON when in-position (position deviation is d239 or <br> less). |
| 151 | Overtravel detection | "OT-OUT" | Turns ON when an overtravel detection signal is received, <br> or when a software OT is detected. |
| 152 | Forced stop detection | "STOP-OUT" | Turns ON when a forced stop is performed with digital input <br> "STOP". |
| 153 | Pass point detection 1 | "PPAS1" | Turns ON if Pass point detection 1 (d229, d230) is passed. <br> Turns ON if the motor passes in the forward direction when <br> Pass point detection 1 is positive, and if the motor passes in <br> the reverse direction when Pass point detection 1 is <br> negative. |
| 154 | Pass point detection 2 | "PPAS2" | Turns ON if Pass point detection 2 (d231, d232) is passed. <br> Turns ON if the motor passes in the forward direction when <br> Pass point detection 2 is positive, and if the motor passes in <br> the reverse direction when Pass point detection 1 is <br> negative. |

## Basic operation

By turning digital input " $\mathrm{POS} / \mathrm{Hz}$ " ON while the motor is stopped, positioning control is enabled. Operation is then started when the run command is turned ON, the motor accelerates to the set frequency, and then decelerates and stops so that it moves to the position data. The servo lock is applied when the motor stops. 8 types of positioning data can be set, and a selection can be made with a combination of "POS-SEL1", "POS-SEL2", and "POS-SEL4. Movement begins again following the position data change (target position change) when "POS-SET" turns ON. Digital output "PSET" turns ON while the servo lock is applied after reaching the target position. If applying the machine brake while the servo lock is applied, when "P-SEL" turns ON, the electrical angle is fixed, allowing the machine brake to be applied.


## - Position control gain

Position control involves generating a torque command and speed command based on the deviation between the command position and current position with the operation pattern generated from position data (target position) to run the inverter. Generally speaking, speed control adjustment based on the actual load must be complete, and it must be possible to perform problem-free acceleration and deceleration. Position control gain adjusts the position control responsiveness. To increase the responsiveness, increase d203 and d204. If increased too much, hunting and overshoot will occur. If wishing to switch the gain between low speed and high speed, set the switching frequency with d205. If the motor vibrates when the system rigidity is weak and the gain is increased, increase d201.

| Function <br> code | Name | Data setting range | Unit | Factory <br> default | Change <br> during <br> operation |
| :---: | :--- | :--- | :---: | :---: | :---: |
| d 201 | Position feed forward gain | $0.00:$ Feed forward disable <br> 0.01 to 1.50 | - | 0.00 | Y |
| d 202 | Position feed forward command filter | 0.000 to 5.000 | s | 0.500 | Y |
| d 203 | Position regulator gain 1 (low speed <br> range) | 0.1 to 300.0 | - | 1.0 | Y |
| d 204 | Position regulator gain 2 (high speed <br> range) | 0.1 to 300.0 | Hz | 0.0 | Y |
| d 205 | Position regulator gain switching <br> frequency | 0.0 to 599.0 | Y |  |  |

## Electronic gear

Generally speaking, position control manages the motor movement based on the PG pulse count, but it is more helpful to manage movement with the physical values (user values) determined by the system. The PG pulse count and user value conversion ratio can be set as the electronic gear.

| Function <br> code | Name | Data setting range | Unit | Factory <br> default | Change <br> during <br> operation |
| :---: | :--- | :--- | :---: | :---: | :---: |
| d 206 | Electronic gear denominator | 1 to 65535 | - | 1 | N |
| d 207 | Electronic gear numerator | 1 to 65535 | - | 1 | N |

## (1) Electronic gear calculation method

The electronic gear numerator/electronic gear denominator ratio can be calculated from the travel (position resolution) per 1 user value unit [mm/user value], travel [mm/rev] per motor rotation, and PG pulse count [pulse/rev] per motor rotation.
$\frac{\text { Electronic gear numerator }}{\text { Electronic gear denominator }}=\frac{\text { Travel per user value }[\mathrm{mm} / \mathrm{user} \text { value }]}{\text { Travel per PG pulse }[\mathrm{mm} / \mathrm{pulse}]}$

$$
=\frac{\text { Travel per user value }[\mathrm{mm} / \text { user value }]}{\frac{\text { Travel per motor rotation }[\mathrm{mm} / \mathrm{rev}]}{\text { Pulse count per motor rotation [pulse/rev] }}}
$$

Electronic gear numerator and electronic gear denominator fractions should be reduced and set so that they are both integers of 65535 or less.

## [Electronic gear calculation example]

In the case of travel of 0.1 [ $\mathrm{mm} /$ user value], machine speed of 150 [ $\mathrm{m} / \mathrm{min}$ ] at motor speed of $1800[\mathrm{r} / \mathrm{min}]$, and PG pulse count of 1000 [pulse/rev]

$$
\frac{\text { Electronic gear numerator }}{\text { Electronic gear denominator }}=\frac{0.1[\mathrm{~mm} / \text { user value }]}{\frac{150 \times 1000 \div 18001000[\mathrm{~mm} / \mathrm{rev}]}{1000[\mathrm{pulse} / \mathrm{rev}]}}=\frac{180}{150}=\frac{12}{10}
$$

## Deceleration time selection

The normal deceleration time (F07.E10, E12, E14) during position control is selected. The forced deceleration time (H56) is selected below.

- If the run command (FWD, REV) is cut off and the motor decelerates while performing position control
- If an overtravel (OT) is detected, or an emergency stop condition occurs when a "STOP" signal is input


## Positioning data

Up to 8 points of positioning data can be set in user value units. These points are selected with a combination of digital input positioning data selection signals "POS-SEL1", "POS-SEL2", and "POS-SEL4. To prevent chattering, the selection will change if the positioning data selection signal does not change until the d238: positioning data selection signal agreement timer time elapses. Positioning data can be changed while performing position control. To reflect the changed position, turn ON positioning data change command "POS-SET".
If positioning data is changed while the motor is stopped, there will be no need to turn ON positioning data change command "POS-SET".

| "POS-SEL4" | "POS-SEL2" | "POS-SEL1" | Function code | LED | Range (user value unit) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| OFF | OFF | OFF | $\mathrm{d} 244, \mathrm{~d} 245$ | Positioning data 1 | $\pm 99,999,999$ |
| OFF | OFF | ON | $\mathrm{d} 246, \mathrm{~d} 247$ | Positioning data 2 | $\pm 99,999,999$ |
| OFF | ON | OFF | $\mathrm{d} 248, \mathrm{~d} 249$ | Positioning data 3 | $\pm 99,999,999$ |
| OFF | ON | ON | $\mathrm{d} 250, \mathrm{~d} 251$ | Positioning data 4 | $\pm 99,999,999$ |
| ON | OFF | OFF | $\mathrm{d} 252, \mathrm{~d} 253$ | Positioning data 5 | $\pm 99,999,999$ |
| ON | OFF | ON | $\mathrm{d} 254, \mathrm{~d} 255$ | Positioning data 6 | $\pm 99,999,999$ |
| ON | ON | OFF | $\mathrm{d} 256, \mathrm{~d} 257$ | Positioning data 7 | $\pm 99,999,999$ |
| ON | ON | ON | $\mathrm{d} 258, \mathrm{~d} 259$ | Positioning data 8 | $\pm 99,999,999$ |


| Function code | Name | Data setting range | Unit | Factory default | Change during operation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{array}{\|c} \hline \text { E01 to E09 } \\ \text { E98 } \\ \text { E99 } \end{array}$ | Terminal [X1] to [X9] <br> (Function selection) <br> Terminal [FWD] <br> (Function selection) <br> Terminal [REV] <br> (Function selection) | 135(1135): <br> Travel/absolute position switching <br> "INC/ABS" <br> 144(1144): <br> Positioning data change command "POS- <br> SET" <br> 145(1145): <br> Positioning data selection 1 "POS-SEL1" <br> 146(1146): <br> Positioning data selection 2 "POS-SEL2" <br> 147(1147): <br> Positioning data selection 4 "POS-SEL4" |  | - | N |
| d237 | Positioning data type (INC/ABS switching) | 0 : Handle positioning data as absolute position (ABS) <br> 1: Handle positioning data as travel (INC) | - | 0 | Y |
| d238 | Positioning data selection agreement timer | 0.000 to 0.100 | s | 0.000 | Y |
| d277 | Positioning data communication command selection | 0 : Disable positioning data communication command (S20, S21) <br> 1: Enable positioning data communication command (S20, S21) | - | 0 | Y |
| S20, S21 | Positioning data communication (high order, low order) | $\pm 99,999,999$ | U | 0 | Y |

## FUNCTION

## Overtravel (OT)

Machine failure or an accident may occur if the motor passes the travel boundary point. Passing of the travel boundary point can be detected with hardware, and a digital signal can be input as an overtravel (OT) signal. Following OT detection, the motor decelerates and stops in the H 56 forced deceleration time, and the servo lock is applied. If function code $\mathrm{d} 280=1$, an Er 6 alarm occurs after the motor decelerates and stops. A plus side overtravel "+OT" and minus side overtravel "-OT" can be assigned individually. In the interests of safety, overtravel signals are enabled (contact b) when OFF. If an overtravel is detected, overtravel detection signal "OT-OUT" is output with digital output.

| Function <br> code | Name | Data setting range <br> Factory <br> default | Change <br> during <br> operation |  |
| :---: | :--- | :--- | :---: | :---: |
| E01 to E09 <br> E98 <br> E99 | Terminal [X1] to [X9] <br> (Function selection) <br> Terminal [FWD] <br> (Function selection) <br> Terminal [REV] (Function selection) | $139(1139): ~+~ d i r e c t i o n ~ o v e r t r a v e l ~ "+O T " ~$ <br> $140(1140): ~-~ d i r e c t i o n ~ o v e r t r a v e l ~ "-O T " ~$ | - | N |
| d280 | Operation during emergency stop | 0: Servo lock after deceleration stop <br> 1: Er6 alarm after deceleration stop |  |  |

Operation is possible if position data is updated to the return direction with the servo lock applied ( $\mathrm{d} 280=0$ ) following OT detection, and control is changed to speed control, and a run command is issued to move the motor in the return direction. However, if "-OT" is input while the motor is traveling in the plus direction, or "+OT" is input while the motor is traveling in the minus direction, the motor does not move in either direction until the OT is cleared.

## Software OT

Overtravel (OT) is basically used to detect the boundary travel point with hardware, but the boundary point position can be set with the pulse count. This is known as a software OT. A + software OT and - software OT can be set individually. The operation when a software OT is detected can be selected with d222. If no OT for such as the rotor exists, use with the factory default value of $\mathrm{d} 222=0$.

| Function <br> code | Name | Data setting range <br> Unit | Factory <br> default | Change <br> during <br> operation |  |
| :---: | :--- | :--- | :---: | :---: | :---: |
| d 222 | Software OT operation selection | 0: Disable software OT (endless) <br> 1: Limit target position with software OT <br> 2: Emergency stop when software OT <br> detected | - | 0 | Y |
| d 225 | + software OT detection position - <br> 4 higher order digits | -9999 to +9999 | U | +9999 | N |
| d 226 | + software OT detection position - <br> 4 lower order digits | 0 to 9999 | U | 9999 | N |
| d 227 | - software OT detection position -4 <br> higher order digits | -9999 to +9999 | -9999 | N |  |
| d 228 | - software OT detection position -4 <br> lower order digits | 0 to 9999 | U | 9999 | N |

## d237 Positioning data type (INC/ABS switching)

It is possible to switch between handling the positioning data set for positioning data 1 to 8 as the absolute position, or as travel. If wishing to switch how the data is handled whenever necessary, use digital input terminal function travel/absolute position switching "INC/ABS" (data = 135). By assigning "INC/ABS" to the digital input terminal, the d237 setting becomes invalid.

## d238 Positioning data selection signal agreement timer

If switching between positioning data selection 1 "POS-SEL" and positioning data selection 4 "POS-SEL4", the selected positioning data may change due to chattering. If this happens, set the time until the positioning data settles in d238.

## d277 Positioning data communication command selection

Positioning data can be provided with communication. Set 1 for d277 if providing positioning data with communication. When doing so, the respective positioning data high order and low order are provided with communication command function codes S20 and S21.
To reflect the positioning data, turn ON positioning data change command "POS-SET". d 244 and d 245 positioning data 1 changes to S 20 and S 21 while the command from communication is active, but it is also possible to change from positioning data 2 to 8 by positioning data 1, 2, and 4 "POS-SEL1", "POS-SEL2", and "POS-SEL4".

## - Homing basic operation

By inputting a run command with digital input terminals "POS/Hz" and "ORG" ON, homing is started. The operation direction is specified with d209. The motor accelerates to the homing frequency (d213), and after the moving body has turned ON home position limit switch "LS" (homing reference signal), the motor moves to from the first Z-phase signal (homing shift reference signal) by the homing shift ( d 242 , d 243 ), stops, and then homing is performed. Inposition signal "PSET" is also output. If the overtravel turns ON before the home position LS, the motor will rotate in the reverse direction to look for the home position LS.


## d209: Homing mode selection

This defines the homing starting direction, homing travel direction, operation when an OT is detected, and the LS detection timing.
Bit 0: Homing starting direction, 0: Forward rotation direction, 1: Reverse rotation direction
The motor starts in the direction specified with this definition, regardless of the inverter run command direction.
Bit 1: Homing direction, 0: Forward rotation direction, 1: Reverse rotation direction
Defines the homing travel direction. If the opposite direction from the starting direction is set, the motor will stop and then start reverse rotation after LS (homing reference signal) detection.

Bit 2: Homing OT operation selection, 0: Reverse rotation following OT detection, 1: Stop following OT detection
Defines whether to stop the motor or perform reverse rotation if an OT is detected before LS (homing reference signal) detection.

Bit 3: Home position LS timing selection, 0: ON edge detection, 1: OFF edge detection
Defines whether to perform LS detection with the LS ON edge, or with the OFF edge.
d209 is as follows if expressed with an illustration. In the following diagrams, OT reverse rotation is performed with bit $2=0$.

| [d209 bit1] Homing direction ... 0: Forward rotation direction (+) |  | ard rotation direction (+) If home position > home position LS |
| :---: | :---: | :---: |
| Homing starting direction [d209 bit0] | Initial position | Homing profile drawing |
| 0 : + direction | - side from home position LS |  |
|  | + side from \| home position LS |  |
| 1:-direction | - side from home position LS |  |
|  | + side from home position LS |  |


| [d209 bit1] Homing direction ... 1: Reverse rotation direction (-) |  |  | Home position < home position LS |
| :---: | :---: | :---: | :---: |
| Homing starting direction [d209 bit0] | Initial position | Homing profile drawing |  |
| 0: + direction | - side from home position LS |  |  |
|  | + side from home position LS | Home position <br> Home position LS <br> Homing direction - - |  |
| 1: - direction | - side from home position LS |  |  |
|  | + side from home position LS | $\square_{-0 T}$ |  |

## d211: Homing reference signal, d212: Homing shift reference signal

The homing reference signal is used to switching from the homing frequency to the homing creep frequency. The homing shift reference signal is used to start counting the homing shift. Normally, the home position LS is the homing reference signal, and the Z-phase signal is the homing shift reference signal (factory default). If configuring homing using other signals, select the homing reference signal and homing shift reference signal using the following table. If other than Z-phase is selected for d212 homing shift reference signal, the configuration will have no homing reference signal, and therefore the d 211 homing reference signal will be invalid.

| d211: Homing reference signal | d212: Homing shift reference signal | Frequency when beginning homing shift | Enable |
| :---: | :---: | :---: | :---: |
| 0: Z-phase | 0: Z-phase (factory default) | Creep frequency | Homing shift is started when the Z-phase is detected for the first time after starting at the creep frequency. |
| 1: Home position LS (factory default) |  | Homing frequency to creep frequency |  |
| 2: +OT |  | Homing frequency to | Decelerates to creep frequency when |
| 3: -OT |  | creep frequency | rming reverse rotation when OT reached. |
| Disable | 1: Home position LS | Homing frequency |  |
|  | 2: +OT | Homing frequency to creep frequency | Decelerates to creep frequency when performing reverse rotation when OT reached. |
|  | 3: -OT |  |  |
|  | 4: Stopper | Homing frequency to creep frequency | A stopper collision is judged when torque limiting occurs, the motor immediately moves in the reverse rotation direction, and the homing shift operation is performed at the creep frequency. |

## Position clear

Clears the current position to 0 when digital input "P-CLR" turns ON. Clearing is possible during position control or speed control. The timing at which the position is cleared can be selected from the ON edge or ON level.

| Function <br> code | Name | Data setting range | Factory <br> default | Change <br> during <br> operation |
| :---: | :--- | :--- | :---: | :---: |
| E01 to E09 <br> E98 <br> E99 | Terminal [X1] to [X9] <br> (Function selection) <br> Terminal [FWD] <br> (Function selection) <br> Terminal [REV] (Function selection) | 141 (1141): Position clear command "P-CLR" | - | N |
| d221 | Position clear signal (P-CLR) <br> operation selection | 0: Clears when edge detected <br> 1: Clears when level detected | O | Y |

## Position preset

Rewrites the current position at the d 240 , d 241 preset position at the digital input "P-PRESET" ON edge. Presetting is possible during position control or speed control.

| Function <br> code | Name | Data setting range | Factory <br> default | Change <br> during <br> operation |
| :---: | :--- | :--- | :---: | :---: |
| E01 to E09 <br> E98 <br> E99 | Terminal [X1] to [X9] <br> (Function selection) <br> Terminal [FWD] <br> (Function selection) <br> Terminal [REV] (Function selection) | 142 (1142): Position preset command "P- <br> PRESET" | - | N |
| d240 | Preset position - 4 higher order <br> digits | -9999 to +9999 | 0 | Y |
| d241 | Preset position - 4 lower order <br> digits | 0 to 9999 | 0 | Y |

## Pass point detection

When the set pass point detection positions 1 and 2 are passed, digital output pass point detection signals "PPAS1" and "PPAS2" can be turned ON. Pass point detection position 1 corresponds to "PPAS1", and pass point detection position 2 corresponds to "PPAS2".

The ON and OFF conditions differ depending on the pass point detection position polarity.
(1) When pass point detection position is 0 or higher ( + ): ON when current position $\geq$ pass point detection position, OFF when current position < pass point detection position
(2) When pass point detection position is less than $0(-)$ : ON when current position $\leq$ pass point detection position, OFF when current position > pass point detection position

| Function <br> code | Name | Data setting range | Factory <br> default | Change <br> during <br> operation |
| :---: | :--- | :--- | :---: | :---: |
| E20 to <br> E24, E27 | Terminal [Y1] to [Y4] <br> (Function selection) <br> Terminal [Y5A/C] <br> (Function selection) <br> Terminal [30A/B/C] <br> (Function selection) | $153(1153): ~ P a s s ~ p o i n t ~ d e t e c t i o n ~ 1 ~ " P P A S 1 " ~$ <br> $154(1154): ~ P a s s ~ p o i n t ~ d e t e c t i o n ~ 2 ~ " P P A S 2 " ~$ | - | N |
| d229 | Pass point detection position 1-4 <br> higher order digits | -9999 to +9999 | 0 | Y |
| d230 | Pass point detection position 1-4 <br> lower order digits | 0 to 9999 | 0 | Y |
| d231 | Pass point detection position 2-4 <br> higher order digits | -9999 to +9999 | 0 | Y |
| d232 | Pass point detection position 2-4 <br> lower order digits | 0 to 9999 | Y |  |



## FUNCTION

## Teaching

The position data 1 to 8 , homing shift, software OT detection position, and pass point detection position function code setting values can all be rewritten with the current position (teaching). Other than position data, all setting values are specified by setting the individual teaching function codes in the following table to 1 or 2 . The setting values automatically return to 0 . Teaching is possible at any time.

Teaching of position data 1 to 8 is performed by setting the position data number for d216, and turning digital input "TEACH" ON.

| Function <br> code | Name | Data setting range | Factory <br> default | Change <br> during <br> operation |
| :---: | :--- | :--- | :---: | :---: |
| E01 to E09 <br> E98 <br> E99 | Terminal [X1] to [X9] <br> (Function selection) <br> Terminal [FWD] <br> (Function selection) <br> Terminal [REV] <br> (Function selection) | 143 (1143): Teaching signal "TEACH" | - | N |
| d216 | Positioning data teaching | 0: Disable <br> 1 to 8; Position data 1 to 8 selection |  |  |
| d217 | Homing shift teaching | 0: Disable <br> 1: Writes feedback current position to homing shift <br> (d242, d243) | 0 | Y |
| d218 | Software OT detection position <br> teaching | 0: Disable <br> 1: Writes feedback current position to + OT (d225, <br> d226) <br> 2: Writes feedback current position to - OT (d227, <br> d228) | 0 | Y |
| d219 | Pass point detection position <br> teaching | 0: Disable <br> 1: Writes feedback current position to pass point <br> detection position 1 (d229, d230) <br> 2: Writes feedback current position to pass point <br> detection position 2 (d231, d232) | 0 | Y |

## - Position control with pulse train input

Position control can be performed with pulse train input as pulse position commands. With 12: Pulse train command set for the originally selected function code F01 (or C30) for the frequency command, by turning digital input "POS/Hz" ON, position control is performed using pulses from pulse train input as position command pulses.

Electronic gears operate at the ratio of input pulses to position commands (user values) in the same way as that for feedback pulses. If the ratio differs, align them using pulse scaling factor 1 and 2 (d62, d63).

Position command (user value) $=$

$$
\text { No. of input pulses } x \frac{\mathrm{~d} 63 \text { : Pulse scaling factor } 2}{\mathrm{~d} 62 \text { : Pulse scaling factor } 1} \times \frac{\mathrm{d} 207 \text { : Electronic gear numerator }}{\mathrm{d} 206 \text { : Electronic gear denominator }}
$$

Refer to the function code F01 item for pulse train input method detailed settings.
A setting example for a conveyor performing sizing by position control is shown below.

## ［6］Setting example for conveyor performing sizing by position control

## Conveyor configuration example

－Reduction ratio between motor and machine：1：5
－Encoder connected to machine shaft
－Encoder pulse count 1024 ［Pulse／rev］
－Conveyor moves 6.78 ［mm］with single rotation of machine shaft
－Conveyor moves 123.45 ［mm］with single positioning operation


## Electronic gear settings

The user should consider specifying travel in 0.01 ［ mm ］units for a conveyor with the above configuration． In this case，the encoder value and user value are calculated using an electronic gear．

$$
\frac{\text { Electronic gear numerator }}{\text { Electronic gear denominator }}=\frac{\text { Travel per } 1 \text { user value digit }}{\frac{\text { Travel per rotation }}{\text { Encoder feedback pulse }}}=\frac{0.01[\mathrm{~mm}]}{\frac{6.78[\mathrm{~mm} / \mathrm{rev}]}{1024[\mathrm{pulse} / \mathrm{rev}]}}=\frac{1024}{678}=\frac{\mathrm{d} 207}{\mathrm{~d} 206}
$$

Furthermore，the part connected to the encoder is not the motor shaft，but the spindle（machine shaft），and therefore it will also be necessary to set speed control related parameters．The following parameters must be set．

| d15 | 1024 |
| :--- | :--- |
| d16 | 1 |
| d17 | 5 |

## If providing the target position with absolute position commands

Constant rate of feeding can be realized by clearing the current position after each movement．And in the case of absolute position commands，by setting a software OT，the machine can be protected from overshoot each time．
If the constant rate of feeding amount is 123.45 mm ，and the software OT is set to 133.45 mm ，the following parameter values should be set．

| $d 222=2$ | Deceleration start at software OT |
| :--- | :--- |
| $d 225=+1$ | 4 higher order digits of software＋OT |
| $d 226=3345$ | 4 lower order digits of software＋OT |
| $d 237=0$ | Target position＝absolute position |
| $d 244=+1$ | 4 higher order digits of positioning data 1 |
| $d 245=2345$ | 4 lower order digits of positioning data 1 |

Furthermore, the following terminal functions should be set for the digital input terminals as terminal functions.
[Functions set for E01 to E09]

| $137(1137)$ | Position control/speed control switching <br> "POS/Hz" |
| :--- | :--- |
| $141(1141)$ | Position clear "P-CLR" |
| $144(1144)$ | Positioning data update "POS-SET" |

A time chart showing when these operations are performed is shown below.


- Position control is enabled when "POS-SET" is ON.
- The inverter starts running when "FWD" is ON. If positioning data selection "POS-SEL\#" has not been assigned, positioning data 1 is selected as the stop target position.
- After stopping at the target position, in-position "PSET" turns ON when the position deviation is in the in-position range.
- By setting "P-CLR" to ON, the current position is cleared to 0 (same as returning to home position).
- With positioning data update "POS-SET" set to ON, operation begins under position control with the target position again set as position data 1.
- Steps (3) to (5) are then repeated.


## Providing the target position with relative position commands

If providing the target position with relative position commands, unlike absolute position commands, there is no need to clear the current position when in-position. However, it is not possible to provide overshoot protection with a software OT.

If the constant rate of feeding amount is set to 200.00 mm , the following parameter values should be set.

| d237 $=1$ | Target position = relative position |
| :--- | :--- |
| d244 $=+1$ | 4 higher order digits of positioning data 1 |
| d245 $=2345$ | 4 lower order digits of positioning data 1 |

Furthermore, the following terminal functions should be set for the digital input terminals as terminal functions.
[Functions set for E01 to E09]

| $137(1137)$ | Position control/speed control switching "POS/Hz" |
| :--- | :--- |
| $144(1144)$ | Positioning data update "POS-SET" |

A time chart showing when these operations are performed is shown below.


- Position control is enabled when "POS-SET" is ON.
- The inverter starts running when "FWD" is ON. If positioning data selection "POS-SEL\#" has not been assigned, positioning data 1 is selected as the stop target position.
- If starting operation from current position $=0$, the target position is provided with target position $=0$ (current position) +20000 (positioning data 1).
- After stopping at the target position, in-position "PSET" turns ON when the position deviation is in the in-position range.
- With positioning data update "POS-SET" set to ON, operation begins under position control with the target position $=$ current position +20000 (positioning data 1 ).
- Steps (3) to (4) are then repeated.


## FUNCTION

## Orientation

The orientation function can be used as a position control response function.
Orientation can be performed with speed control during operation or while stopped.
Orientation cannot be performed when using PM motors.

## Orientation during speed control

Move the motor being rotated under speed control to the prescribed machine position. By turning ON digital input "ORT" while the motor is being run under speed control, the motor decelerates to the orientation frequency d213 in the selected deceleration time, the mode changes to position control mode, the amount of rotation at which the motor is able to decelerate and stop at orientation deceleration time d215 from the current position to the selected positioning data position is calculated, and the motor then stops after rotating by that amount.

Positioning data can be selected with digital input positioning data selection signals "POS-SEL1", "POS-SEL2", and "POS-SEL4" from positioning data 1 to 8 (d244 to d259). If providing positioning data with the factory default absolute position (ABS), this will be the absolute position with the encoder Z-phase as the reference. If wishing to provide positioning data as the absolute position with the machine home position as the reference instead of the encoder Z-phase, by setting a position offset for the encoder Z-phase-machine home position in homing shift d242 and d243, positioning data 1 to 8 ( d 244 to d 259 ) can be used as machine home position positioning data as is.


Fig. 5.3-55 Orientation while performing speed control
By turning orientation command "ORT" OFF while stopped during orientation, the motor accelerates to the set frequency and speed control is resumed.

## Performing orientation the motor is stopped

When positioning with orientation is complete, if under vector control with speed sensor, the servo lock is applied, and digital output "PSET" is output if the position deviation is within in-position range d239. If the positioning position is changed, "POS-SET" is turned ON, and orientation is performed again from this condition, position control is applied, and positioning is performed within a single motor rotation. At this time, the "shortcut"operation which performs positioning in the shortest distance regardless of the direction in which the motor is running, and the "no shortcut" operation performed in the run command direction can be selected with d208.
If under V/f control with speed sensor, DC braking is applied, and the inverter maintains output.
If performing orientation while the motor is stopped, the motor will not rotate any more than once, even if a value of more than one rotation is set in the positioning data.

By turning the run command ON after turning ON orientation command "ORT" while inverter output is stopped, orientation is performed immediately without running to the set frequency under speed control. However, if orientation command "ORT"is turned ON and the motor is run while stopped immediately after turning the power, orientation must be performed after running for one rotation or more under speed control in order to detect the Zphase.


Fig. 5.3-56 Orientation operation when the motor is stopped


#### Abstract

Note If performing orientation, mount an encoder on the machine shaft. However, if the machine shaft is directly connected to the motor shaft, mount the encoder on the motor shaft. Orientation can be performed only if able to detect the Z-phase only once with the same positional relationship while the machine shaft rotates once.


If using the orientation function, and the motor/machine shaft transmission ratio (reduction ratio) is approximately 5 times (guide) or less, vector control with speed sensor used to perform speed feedback control with the machine shaft encoder can be selected for the control method.
Under vector control with speed sensor, the servo lock is applied after positioning stops, resistance torque is produced and the stop position is held, even if an external force is applied after stopping.
On the other hand, if the machine shaft and motor shaft transmission ratio (reduction ratio) is large, it will be difficult to detect the motor speed when the motor is rotating at low speed without the use of an encoder with high pulse count, and it may no longer be possible to demonstrate sufficient motor performance. On machines on which it is not possible to use an encoder with high pulse count, and with large transmission ratio, use V/f control with speed sensor instead of vector control with speed sensor which performs speed feedback control from the machine shaft encoder. Under v/f control with speed sensor, it is not possible to apply the servo lock. If an external force is applied after the motor stops, use the machine brake. Furthermore, under V/f control with speed sensor, torque is generated at ultra low speed immediately before stopping, and therefore it may be necessary to adjust the torque boost or set auto torque boost.

## FUNCTION

Under feedback control with the machine shaft encoder, if the belt tension, etc. is insufficient for the connection between the "machine shaft" and "encoder shaft" or between the "machine shaft" and "motor shaft", the performance of feedback control with the machine shaft encoder will drop, and in the worst case scenario, an alarm may occur. It is therefore necessary to pay sufficient attention to mechanical system rigidity.

| Function code | Name | Data setting range | Unit | Factory default | Change during operation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { E01 } \\ \text { to } \\ \text { E09, } \\ \text { E98, } \\ \text { E99 } \end{gathered}$ | Terminal [X1] to [X9] function <br> Terminal [FWD] <br> (Function selection) <br> Terminal [REV] <br> (Function selection) | 78 (1078): Speed control parameter selection 1 "MPRM1" <br> 79 (1079): Speed control parameter selection 2 "MPRM2" <br> 135 (1135): Travel/absolute position switching "INC/ABS" <br> 136 (1136): Orientation command "ORT" <br> 137 (1137): Position control/speed control switching "POS/Hz" <br> 141 (1141): Position clear command "P-CLR" <br> 142 (1142): Position preset command "PPRESET" <br> 143 (1143): Teaching command "TEACH" <br> 144 (1144): Positioning data change command "POS-SET" <br> 145 (1145): Positioning data selection 1 "POSSEL1" <br> 146 (1146): Positioning data selection 2 "POSSEL2" <br> 147 (1147): Positioning data selection 4 "POSSEL4" | - | - | N |
| $\begin{aligned} & \hline \text { E20 to } \\ & \text { E24, } \\ & \text { E27 } \end{aligned}$ | Terminal [Y1] to [Y4] <br> (Function selection) <br> Terminal [Y5A/C] <br> (Function selection) <br> Terminal [30A/B/C] <br> (Function selection) | 82 (1082): Position control complete signal"PSET" | - | - | N |
| $\begin{aligned} & \mathrm{d} 03, \mathrm{~A} 45 \\ & \mathrm{~b} 45, \mathrm{r} 45 \end{aligned}$ | Speed control P (Gain) | 0.01 to 200.0 | Times | 10.00 | Y |
| $\begin{aligned} & \text { d04, A46 } \\ & \text { b46, r46 } \end{aligned}$ | 1 (Integral time) | 0.000 to 5.000 | s | 0.100 | Y |
| d201 | Position feed forward gain | 0.00: Feed forward disable <br> 0.01 to 1.50 | - | 0.00 | Y |
| d202 | Position feed forward command filter | 0.000 to 5.000 | s | 0.500 | Y |
| d203 | Position regulator gain 1 (low speed range) | 0.1 to 300.0 | Times | 1.0 | Y |
| d204 | Position regulator gain 2 (high speed range) | 0.1 to 300.0 | Times | 1.0 | Y |
| d205 | Position regulator gain switching frequency | 0.0 to 599.0 | Hz | 0.0 | Y |
| d206 | Electronic gear denominator | 1 to 65535 | - | 1 | N |
| d207 | Electronic gear numerator | 1 to 65535 | - | 1 | N |
| d208 | Orientation mode selection | 0 : With shortcut (run command direction and with reverse rotation) <br> 1: Without shortcut (run command direction) | - | 1 | N |
| d209 | Homing mode selection | 0 to 15 ( 00 to 0F) <br> Bit 7: Z-phase compensation <br> 0 : Disable <br> 1: Enable | - | 0 | N |
| d213 | Homing frequency/orientation frequency | 0.1 to 599.0 | Hz | 5.0 | Y |

5.3 Description of Function Codes 5.3.9 d codes (Applied functions 2)

| Function code | Name | Data setting range | Unit | Factory default | Change during operation |
| :---: | :---: | :---: | :---: | :---: | :---: |
| d215 | Orientation deceleration time | 0.00 to 6000 <br> * When set to 0.00 , acceleration/deceleration time is canceled. | S | 6.00 | Y |
| d216 | Positioning data teaching | 0: Disable <br> 1 to 8 : Writes to positioning data 1 to 8 | - | 0 | Y |
| d217 | Homing shift teaching | 0 : Disable <br> 1: Writing enabled | - | 0 | Y |
| d221 | Position clear signal (P-CLR) operation selection | 0 : Clears when edge detected <br> 1: Clears when level detected | - | 0 | Y |
| d237 | Positioning data type (INC/ABS switching) | 0 : Handle positioning data as absolute position (ABS) <br> 1: Handle positioning data as travel (INC) | - | 0 | Y |
| d238 | Positioning data selection agreement timer | 0.000 to 0.100 | S | 0.000 | Y |
| d239 | Positioning complete range | 0 to 9999 | U | 1 | Y |
| d240 | Preset position - 4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d241 | Preset position - 4 lower order digits | 0 to 9999 | U | 0 | Y |
| d242 | Homing shift - 4 higher order digits | 0 to 9999 | U | 0 | Y |
| d243 | Homing shift - 4 lower order digits | 0 to 9999 | U | 0 | Y |
| d244 | Positioning data 1-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d245 | Positioning data 1-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d246 | Positioning data 2-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d247 | Positioning data 2-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d248 | Positioning data 3-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d249 | Positioning data 3-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d250 | Positioning data 4-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d251 | Positioning data 4-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d252 | Positioning data 5-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d253 | Positioning data 5-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d254 | Positioning data 6-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d255 | Positioning data 6-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d256 | Positioning data 7-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d257 | Positioning data 7-4 lower order digits | 0 to 9999 | U | 0 | Y |
| d258 | Positioning data 8-4 higher order digits | -9999 to +9999 | U | 0 | Y |
| d259 | Positioning data 8-4 lower order digits | 0 to 9999 | U | 0 | Y |

## FUNCTION

5.3 Description of Function Codes 5.3.9 d codes (Applied functions 2)

| Function <br> code | Name | Data setting range | Unit | Factory <br> default |
| :---: | :--- | :--- | :---: | :---: |
| d 277 | Change <br> during <br> operation |  |  |  |
| Positioning data <br> communication command <br> selection | 0: Disable positioning data communication <br> command (S20, S21) <br> 1: Enable positioning data communication <br> command (S20, S21) | - | 0 | Y |

■ d203, d204 Position regulator gain 1 (Low speed range), Position regulator gain 2 (High speed range)

- d205 Position regulator gain switching frequency

■ d03, A45, b45, r45 Speed control P (Gain)
■ d04, A46, b46, r46 Speed control (Integral time)
The position control responsiveness during deceleration and while the motor is stopped can be changed for the orientation operation.
The greater the setting value, the more the responsiveness improves, settling time is reduced, and the holding force while the stopped motor is being held by the servo lock increases, but hunting will occur if the setting value is too large. Adjust so that hunting does not occur.
Furthermore, if the speed regulator gain is too high, adjust the speed regulator (ASR) also.
If switching the speed control $P$ (gain) and I (integral time), use parameter selection 1 "MPRM1" and 2 "MPRM2".
[1] Refer to the d03, d04 explanation for details on the speed control P (gain) and I (integral time).

- By suddenly increasing the position regulator gain or speed regulator (ASR) gain, motor hunting may occur, possible resulting in equipment damage. Do not increase the setting values for these gain setting function codes suddenly. Furthermore, do not decrease the integral time setting function code data suddenly.
- If the encoder pulse count is low, it will not be possible to increase the gain setting value.


## ■ d206, d207: Electronic gear (Denominator, Numerator)

Positioning data for orientation can be handled with user values such as angle and pulse count.
If using a PG with pulse count of 1024 (pulse/rev), and the travel per user value is set to 1 [pulse/user value] for the equivalent pulse count before multiplying the PG pulse by 4

$$
\frac{\text { Electronic gear numerator }}{\text { Electronic gear denominator }}=\frac{\text { Travel per user value }}{\text { Travel per PG pulse }}=\frac{\frac{1}{4 \times 1024}[\text { rev/user value }]}{\frac{1}{1024}[\mathrm{rev} / \mathrm{pulse}]}=\frac{1}{4}[\text { pulse/user value }]
$$

If handled with travel per user value of 0.01 [ $\% /$ user value], travel of 360.00 [ $\% / \mathrm{rev}]$ per motor rotation, and PG pulse count of 4096 (1024 x multiplication by 4) [pulse/rev]

$$
\frac{\text { Electronic gear numerator }}{\text { Electronic gear denominator }}=\frac{\text { Travel per user value }}{\text { Travel per PG pulse }}=\frac{0.01[\% / \text { user value }]}{\frac{360.00\left[{ }^{\circ} / \mathrm{rev}\right]}{4096[\mathrm{pulse} / \mathrm{rev}]}}=\frac{4096}{36000} \text { [pulse/user value] }
$$

## - d208: ORT mode selection

If d208 $=0$, the motor rotates in the direction (shortcut) which requires the least movement to the positioning data specified from the current position, regardless of the run command direction. However, if the motor has not been run even once immediately after turning ON the power, the nearest direction will not be known, and therefore the motor runs in the run command direction, and orientation is performed. Positioning is then performed with a shortcut. If d208 = 1 (factory default), the motor starts moving in the normal run command direction, and orientation is performed.

## - d209: Homing mode selection

There may be variations in the output timing with the A-phase and B-phase pulses, and the Z-phase pulses in the pulse encoder.
When using the motor for forward rotation and reverse rotation, if a 1 pulse position displacement occurs at the machine side when positioning is performed to the same position, set d209 bit 7: Z-phase compensation to 1 . By enabling this compensation, it is possible to suppress position displacement resulting from the rotation direction.

## d213 Orientation frequency

This is the frequency used when switching from speed control to position control with orientation command "ORT" from speed control.
If the set frequency is high, the time until in-position is achieved will become longer, and if torque limiting deceleration is being performed, a position deviation over ( $\quad$ IF) alarm may occur. If performing torque limiting deceleration, set the frequency when switching from speed control to position control as low as possible.
If the set frequency is low under V/f control with speed sensor, it will be difficult to position the motor at the specified position without adjusting the torque boost or using auto torque boost. Adjust orientation deceleration time d215, and both position regulator gain 1 (low speed range) (d203) and position regulator gain 2 (high speed range) (d204) so that the prescribed settling time is obtained to suit the control method.

## d215 Orientation deceleration time

Sets the deceleration time from orientation speed d213. Adjust this time if there is any overshoot or swing back relative to the specified position, allowing the settling time to be adjusted.

d240, d241: Preset position
The command current position and feedback current position can be set to the desired position with the machine homing position as the reference.
With orientation, the position offset with the machine homing position and encoder Z-phase are normally handled as the homing shift, and therefore preset position d 240 and d241 should be set to 0 .

## - d242, d243: Homing shift

The homing shift for orientation is equivalent to the position offset with the machine homing position and encoder Z-phase.
Adjust the homing shift using the following procedure.

(1) By turning ON the orientation command with the target position as 0 , positioning is performed with the encoder Z-phase as the home position.
(2) After this, by setting $\mathrm{d} 217=1$, running the motor, moving the machine shaft to the machine home position and stopping, and turning ON position preset "P-PRESET", feedback current position d298 and d299 and homing shift d242 and d243 are automatically set based on position preset d240 and d241.Return d217 to 0 after setting. Be sure to rotate the encoder once or more and perform position preset after the Z-phase is detected.
(3) For confirmation purposes, perform orientation again to set the target position to 0 (home position), perform orientation, and ensure that it can be performed to the machine home position.

## d244 to d259 Positioning data 1 to 8, d238 Positioning data selection signal agreement timer, d216 Positioning data teaching

Sets the positioning position for orientation. Up to 8 points can be set, and multi-point positioning can be performed consecutively by using positioning data selection 1 to 4 (POS-SEL1 to 4). By using d216, the current machine shaft position is read, allowing positioning data to be set easily. When switching positioning data using the positioning data selection signal, set a time equal to or longer than the time required for chattering to settle for d238 in order to prevent malfunction due to chattering. If changes are made to the positioning data with the run command ON, be sure to turn ON positioning data change command "POS-SET". Positioning data changes while the run command is OFF are set again when starting operation, and therefore there will be no need to turn ON positioning data change command "POS-SET".

If performing orientation, unlike with position control, the position is automatically corrected to a position within a single rotation when running the motor, even if a value for a single rotation or more is set in the positioning data.

## d277 Positioning data communication command selection

If wishing to perform positioning using positioning data (S20, S21) from communication to perform orientation, set d277 to 1 in the same way as with position control to enable positioning commands from communication.

## - Functions that are disabled with position control

The following functions are disabled when position control/speed control switching " $\mathrm{POS} / \mathrm{Hz}$ " is ON and the run command is ON.

Jogging operation, PID control, start frequency hold, stop frequency hold, DC braking, pre-excitation, condensation prevention, restart after momentary power failure, retry, offline tuning, anti-regenerative control, overload prevention, commercial power supply switching, deceleratation mode, auto search, torque control, motor switching

## - Position monitor

The feedback current position and command current position can be monitored at the keypad. The feedback current position is the position converted to a user value by adding up the total number of feedback pulses. The command current position is not the target position, but is the momentary command position based on the position command pattern, and is the same value as the feedback current position while the motor is stopped.

| Function <br> code | Name | Data setting range | UnitFactory <br> default | Change <br> during <br> operation |  |
| :---: | :--- | :--- | :---: | :---: | :---: |
| d 296 | Command current position monitor <br> -4 higher order digits | -9999 to +9999 | U | - | - |
| d 297 | Command current position monitor <br> -4 lower order digits | 0 to 9999 | U | - | - |
| d 298 | Feedback current position monitor <br> -4 higher order digits | -9999 to +9999 | U | - | - |
| d 299 | Feedback current position monitor <br> -4 lower order digits | 0 to 9999 | U | - | - |

### 5.3.10 U codes (Customizable logic operation)

The customizable logic function allows the user to form a logic or operation circuit for digital/analog input/output signals, customize those signals arbitrarily, and configure a simple relay sequence inside the inverter.
In the customizable logic, one step (component), depending on the type, is composed of:
(1) Digital 2 inputs, digital 1 output + logical operation (including timer)
(2) Analog 2 inputs, analog 1 output/digital 1 output + numerical operation
(3) Analog 1 input, digital 1 input, analog 1 output + numerical operation, logical operation
(4) Function code reading, writing, switching, linking, and bit extraction can be set, and sequences can be combined using up to 260 steps.
can be set as a single step (configuration element), and sequences can be combined using up to 260 steps.

- Specification

| Item | Specification |  |  |  |
| :--- | :--- | :--- | :--- | :--- |
| Input signal | Digital 2 input | Analog 2 input | Analog 1 input <br> Digital 1 input | Function code <br> operation |
| Operation block | Logical operation, <br> counter, etc.: 15 <br> types Timer: 5 <br> types <br> 66 types <br> combined | Numerical <br> operation, <br> comparator, <br> limiter, etc.: 29 <br> types | Selector, hold, <br> etc.: 9 types | 9 types, <br> including <br> reading, writing |
| Output signal | Digital 1 output | Analog 1 output/ <br> Digital 1 output | Analog 1 output | Function code <br> Digital 1 output |
| Max. number of steps | 200 steps (multi-task) <br> 260 steps (single task) |  |  |  |
| Customizable logic <br> output signal | Total number digital, analog outputs: 14 <br> Digital: Can be assigned to inverter [Y1] to [Y4], [Y5AC], [30ABC], OPC-DO option <br> card [O1] to [O8] <br> Analog: inverter [FM1], [FM2], [FMP] |  |  |  |
| User-defined alarms | Dedicated customizable logic alarms: 5 <br> The inverter is stopped following an alarm, or a warning only can be output while the <br> inverter continues to run (when warning assigned). |  |  |  |


| Item |  | Specification |
| :---: | :---: | :---: |
| Customiza ble logic processing cycle | Single task | 1 ms (max. 10 steps), 2 ms (max. 20 steps), 5 ms (max. 50 steps), 10 ms (max. 100 steps), 20 ms (max. 260 steps): <br> The cycle can be selected with function code U100, but it is dependent on the maximum number of steps. <br> (1) All external input signals up to the maximum step are latched at the beginning of the processing cycle to maintain synchronism. <br> (2) Calculations are performed in order from step 1 to the maximum step. The calculation cycle differs depending on the number of steps. <br> (3) If output for a certain step is input to the next step, output for steps with high processing priority can be used with low priority steps in the same cycle. <br> (4) 14 customizable logic output signals (CLO1 to 14) are updated simultaneously at the end of the processing cycle. |
|  | Multitask | 1 ms (max. 10 steps), 2 ms (max. 10 steps), 5 ms (max. 30 steps), 10 ms (max. 50 steps), 20 ms (max. 100 steps): <br> (1) External input signals corresponding to all customizable logics for steps 1 to 200 are latched at the beginning of each cycle to maintain synchronism. <br> (2) Calculation for the prescribed number of steps is repeatedly carried out every 1 $\mathrm{ms} / 2 \mathrm{~ms} / 5 \mathrm{~ms} / 10 \mathrm{~ms} / 20 \mathrm{~ms}$ cycle. <br> (3) If output for a certain step is input to the next step, output for steps with high processing priority can be used with low priority steps in the same cycle. <br> (4) If outputting the 14 customizable logic output signals (CLO1 to 14) from a step for a different cycle, updating and outputting are performed for each cycle in which the step is executed. |
| Customizable logic cancellation command "CLC" |  | Allows to stop all the customizable logic operations by assigning "CLC" to a generalpurpose input terminal and turning it ON. <br> It is used when you want to deactivate the customizable logic temporarily. |
| Customizable logic timer cancellation command "CLTC" |  | Resets the timer, counter and all the previous values used in customizable logic by assigning "CLTC" to a general-purpose input terminal and turning it ON. It is used when a customizable logic is changed or if you want to synchronize it with external sequence. |

If you use the customizable logic cancellation command and customizable logic timer cancellation command, the inverter can unintentionally start because the speed command is unmasked, depending on the structure of the customizable logic. Be sure to turn OFF the operation command to turn it ON.
Failure to observe this could result in injury.
Failure to observe this could result in failure.

## Block diagram



Mode selection function codes for enabling customizable logic can be modified during operation but the customizable logic output may become temporarily unstable due to the setting modification. Therefore, since unexpected operation can be performed, change the settings if possible when the inverter is stopped.

Failure to observe this could result in injury or failure.

| U00 |
| :--- |
| U01 to U70 |
| U71 to U80 |
| U81 to U90 |
| U91 |
| U92 to U97 |
| U100 |
| U101 to U106 |
| U107 |
| U121 to U170 |
| U171 to U180 |
| U181 to U184 |
| U185 to U188 |
| U190 to U195 |

- Customizable Logic (Operation selection) (U00)

U00 specifies whether to enable the sequence configured with the customizable logic function or disable it to run the inverter only via its input terminals or others.

| U00 data |  |
| :---: | :--- |
| 0 | Disable |
| 1 | Enable (Customizable logic operation) |

The EG

## Customizable Logic (Mode Setting) (U01 to U70, U190 to U195)

In the customizable logic, the steps are categorized in the following three types:
[Input: digital] Block selection (U01, U06, U11, etc.) = 1 to 1999

[Input: analog] Block selection (U01, U06, U11, etc.) = 2001 to 3999

[Input: digital, analog] Block selection (U01, U06, U11, etc.) $=4001$ to 5999


The function code settings for each step are as follows:

- Step 1 to 14

| Step No. | Block selection | Input 1 | Input 2 | Function 1 | Function 2 | Output ${ }^{\text {Note) }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step 1 | U01 | U02 | U03 | U04 | U05 | "SO01" |
|  | = 1 to 1999 | Digital input 1 | Digital input 2 | Time setting | Not required | Digital output |
|  | $=2001$ to 3999 | Analog input 1 | Analog input 2 | Value 1 | Value 2 | Analog/digital output |
|  | $=4001$ to 6999 | Analog input 1 | Digital input 2 | Value 1 | Value 2 | Analog output |
| Step 2 | U06 | U07 | U08 | U09 | U10 | "SO02" |
| Step 3 | U11 | U12 | U13 | U14 | U15 | "SO03" |
| Step 4 | U16 | U17 | U18 | U19 | U20 | "SO04" |
| Step 5 | U21 | U22 | U23 | U24 | U25 | "SO05" |
| Step 6 | U26 | U27 | U28 | U29 | U30 | "SO06" |
| Step 7 | U31 | U32 | U33 | U34 | U35 | "SO07" |
| Step 8 | U36 | U37 | U38 | U39 | U40 | "SO08" |
| Step 9 | U41 | U42 | U43 | U44 | U45 | "SO09" |
| Step 10 | U46 | U47 | U48 | U49 | U50 | "SO10" |
| Step 11 | U51 | U52 | U53 | U54 | U55` | "SO11" |
| Step 12 | U56 | U57 | U58 | U59 | U60 | "SO12" |
| Step 13 | U61 | U62 | U63 | U64 | U65 | "SO13" |
| Step 14 | U66 | U67 | U68 | U69 | U70 | "SO14" |

Note) Output is not a function code. It indicates the output signal symbol.

- Step 15 to 260

Specify a step number in U190, and set the block selection, input 1, input 2, function 1, function 2 in U191 to U195 respectively.

| Step No. | U190 | Block selection | Input 1 | Input 2 | Function 1 | Function 2 | Output |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Step 15 | 15 | U191 | U192 | U193 | U194 | U195 | "SO15" |
| Step 16 | 16 |  |  |  |  |  | "SO16" |
| ... | $\ldots$ |  |  |  |  |  | ... |
| Step 259 | 259 |  |  |  |  |  | "SO259" |
| Step 260 | 260 |  |  |  |  |  | "SO260" |

FUNCTION

## [Input: digital] Block function code setting

Block selection (U01 etc.)
Any of the following items can be selected as a logic function block (with general-purpose timer): Select the time type with first digit, and select the logic circuit with the tenth digit hundredth digit.
The data can be logically inverted by adding 1000.

| LED | Logic function block | Description |
| :---: | :---: | :---: |
| 0 | No function assigned | Output is always OFF. |
| 10 | Through output + General-purpose timer (No timer) | Only a general-purpose timer. No logic function block exists. |
| 11 | (On-delay timer) | Turning the input signal ON starts the on-delay timer. When the period specified by the timer has elapsed, the output signal turns ON. Turning the input signal OFF turns the output signal OFF. |
| 12 | (Off-delay timer) | Turning the input signal ON turns the output signal ON. <br> Turning the input signal OFF starts the off-delay timer. When the period specified by the timer has elapsed, the output signal turns OFF. |
| 13 | (One-shot pulse output) | Turning the input signal ON issues a one-shot pulse whose length is specified by the timer. |
| 14 | (Retriggerable timer) | Turning the input signal ON issues a one-shot pulse whose length is specified by the timer. <br> If the input signal is turned ON again during the preceding oneshot pulse length, however, the logic function block issues another one-shot pulse. |
| 15 | (Pulse train output) | If the input signal turns ON, the logic function block issues ON and OFF pulses (whose lengths are specified by the timer) alternately and repeatedly. This function is used to flash a luminescent device. |
| 20 to 25 | Logical AND + general-purpose timer | AND function with 2 inputs and 1 output, plus general-purpose timer. |
| 30 to 35 | Logical OR + general-purpose timer | OR function with 2 inputs and 1 output, plus general-purpose timer. |
| 40 to 45 | Logical XOR + general-purpose timer | XOR function with 2 inputs and 1 output, plus general-purpose timer. |
| 50 to 55 | Set priority flip-flop + general-purpose timer | Set priority flip-flop with 2 inputs and 1 output, plus generalpurpose timer. The initial output status can be specified with function 2. <br> (0: OFF, other than 0: ON) |
| 60 to 65 | Reset priority flip-flop + generalpurpose timer | Reset priority flip-flop with 2 inputs and 1 output, plus generalpurpose timer. The initial output status can be specified wiith function 2. (0: OFF, other than 0: ON) |
| 70, 72, 73 | Rising edge detector + general-purpose timer | Rising edge detector with 1 input and 1 output, plus generalpurpose timer. <br> This detects the rising edge of an input signal and outputs the ON signal for 1 ms (*1). |
| 80, 82, 83 | Falling edge detector + generalpurpose timer | Falling edge detector with 1 input and 1 output, plus generalpurpose timer. <br> This detects the falling edge of an input signal and outputs the ON signal for 1 ms (*1). |
| 90, 92, 93 | Rising \& falling edges detector + general-purpose timer | Rising and falling edge detector with 1 input and 1 output, plus general-purpose timer. <br> This detects both the falling and rising edges of an input signal and outputs the ON signal for 1 ms (*1). |
| 100 to 105 | Hold + general-purpose timer | Hold function of previous values of 2 inputs and 1 output, plus general-purpose timer. <br> If the hold control signal is OFF, the logic function block outputs input signals; if it is ON, the logic function block retains the previous values of input signals. |

*1: Equals the task cycle: 1 ms for a task cycle of $1 \mathrm{~ms}, 2 \mathrm{~ms}$ for $2 \mathrm{~ms}, 5 \mathrm{~ms}$ for $5 \mathrm{~ms}, 10 \mathrm{~ms}$ for 10 ms , and 20 ms for 20 ms .

| LED | Logic function block | Description |
| :---: | :---: | :---: |
| 110 | Increment counter | Increment counter with reset input. <br> By the rising edge of the input signal, the logic function block increments the counter value by one. When the counter value reaches the target one, the output signal turns ON. <br> Turning the reset signal ON resets the counter to zero. |
| 120 | Decrement counter | Decrement counter with reset input. <br> By the rising edge of the input signal, the logic function block decrements the counter value by one. When the counter value reaches zero, the output signal turns ON. <br> Turning the reset signal ON resets the counter to the initial value. |
| 130 | Timer with reset input | Timer output with reset input. <br> If the input signal turns ON, the output signal turns ON and the timer starts. When the period specified by the timer has elapsed, the output signal turns OFF, regardless of the input signal state. Turning the reset signal ON resets the current timer value to zero and turns the output OFF. |
| 140 to 145 | D flip-flop + general-purpose timer | 2 input 1 output D flip-flop and general-purpose timer <br> Reflects the input 1 signal status to the output signal at the input 2 signal rising edge. <br> The initial output status can be specified with function 2. <br> (0: OFF, other than 0: ON) |
| 150 to 155 | T flip-flop + general-purpose timer | 1 input 1 output T flip-flop and general-purpose timer Inverts the output signal at the input signal rising edge. The initial output status can be specified with function 2. (0: OFF, other than 0: ON) |

The data can be logically inverted by adding 1000.

The block diagrams for individual functions are given below.
(Data=1ם) Through output

(Data=4■) Logical XOR

(Data=2■) Logical AND

(Data=3ם) Logical OR

(Data=5ם) Set priority flip-flop


| Input 1 | Input 2 | Previous <br> output | Output | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| OFF | OFF | OFF | OFF | Hold <br> previous <br> value |
|  | ON | ON | ON | - |
|  |  |  |  |  |
| ON | - | - | ON | Set priority |

FUNCTION
（Data＝6ロ）Reset priority flip－flop

（Data＝7ロ）Rising edge detector

（Data＝10■）Hold

（Data＝8ㅁ）Falling edge detector
（Data＝110）Increment counter

（Data＝9a）Rising \＆falling edges detector

（Data＝120）Decrement counter

（Data＝130）Timer with reset input

（Data＝15口）T flip－flop


## Operation of general-purpose timer

The operation schemes for individual timers are shown below.
(End 1) On-delay timer

(End 2) Off-delay timer


(End 3) One-shot pulse output

(End 4) Retriggerable timer


(End 5) Pulse train output


- Inputs 1 and 2 (U02, U03, etc.)

The following digital signals are available as input signals. Value in () is in negative logic.

| LED | Selectable signals |
| :---: | :---: |
| $\begin{gathered} 0000(1000) \\ \text { to } \\ 0251(1251) \end{gathered}$ | General-purpose output signals (Same as the ones specified by E20, e.g., "RUN" (Inverter running), FAR (Frequency (speed) arrival signal), "FDT" (Frequency (speed) detected), "LU" (Undervoltage detected (Inverter stopped), etc.) <br> 27 (Universal DO) is not available. <br> Customizable logic output signals from 111 (1111) to 124 (1124) cannot be selected. 100 means that no function is assigned. |
| 2001 (3001) | Step output 1 "SO01" |
| to | to |
| 2260 (3260) | Output of step 260 "SO260" |
| 4001 (5001) | Terminal [X1] input "X1" (terminal block or communication command) |
| 4002 (5002) | Terminal [X2] input "X2" (terminal block or communication command) |
| 4003 (5003) | Terminal [X3] input "X3" (terminal block or communication command) |
| 4004 (5004) | Terminal [X4] input "X4" (terminal block or communication command) |
| 4005 (5005) | Terminal [X5] input "X5" (terminal block or communication command) |
| 4006 (5006) | Terminal [ X 6 ] input "X6" (terminal block or communication command) |
| 4007 (5007) | Terminal [X7] input "X7" (terminal block or communication command) |
| 4008 (5008) | Terminal [X8] input "X8" (terminal block or communication command) |
| 4009 (5009) | Terminal [X9] input "X9" (terminal block or communication command) |
| 4010 (5010) | Terminal [FWD] input "FWD"(terminal block or communication command) |
| 4011 (5011) | Terminal [REV] input "REV"(terminal block or communication command) |
| 4021 (5021) | Terminal [I1] input "I1" (option card OPC-DI) |
| 4022 (5022) | Terminal [I2] input "I2" (option card OPC-DI) |
| 4023 (5023) | Terminal [I3] input "I3" (option card OPC-DI) |
| 4024 (5024) | Terminal [14] input "14" (option card OPC-DI) |
| 4025 (5025) | Terminal [I5] input "I5" (option card OPC-DI) |
| 4026 (5026) | Terminal [16] input "16" (option card OPC-DI) |
| 4027 (5027) | Terminal [I7] input "I7" (option card OPC-DI) |
| 4028 (5028) | Terminal [18] input "18" (option card OPC-DI) |
| 4029 (5029) | Terminal [19] input "19" (option card OPC-DI) |
| 4030 (5030) | Terminal [110] input "I10" (option card OPC-DI) |
| 4031 (5031) | Terminal [111] input "I11" (option card OPC-DI) |
| 4032 (5032) | Terminal [I12] input "I12" (option card OPC-DI) |
| 4033 (5033) | Terminal [113] input "I13" (option card OPC-DI) |
| 4034 (5034) | Terminal [114] input "I14" (option card OPC-DI) |
| 4035 (5035) | Terminal [I15] input "I15" (option card OPC-DI) |
| 4036 (5036) | Terminal [116] input "I16" (option card OPC-DI) |
| 4041 (5041) | By assigning input signals "CLI1" to "CLI9" to customizable logic inputs, switching is possible between terminals [X1] to [X9] simply by changing the E01 to E09 assignment without having to change created customizable logic. This can be used when necessary to switch signal lines. <br> Terminal [CLI1] input "CLI1" |
| 4042 (5042) | Terminal [CLI2] input "CLI2" |
| 4043 (5043) | Terminal [CLI3] input "CLI3" |
| 4044 (5044) | Terminal [CLI4] input "CLI4" |
| 4045 (5045) | Terminal [CLI5] input "CLI5" |
| 4046 (5046) | Terminal [CLI6] input "CLI6" |

5.3 Description of Function Codes 5.3.10 U codes (Customizable logic operation)

| LED | Selectable signals |
| :---: | :---: |
| 4047 (5047) | Terminal [CLI7] input "CLI7" |
| 4048 (5048) | Terminal [CLI8] input "CLI8" |
| 4049 (5049) | Terminal [CLI9] input "CLI9" |
| 4081 (5081) | Logic operations can be performed and stopped when triggered by keypad button operations. <br> Keypad RUN/FWD key "KP-RUN/KP-FWD" |
| 4082 (5082) | Keypad REV key "KP-REV" |
| 4083 (5083) | Keypad STOP key "KP-STOP" |
| 4084 (5084) | Keypad UP key "KP-UP" |
| 4085 (5085) | Keypad DOWN key "KP-DOWN" |
| 4088 (5088) | Keypad M/SHIFT key "KP-M/SHIFT" |
| 4091 (5091) | Keypad RESET key "KP-RESET" |
| 4101 (5101) | Terminal [ X 1 ] input (terminal block only) "X1-TERM" |
| 4102 (5102) | Terminal [X2] input (terminal block only) "X2-TERM" |
| 4103 (5103) | Terminal [ X 3 ] input (terminal block only) "X3-TERM" |
| 4104 (5104) | Terminal [ X 4 ] input (terminal block only) "X4-TERM" |
| 4105 (5105) | Terminal [ X 5 ] input (terminal block only) "X5-TERM" |
| 4106 (5106) | Terminal [X6] input (terminal block only) "X6-TERM" |
| 4107 (5107) | Terminal [X7] input (terminal block only) "X7-TERM" |
| 4108 (5108) | Terminal [ X 8 ] input (terminal block only) "X8-TERM" |
| 4109 (5109) | Terminal [ X 9 ] input (terminal block only) "X9-TERM" |
| 4110 (5110) | Terminal [FWD] input (terminal block only) "FWD-TERM" |
| 4111 (5111) | Terminal [REV] input (terminal block only) "REV-TERM" |
| 6000 (7000) | Final RUN command "FL_RUN" (ON when a run command is given) |
| 6001 (7001) | Final FWD run command "FL_FWD" (ON when a run forward command is given) |
| 6002 (7002) | Final REV run command "FL_REV" (ON when a run reverse command is given) |
| 6003 (7003) | During acceleration "DACC" (ON during acceleration) |
| 6004 (7004) | During deceleration "DDEC" (ON during deceleration) |
| 6005 (7005) | Under anti-regenerative control "REGA" (ON under anti-regenerative control) |
| 6006 (7006) | Within dancer reference position "DR_REF" (ON when the dancer position is within the reference range) |
| 6007 (7007) | Alarm factor presence "ALM_ACT" (ON when there is no alarm factor) |
| 6100 | TRUE (1) fixed input "TRUE": always ON No logic inversion |
| 6101 | FALSE (0) fixed input "FALSE": always OFF No logic inversion |

## Function 1 (U04 etc.)

U04 and other related function codes specify the general-purpose timer period or the increment/decrement counter value.

| LED | Function | Description |
| :---: | :---: | :--- |
| 0.00 to +600.00 | Timer | The period is specified in seconds. |
|  | Counter value | The specified value is multiplied by 100 times. <br> (If 0.01 is specified, it is converted to 1. .) |
|  | - | The timer or counter value works as 0.00 . (No timer) |
| +601.00 to +9990.00 | Timer | The period is specified in seconds. |

## FUNCTION

K Codes

## [Input: analog] Block function code setting

Block selection, function 1, function 2 (U01, U04, U05, etc.)(Analog)
The following items are available as operation circuits.
If the upper and lower limit values are the same, they will be limited in the -9990 to 9990 range.

| Block selection (U01 etc.) | Operation circuit | Description | Function 1 <br> (U04 etc.) | Function 2 <br> (U05 etc.) |
| :---: | :---: | :---: | :---: | :---: |
| 2001 | Adder | Inputs 1 and 2 are added and output. The upper limit value and lower limit value can be set with function 1 and 2. | Upper limit | Lower limit |
| 2002 | Subtracter | Subtraction function with two inputs (input 1 and input 2). This function has output limiters (upper/lower) specified with two function codes. <br> The 1st function code provides upper limit value and the 2nd one provides lower limit value. | Upper limit | Lower limit |
| 2003 | Multiplier | Multiplication function with two inputs (input 1 and input 2). This function has output limiters (upper/lower) specified with two function codes. <br> The 1st function code provides upper limit value and the 2nd one provides lower limit value. | Upper limit | Lower limit |
| 2004 | Divider | Input 1 is divided by input 2 and output. This function has output limiters (upper/lower) specified with two function codes. <br> The 1st function code provides upper limit value and the 2nd one provides lower limit value. | Upper limit | Lower limit |
| 2005 | Limiter | An upper/lower limiter is applied to input 1. This function has output limiters (upper/lower) specified with two function codes. <br> The 1st function code provides upper limit value and the 2nd one provides lower limit value. <br> If the upper and lower limit values are the same, the input value is output as is (limited in -9990 to 9990 range). | Upper limit | Lower limit |
| 2006 | Absolute value | Absolute value function of single input (input 1). Negative input numbers become positive. This function has output limiters (upper/lower) specified with two function codes. <br> The 1st function code provides upper limit value and the 2nd one provides lower limit value. | Upper limit | Lower limit |
| 2007 | Inverting adder | Inverting addition function with single input (input 1). This function subtracts the input 1 to the value specified with the 1st function code, inverts the result. And furthermore, the function adds the result to the value specified with the 2nd function code and outputs the result. | Subtraction value (former) | Addition value (latter) |
| 2008 | Variable limiter | Input 1 is output as the upper limit value, and input 2 is output as the lower limit value for the step specified with function 1. The lower limit value is not used if the upper limit value is less than the lower limiter. | Step number | Not required |
| 2009 | Linear function (Constant setting) | Linear function of single input (input 1). Set with KA as function 1, and KB as function 2. The output is limited within the range between -9990 and 9990 by the internal limiter. $y=K_{A} \times \chi+K_{B}$ <br> If setting a constant, set $K A=0.0$, and set a constant for KB. | $\begin{aligned} & \text { Factor KA - } \\ & 9990.0 \text { to } \\ & +9990.0 \end{aligned}$ | $\begin{gathered} \text { Factor KB } \\ 9990.0 \text { to } \\ +9990.0 \end{gathered}$ |


| Block selection (U01 etc.) | Operation circuit | Description | Function 1 (U04 etc.) | Function 2 (U05 etc.) |
| :---: | :---: | :---: | :---: | :---: |
| 2010 | Remainder calculation | Outputs the remainder when input 1 is divided by input 2. This function has output limiters (upper/lower) specified with two function codes. <br> The 1st function code provides upper limit value and the 2 nd one provides lower limit value. | Upper limit | Lower limit |
| 2051 | Comparator 1 | Subtracts input 2 from input 1 , and ON is output if equal to or higher than the deviation set with function 1 , and OFF is output if less than the deviation. The 2nd function code provides hysteresis width. ON is output if both the ON and OFF conditions are established. | Deviation | Hysteresis width |
| 2052 | Comparator 2 | Subtracts input 2 from input 1 , and $O N$ is output if greater than the deviation set with function 1, and OFF is output if smaller than the deviation (not including equal sign). The 2nd function code provides hysteresis width. | Deviation | Hysteresis width |
| 2053 | Comparator 3 | Subtracts input 2 from input 1 to obtain an absolute value, and ON is output if equal to or higher than the deviation set with function 1, and OFF is output if less than the deviation. The 2nd function code provides hysteresis width. ON is output if both the ON and OFF conditions are established. | Deviation | Hysteresis width |
| 2054 | Comparator 4 | Subtracts input 2 from input 1 to obtain an absolute value, and ON is output if greater than the deviation set with function 1 , and OFF is output if smaller than the deviation (not including equal sign). The 2nd function code provides hysteresis width. | Deviation | Hysteresis width |
| 2055 | Comparator 5 | Input 1 is compared with the function 1 setting value, and ON is output if input 1 is equal to or higher than the function 1 setting value, and OFF is output if input 1 is smaller. The 2 nd function code provides hysteresis width. | Threshold value | Hysteresis width |
| 2056 | Comparator 6 | Input 1 is compared with the function 1 setting value, and ON is output if input 1 is less than the function 1 setting value, and OFF is output if input 1 is larger. The s hysteresis width can be set with function 2, but functions only when OFF conditions are met. | Threshold value | Hysteresis width |
| 2057 | Comparator 7 | Subtracts input 2 from input 1 , and $O N$ is output if greater than the deviation set with function 1, and OFF is output if less than the deviation (including equal sign). The 2nd function code provides hysteresis width. | Deviation | Hysteresis width |
| 2058 | Comparator 8 | Subtracts input 2 from input 1 to obtain an absolute value, and ON is output if greater than the deviation set with function 1 , and OFF is output if less than the deviation (including equal sign). The 2 nd function code provides hysteresis width. | Deviation | Hysteresis width |
| 2059 | Equivalent comparator 2 | Subtracts input 2 from input 1 to obtain an absolute value, and OFF is output if greater than the hysteresis width set with function 2 , and ON is output if less than the hysteresis width (including equal sign). | Not required | Hysteresis width |
| 2071 | Window comparator 1 | ON is output if input 1 is within the upper threshold and lower threshold range (incl. threshold). The upper threshold is set with function 1 , and the lower threshold is set with function 2. | Upper threshold | Lower threshold |
| 2072 | Window comparator 2 | ON is output if input 1 is within the upper threshold value and lower threshold ranges (not including threshold values). Set with the upper threshold as function 1, and the lower threshold as function 2. | Upper threshold | Lower threshold |

## FUNCTION

| Block selection (U01 etc.) | Operation circuit | Description | Function 1 <br> (U04 etc.) | Function 2 <br> (U05 etc.) |
| :---: | :---: | :---: | :---: | :---: |
| 2101 | High selector | Input 1 and input 2 are compared, and the larger of the two is output. The 1st function code provides the upper limit value and the 2 nd one provides the lower one. | Upper limit | Lower limit |
| 2102 | Low selector | Input 1 and input 2 are compared, and the smaller of the two is output. The 1st function code provides the upper limit value and the 2 nd one provides the lower one. | Upper limit | Lower limit |
| 2103 | Average of inputs | This function receives two inputs (input 1 and input 2), averages them, and outputs the result. The 1st function code provides the upper limit value and the 2nd one provides the lower one. | Upper limit | Lower limit |
| 2151 | Function code | Function code S13 (PID command value): The scale for setting value 0 to 20000/0 to $100 \%$ is converted with the maximum scale and minimum scale. The 1st function code provides the maximum scale value of the range and the 2 nd one provides the minimum scale value of the range. | Maximum scale | Minimum scale |
| 2201 | Clip and map function | This function receives single input (input 1), clips a pre-selected range which is specified with two function codes from it, maps 0.00 to $100.00 \%$, and outputs the result. The 1st function code provides the maximum scale value of the range and the 2 nd one provides the minimum scale value of the range. Use this to connect to analog output terminals. This function can only be assigned to a maximum of 2 steps. | Maximum scale | Minimum scale |
| 2202 | Scale converter | The input 1 scale is converted from the minimum scale and maximum scale, and 0 to $100 \%$ is used for the minimum scale to maximum scale. The 1st function code provides the maximum scale value of the range and the 2 nd one provides the minimum scale value of the range. The input 1 signal selection can only be used for setting value 8000 to 8021 . This function can only be assigned to a maximum of 2 steps. | Maximum scale | Minimum scale |
| 3001 | Quadratic function | Input 1 is converted and output with the following formula. KA, KB, and KC are in exponential form, and are set for U92 to U97. <br> Output $=K A x(\text { input } 1)^{2}+K B x$ input $1+K C$ <br> The 1st function code provides the upper limit value and the 2nd one provides the lower limit value. <br> Either (3001) or (3002) is available to use, and only one of these functions can be used. | Upper limit | Lower limit |
| 3002 | Square root function | Input 1 is converted and output with the following formula. KA, KB, and KC are in exponential form, and are set for U92 to U97. $\text { Output }=\sqrt{\frac{\ln p u t 1+\mathrm{K}_{\mathrm{A}}}{\mathrm{~K}_{\mathrm{B}}}} \times \mathrm{K}_{\mathrm{C}}$ <br> The 1st function code provides the upper limit value and the 2nd one provides the lower limit value. <br> Either (3001) or (3002) is available to use, and only one of these functions can be used. | Upper limit | Lower limit |

The block diagrams for each operation circuit are given below. The setting value for functions 1 and 2 is indicated with U04 and U05
(2001) Adder

(2004) Divider

(2007) Inverting adder

(2010) Remainder

(2053) Comparator 3

(2002) Subtracter

(2005) Limiter

| Input 1 | Output |  |  |
| :---: | :---: | :---: | :---: |
|  |  |  |  |
|  |  |  |  |
| Input 2 |  |  |  |
|  |  |  |  |

(2008) Variable limiter

(2051) Comparator 1

(2054) Comparator 4

(2003) Multiplier

(2006) Absolute value of inputs

(2009) Linear function

(2052) Comparator 2


ON is prioritized when both conditions are satisfied.
(2055) Comparator 5


ON is prioritized when both conditions are satisfied.
(2056) Comparator 6

(2059) Equivalent comparator 2

(2071) Window comparator 1

(2102) Low selector

(2058) Comparator 8

(2072) Window comparator 2

(2103) Average of inputs

(2151) Function code input

(2201) Scale inverse converter


* Use this to connect to analog output terminals.
* Up to 2 steps can be used.
(2202) Scale converter

* The input 1 signal selection can only be used for setting value 8000 to 8085 .
* Up to 2 steps can be used.
(3001) Quadratic function

(3002) Square root function


[^36]Inputs 1 and 2 （U02，U03，etc．）
The following signals are available as analog input signals．

| LED | Selectable signals |
| :---: | :--- |
| 8000 | General－purpose analog output signal（same as signals selected in F31：output <br> frequency 1，output current，output torque，power consumption，DC intermediate <br> to <br> 8026 <br> Excuit voltage，etc．） <br> Example：For output frequency 1，maximum frequency（100 \％）is input as 100.00. <br> Note： 10 （Universal AO）is not available． |
| 2001 to 2260 | Step 1 to 260 output＂SO01＂to＂SO260＂ |
| 9001 | Analog［12］terminal input signal＂12＂ |
| 9002 | Analog［C1］terminal input signal（C1 function）＂C1＂ |
| 9003 | Analog［V2］terminal input signal＂V2＂ |
| 9004 | Analog［32］terminal input signal＂32＂（option card，OPC－AIO） |
| 9005 | Analog［C2］terminal input signal＂C2＂（option card，OPC－AIO） |
| 9006,9007 | Reserved |
| 9008 | Analog［C1］terminal input signal（V3 function）＂V3＂ |
| 9010 | UP／DOWN value（when UP／DOWN command valid）『UP／DOWN』 |

Function 1，Function 2 （U04，U05，etc．）
Sets the upper limit and lower limit of operation circuit．

| LED | Function | Description |
| :---: | :---: | :---: |
|  | Reference value <br> Hysteresis width <br> Upper limit <br> Lower limit |  |
| -9990.00 to 0.00 to |  |  |
| +9990.00 | Upper threshold <br> Lower threshold <br> Setting value <br> Maximum scale <br> Minimum scale | Setting values for the operation circuit（selected with the <br> corresponding function code such as U01）． |

－Conversion factor setting（U92 to U97）
Sets the factor of conversions function $(3001,3002)$ of operation circuit．

| Function code | Name | Data setting range | Factory default |
| :---: | :---: | :---: | :---: |
| U92 | Mantissa of $\mathrm{K}_{\mathrm{A}}$ | Mantissa：－9．999 to 9.999 <br> Exponent part：－5 to 5 | 0.000 |
| U93 | Exponent part of $\mathrm{K}_{\mathrm{A}}$ |  | 0 |
| U94 | Mantissa of $\mathrm{K}_{\mathrm{B}}$ |  | 0.000 |
| U95 | Exponent part of $\mathrm{K}_{B}$ |  | 0 |
| U96 | Mantissa of $\mathrm{K}_{\mathrm{c}}$ |  | 0.000 |
| U97 | Exponent part of $\mathrm{K}_{\mathrm{c}}$ |  | 0 |

U92 to U97 can automatically be calculated based on measured data．For details，refer to the descriptions of U101

## [Input: digital, analog] Block function code setting

Block selection, function 1, function 2 (U01, U04, U05, etc.)(Analog)
The following items are available as operation circuits and logic circuits.
Note that if the upper and lower limits have the same value, there are no upper and lower limits.

| Block selection (U01 etc.) | Description | Block diagram | Function 1, Function 2 <br> (U04, U05, etc.) |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & 4001 \\ & \text { Hold } \end{aligned}$ | When input 2 (digital input) is " 1 ", input 1 (analog input) is output as is. When input 2 is 0 , the output value is held. <br> This function has output limiters (upper/lower) specified with two function codes. <br> The 1st function code provides upper limit value and the 2nd one provides lower limit value. |  | Function 1: Upper limit value <br> Function 2: Lower limit value |
| $4002$ <br> Inverting adder Switching | When input 2 (digital input) is 1 , the function 1 setting value is subtracted from input 1 (analog input), the polarity is reversed, and the function 2 setting value is added and output. When input 2 is 0 , input 1 is output as is. Output involves limiter processing in the -9990 to +9990 range. |  | Function 1: Subtraction value (former) <br> Function 2: Addition value (latter) |
| $4003$ <br> Selector 1 | When input 2 (digital input) is 1 , the function 1 setting value is output. When input 2 is 0 , input 1 (analog input) is output. |  | Function 1: Setting value <br> Function 2: Not required |
| $4004$ <br> Selector 2 | When input 2 (digital input) is 0 , the function 1 setting value is output. When input 2 is 1 , the function 2 setting value is output. |  | Function 1: Setting value 1 <br> Function 2: Setting value 2 |
| $4005$ <br> LPF (Low pass filter) | When input 2 (digital input) is " 1 ", the value obtained by performing LPF is output to input 1 (analog input). When input 2 is " 0 ", input 1 is output as is. The LPF circuit maintains the previous output value. Therefore, when the digital 2 input changes from 0 to 1 , the output will be the value with the previous output value added as the initial value of LPF. <br> There is no upper/lower limiter. |  | Function 1: Time constant <br> 0 : No filter <br> 0.01 to 5.00 s <br> Function 2: Fixed at 0 |


| Block selection (U01 etc.) | Description | Block diagram | Function 1, Function 2 <br> (U04, U05, etc.) |
| :---: | :---: | :---: | :---: |
| 4006 <br> Rate limiter with enable | When input 2 (digital input) is 0 , input 1 (analog input) is output as is. When input 2 is 1 , the input 1 change is restricted with the rate of change specified with function 1 and 2. <br> The initial value is the input 1 value when input 2 changes from 0 to 1 . <br> When terminal [CLC] is ON, the previous output value is cleared to zero. |  | Function 1: Rise rate of change <br> Time taken to change by 100\% <br> 0 : No restriction <br> 0.01 to 600 s <br> Function 2: Fall rate of change <br> Time taken to change by 100\% <br> 0 : Same rate of change as function 1 <br> 0.01 to 600 s |
| 5000 <br> Selector 3 | When the step output signal (SOXX) specified with function 1 is 0 , input 1 (analog input) is output as is. When the step output signal specified with function 1 is 1 , input 2 (analog input) is output as is. |  | Function 1: Step number <br> Function 2: Not required <br> The setting after the decimal point is ignored. |
| $5100$ <br> Selector 4 | When input 2 (digital input) is 0 , input 1 is output as is. When input 2 is 1 , step output signal set with function 1 is output. |  | Function 1: Step number Function 2: Not required <br> The setting after the decimal point is ignored. |
| 6001 <br> Reading function codes | The function code is specified with function 1 and 2 , and function code data is output. <br> The function code type is specified with function 1, and the last two digits of the function code are specified with function 2. <br> The format in which data is read correctly is shown below. (However, values are restricted to the -9990 to 9990 range.) Furthermore, [29] expresses 20000 as $100 \%$.) <br> [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [12], [22], [24], [29], [35], [37], [45], [61], [67], [68], [74], [92], [93] <br> Data formats other than the above cannot be read correctly. Do not use any other format. |  | Function 1: Function code type 0 to 255 <br> Function 2: Function code number 0 to 99 <br> The setting after the decimal point is ignored. <br> Refer to " ${ }^{\text {Configuration }}$ of function codes" on P5405 for details on the function code type. For details on data format numbers, refer to the Communication User's Manual (24A7-E-xxxx). |

## FUNCTION

| Block selection (U01 etc.) | Description Block diagram | Function 1, Function 2 (U04, U05, etc.) |
| :---: | :---: | :---: |
| 6002 <br> Function code writing | Reflects the input 1 value to a specific function code (U171 to U 180 ) when input 2 is 1 . When input 2 is 0 , the previous value is maintained for the specific function code. Data is written to nonvolatile memory when the inverter detects undervoltage. <br> Do not use more than one of these operation circuits for a single function code. | Function 1: Fixed at 39 <br> Function 2: 71 to 75 <br> The setting after the decimal point is ignored. |
| 6003 <br> Temporary change of function code | Specific function code (separate table) values in the memory are selected between the input 1 value with the input 2 value. <br> Set the function code type for function 1 . Set the last two digits of the function code number for function 2. <br> When input 2 is 0 , the current value is reflected for the function code value in the memory. When input 2 is 1 , the input 1 value is reflected. If the function code designation is not a specific function code, data 0 will be reflected, and therefore caution is advised. <br> Refer to P26 onward for the separate table and details on this function. <br> This operation circuit is used by replacing this specific function code value. Consequently, do not use by entering another LE. If changing a single function code, do not use more than one of these operation circuits. <br> If function codes are temporarily changed using 6003 while operating a customizable logic, by performing a read operation with FRENIC Loader, or copying data to the keypad, the data that is being temporarily changed may be copied instead of nonvolatile memory data. <br> If performing these operations, do so after stopping the customizable logic. | Function 1: Function code type 0 to 255 <br> Function 2: Function code number 0 to 99 <br> The setting after the decimal point is ignored. <br> Refer to "■Configuration of function codes" on P30 for details on function code types. For details on data format numbers, refer to the Communication User's Manual. |
| 6004 <br> Function <br> code <br> link | If targeting customizable logic using the password function, it will not be possible to change user parameters 1 to 50 , or function codes other than those in storage area 1 to 10. <br> Using this function, by setting function codes that can no longer be changed when the password function is applied to input 1 , and linking them with user parameters 1 to 50, and storage area 1 to 10 specified with function 1 and function 2, function codes within customizable logic can be changed even when the password function is applied. | Function 1: Function code type 0 to 255 Function 2: Function code number 0 to 99 <br> The setting after the decimal point is ignored. <br> Refer to "■Configuration of function codes" on P30 for details on the function code type. For details on data format numbers, refer to the Communication User's Manual. |


| Block selection (U01 etc.) | Description Block diagram | Function 1, Function 2 <br> (U04, U05, etc.) |
| :---: | :---: | :---: |
| $\begin{gathered} 6011 \\ \text { BIT extraction } \\ {[\mathrm{S}]} \\ \hline \end{gathered}$ | By specifying the appropriate bit in the function code belonging to the $S$ group, that condition is output as logic. | Function 1: Function code number 0 to 99 Function 2: Applicable bit |
| $6012$ <br> BIT extraction [M] | By specifying the appropriate bit in the function code belonging to the M group, that condition is output as logic. | 0 to 15 <br> The setting after the |
| $6013$ <br> BIT extraction [W] | By specifying the appropriate bit in the function code belonging to the W group, that condition is output as logic. | For details on S, M, W, |
| $6014$ <br> BIT extraction [X] | By specifying the appropriate bit in the function code belonging to the X group, that condition is output as logic. | codes, refer to the Communication User's Manual. |
| $\begin{gathered} 6015 \\ \text { BIT extraction } \\ {[Z]} \end{gathered}$ | By specifying the appropriate bit in the function code belonging to the Z group, that condition is output as logic. <br> Of groups $S$ to $Z$, the format in which data is read correctly is shown below. [14], [15], [16], [43], [44], [77], [78], [91] |  |
| 6101 <br> PID dancer output gain frequency | This is used with the dancer control PID. <br> It is possible to switch between calculating the frequency compensation with a PID output of $100 \%$ as equivalent to the maximum output frequency, and calculating the frequency compensation as equivalent to the specified frequency (line speed command). With input 1 , it is possible to switch between whether or not to enable this block. The frequency compensation is selected with input 2 and the gain ratio. <br> When input 2 is OFF, and U04 $\neq 0 \%$ <br> Output: Frequency compensation $=($ PID output $) \times($ Line speed command) <br> When input 2 is ON, and U04 $\neq 0 \%$ : <br> Output: Frequency compensation $=($ PID output $x$ gain ratio (U04)) x (Maximum output frequency) <br> When a gain ratio of $0 \%$ is set, the calculation formula will be as follows, regardless of input 2. <br> Output: Frequency compensation $=($ PID output $) \times($ Line speed command) | Function 1: Gain ratio 0 to 200\% <br> Function 2: Frequency lower limit value 0 to 599 Hz |

## FUNCTION

Output signal
Each customizable logic step is output to SO01 to SO260.
SO01 to SO260 differ in configuration depending upon the connection destination, as listed below. To relay those outputs to any function other than the customizable logic, route them via customizable logic outputs CL01 to CLO14.

| Connection destination of each step output | Setting method | Function code |
| :---: | :---: | :---: |
| Customizable logic input | Internal step output signals "SO01" to "SO260" are selected by setting the customizable logic input. | U02, U03, etc. |
| Inverter sequence processing input (digital ON/OFF) <br> (Multi-step speed "SS1" and run command "FWD" etc.) | Select one of the internal step output signals "SO01" to "SO260" to be connected to customizable logic output signals 1 to 14 ("CL01" to "CLO14"). | U71 to U80 U181 to U184 |
|  | Select an inverter's sequence processor input function to which one of the customizable logic output signals 1 to 14 ("CL01" to "CLO14") is to be connected. (Same as in E01) | U81 to U90 U185 to U188 |
| Analog input <br> (such as auxiliary frequency commands or PID process commands) | Select one of the internal step output signals "SO01" to "SO260" to be connected to customizable logic output signals 1 to 14 ("CL01" to "CLO14"). | U71 to U80 U181 to U184 |
|  | Select an analog input function to which one of the customizable logic output signals 1 to 14 ("CL01" to "CLO14") is to be connected. (Same as in E61) | U81 to U90 U185 to U188 |
| General-purpose digital output (terminal [Y1] to [Y4], [Y5AC], [30ABC]) <br> Option digital output (terminal [01] to [08]) | Select one of the internal step output signals "SO01" to "SO260" to be connected to customizable logic output signals 1 to 14 ("CL01" to "CLO14"). | U71 to U80 U181 to U184 |
|  | To specify a general-purpose digital output function (on [Y] terminals) to which one of the customizable logic output signals 1 to 14 ("CL01" to "CLO14") is to be connected, select one of "CLO1" to "CLO14" by specifying the generalpurpose digital output function on any Y terminal. | $\begin{aligned} & \text { E20 to E24 } \\ & \text { E27 } \end{aligned}$ |
| General-purpose analog (terminal [FM1], [FM2]) <br> General-purpose output (terminal [FMP]) | Select one of the internal step output signals "SO01" to "SO260" to be connected to customizable logic output signals 1 to 14 ("CL01" to "CLO14"). | U71 to U80 U181 to U184 |
|  | To set general-purpose analog output (terminal [FM1], [FM2]) or general-purpose pulse output (terminal [FMP]) to be connected to customizable logic output signal 1 "CLO1" to 14 "CLO14", select "CLO1" to "CLO14" at the generalpurpose analog output (terminal [FM1], [FM2]) or generalpurpose pulse output (terminal [FMP]) function selection side. | $\begin{aligned} & \text { F31, F61 } \\ & \text { F35 } \end{aligned}$ |
| User-defined alarm | Select one of the internal step output signals "SO01" to "SO260" to be connected to customizable logic output signals 1 to 14 ("CL01" to "CLO14"). | U71 to U80 U181 to U184 |
|  | Select user-defined alarms to be connected to customizable logic output signals 1 "CLO1" to 14 "CLO14". | U81 to U90 U185 to U188 |

General-purpose digital outputs (on [Y] terminals) are updated every 5 ms . To securely output a customizable logic signal via [Y] terminals, include on- or off-delay timers in the customizable logic. Otherwise, short ON or OFF signals may not be reflected on those terminals.


| F Codes |
| :---: |
| E Codes |
| C Codes |
| P Codes |
| H Codes |
| A Codes |
| b Codes |
| r Codes |
| J Codes |
| d Codes |
| U Codes |
| y Codes |
| K Codes |


| Function code | Name | Data setting range | Factory default |
| :---: | :---: | :---: | :---: |
| U81 | Customizable logic output signal 1 (Function selection) | If a step output is digital <br> The same value as E98 can be specified. <br> 0 (1000): Select multistep frequency (0 to 1 steps) "SS1" <br> 1 (1001): Select multistep frequency (0 to 3 steps) "SS2" <br> 2 (1002): Select multistep frequency (0 to 7 steps) "SS4" <br> 3 (1003): Select multistep frequency (0 to 15 steps) | 100 |
| U82 | Customizable logic output signal 2 (Function selection) |  | 100 |
| U83 | Customizable logic output signal 3 (Function selection) |  | 100 |
| U84 | Customizable logic output signal 4 (Function selection) |  | 100 |
| U85 | Customizable logic output signal 5 (Function selection) | 4 (1004): Select ACC/DEC time (2 steps) "ST1" | 100 |
| U86 | Customizable logic output signal 6 (Function selection) | 4 (1004): Select ACC/DEC time (2 steps) <br> "RT1" <br> 5 (1005): Select ACC/DEC time (4 steps) <br> "RT2" <br> 6 (1006): Select 3-wire operation <br> "HLD" <br> 7 (1007): Coast to a stop command <br> 8 (1008): Reset alarm (Abnormal) <br> 9 (1009): Enable external alarm trip <br> (9=Active OFF/1009=Active ON) <br> etc. <br> If a user-defined alarm occurs with step output <br> 241 (1241): User-defined alarm 1 " 16 i" <br>  <br> 243 (1243): User-defined alarm 3 " 1 日 <br> 244 (1244): User-defined alarm 4 " 5 - 17 " <br> 245 (1245): User-defined alarm 5 " 5 - 15 " <br> If a step output is analog <br> 8001: Auxiliary frequency setting 1 <br> 8002: Auxiliary frequency setting 2 <br> 8003: PID command <br> 8005: PID feedback value <br> 8006: Ratio setting <br> 8007: Analog torque limiter A <br> 8008: Analog torque limit value $B$ <br> 8009: Analog torque bias <br> 8010: Analog torque command <br> 8011: Analog torque current command <br> 8012: Acceleration/deceleration time ratio setting <br> 8013: Upper limit frequency <br> 8014: Lower limit frequency <br> 8015: Auxiliary frequency setting 3 <br> 8016: Auxiliary frequency setting 4 <br> 8017: Analog speed limit for forward rotation <br> 8018: Analog speed limit for reverse rotation <br> 8020: Analog monitor | 100 |
| U87 | Customizable logic output signal 7 (Function selection) |  | 100 |
| U88 | Customizable logic output signal 8 (Function selection) |  | 100 |
| U89 | Customizable logic output signal 9 (Function selection) |  | 100 |
| U90 | Customizable logic output signal 10 (Function selection) |  | 100 |
| U185 | Customizable logic output signal 11 (Function selection) |  | 100 |
| U186 | Customizable logic output signal 12 (Function selection) |  | 100 |
| U187 | Customizable logic output signal 13 (Function selection) |  | 100 |
| U188 | Customizable logic output signal 14 (Function selection) |  | 100 |

## Specific function codes

The following function codes can change values on memory by using the customizable logic "Function code switch (6003)". Overwritten values are cleared with power off.


#### Abstract

- If using "Function code switching (6003)", there is a risk of function code setting values being changed suddenly, adversely affecting motors being controlled due to a sudden change in speed and torque. To ensure that setting values do not change suddenly, use "Rate of change limiting (4006)" to suppress setting value changes, and give careful consideration to and check whether sudden changes in setting values will cause problems before use.


| No. | Name | No. | Name | No. | Name |
| :--- | :--- | :---: | :--- | :--- | :--- |
| F07 | Acceleration time 1 | E15 | E16 | Deceleration time 4 | Corque limiter 2 (Driving) |
| F08 | Deceleration time 1 | E17 | C02 | Jump frequency 1 |  |
| F09 | Torque limiter 2 (Braking) | C03 frequency 2 | Jump frequency 3 |  |  |
| F14 | Restart mode after <br> momentary power failure <br> (Operation selection) | E29 | Frequency arrival delay <br> (FAR2) | C04 | Jump frequency (Width) |

## FUNCTION

| No. | Name | No. | Name | No. | Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| P07 | Motor 1 (\%R1) | H93 | Continue to run (I) | A25 | Motor 2 <br> (Slip compensation gain for braking) |
| P09 | Motor 1 <br> (Slip compensation gain for driving) | H114 | Anti-regenerative control (Operation level) | A43 | Speed control 2 (Speed command filter) |
| P10 | Motor 1 (Slip compensation response time) | H118 | Forced operation (Fire Mode) (Set frequency) | A44 | Speed control 2 (Speed detection filter) |
| P11 | Motor 1 <br> (Slip compensation gain for braking) | H121 | Forced operation (Fire Mode) (Wait time) | A45 | Speed control 2 (P (Gain)) |
| P74 | Motor 1 (Synchronous motors - current command value when starting) | H130 | For special adjustment (Torque limiting) | A46 | Speed control 2 (I (Integral time)) |
| P89 | Motor 1 (Synchronous motor control switching level) | H131 | For special adjustment (Torque limiting) | A47 | Speed control 2 (FF gain) |
| H07 | Curve acceleration/deceleration | H132 | For special adjustment (Torque limiting) | A48 | Speed control 2 (Output filter) |
| H08 | Rotation direction restriction | H133 | For special adjustment (Antiregenerative control) | A49 | Speed control 2 (Notch filter resonance frequency) |
| H09 | Starting characteristic (Auto search mode) | H134 | For special adjustment (Antiregenerative control) | A50 | Speed control 2 (Notch filter attenuation level) |
| H11 | Deceleration mode | H135 | For special adjustment (Antiregenerative control) | A58 | Speed control 2 (Notch filter width) |
| H13 | Restart mode after momentary power failure (Wait time) | H136 | For special adjustment (Current limiting) | A60 | Speed display coefficient 2 |
| H14 | Restart after momentary power failure (Frequency lowering rate) | H137 | For special adjustment (Current limiting) | A61 | Constant rate of feeding coefficient 2/Speed display auxiliary coefficient 2 |
| H15 | Restart after momentary power failure <br> (Continue to run level) | H147 | $\begin{aligned} & \text { Speed control (Jogging) } \\ & \text { FF (Gain) } \end{aligned}$ | A62 | Starting frequency 2 (Holding time) |
| H27 | Thermistor (for motor) (Operation level) | H155 | Torque bias (Level 1) | A63 | Stop frequency 2 |
| H28 | Droop control | H156 | Torque bias (Level 2) | A64 | Stop frequency 2 (Detection method) |
| H50 | Non-linear V/f 1 (Frequency) | H157 | Torque bias (Level 3) | A65 | Stop frequency 2 (Holding time) |
| H51 | Non-linear V/f 1 (Voltage) | H158 | Torque bias (Mechanical loss compensation) | A67 | Thermistor (motor 2) (Operation level) |
| H52 | Non-linear V/f 2 (Frequency) | H159 | Torque bias (Startup timer) | b05 | Torque boost 3 |
| H53 | Non-linear V/f 2 (Voltage) | H161 | Torque bias (Shutdown timer) | b09 | DC braking 3 (Starting frequency) |
| H56 | Deceleration time for forced stop | H162 | Torque bias (Limiter) | b10 | DC braking 3 (Braking level) |
| H57 | No. 1 S-curve range when accelerating (When starting) | H173 | Magnetic flux level at light load | b11 | DC braking 3 (Braking time) |
| H58 | No. 2 S-curve range when accelerating (When finished) | H180 | Brake signal (Check-timer for brake operation) | b12 | Starting frequency 3 |
| H59 | No. 1 S-curve range when decelerating (When starting) | H195 | DC braking (Braking timer at startup) | b21 | Motor 3 (\%R1) |
| H60 | No. 2 S-curve range when decelerating (When finished) | H196 | Reserved for particular manufacturers | b23 | Motor 3 <br> (Slip compensation gain for driving) |
| H63 | Low limiter (Operation selection) | A05 | Torque boost 2 | b24 | Motor 3 <br> (Slip compensation response time) |
| H65 | Non-linear V/f 3 (Frequency) | A09 | DC braking 2 (Starting frequency) | b25 | Motor 3 <br> (Slip compensation gain for braking) |
| H66 | Non-linear V/f 3 (Voltage) | A10 | DC braking 2 (Braking level) | b43 | Speed control 3 (Speed command filter) |
| H71 | Deceleration characteristic (Forced brake) | A11 | DC braking 2 (Braking time) | b44 | Speed control 3 (Speed detection filter) |
| H84 | Pre-excitation (Initial level) | A12 | Starting frequency 2 | b45 | Speed control 3 (P (Gain)) |
| H85 | Pre-excitation (Time) | A21 | Motor 2 (\%R1) | b46 | Speed control 3(I (Integral time)) |
| H91 | Current input wire break detection | A23 | Motor 2 <br> (Slip compensation gain for driving) | b47 | Speed control 3 (FF gain) |
| H92 | Continue to run (P) | A24 | Motor 2 (Slip compensation response time) | b48 | Speed control 3 (Output filter) |


| No. | Name | No. | Name | No. | Name |
| :---: | :---: | :---: | :---: | :---: | :---: |
| b49 | Speed control 3 (Notch filter resonance frequency) | r65 | Stop frequency 4 (Holding time) | J97 | Servo lock (Gain) |
| b50 | Speed control 3 (Notch filter attenuation level) | r67 | Thermistor (motor 4) (Operation level) | J98 | Servo lock (Completion timer) |
| b58 | Speed control 3 (Notch filter width) | J03 | PID control P (Gain) | J99 | Servo lock (Completion range) |
| b60 | Speed display coefficient 3 | J04 | PID control I (Integral time) | J105 | PID control (Display unit) |
| b61 | Constant rate of feeding coefficient 3/Speed display auxiliary coefficient 3 | J05 | PID control D (Differential time) | J136 | PID control 1 (PID multistep command 1) |
| b62 | Starting frequency 3 (Holding time) | J06 | PID control (Feedback filter) | J137 | PID control 1 (PID multistep command 2) |
| b63 | Stop frequency 3 | J08 | PID control (Pressurization frequency) | J138 | PID control 1 (PID multistep command 3) |
| b64 | Stop frequency 3 (Detection method) | J09 | PID control (Pressurization time) | d01 | Speed control 1 (Speed command filter) |
| b65 | Stop frequency 3 (Holding time) | J10 | PID control (Anti-reset windup) | d02 | Speed control 1 (Speed detection filter) |
| b67 | Thermistor (motor 3) (Operation level) | J12 | PID control (Upper limit of warning (AH)) | d03 | Speed control 1 (P (Gain)) |
| r05 | Torque boost 4 | J13 | PID control (Lower limit of warning (AL)) | d04 | Speed control 1(I (Integral time)) |
| r09 | DC braking 4 (Starting frequency) | J15 | PID control (Sleep frequency) | d05 | Speed control 1 (FF gain) |
| r10 | DC braking 4 (Braking level) | J16 | PID control (Sleep timer) | d06 | Speed control 1 (Output filter) |
| r11 | DC braking 4 (Braking time) | J17 | PID control (Wakeup frequency) | d07 | Speed control 1 (Notch filter resonance frequency) |
| r12 | Starting frequency 4 | J18 | PID control (Upper limit of PID process output) | d08 | Speed control 1 (Notch filter attenuation level) |
| r21 | Motor 4 (\%R1) | J19 | PID control (PID output limiter, lower limit) | d09 | Speed control (JOG) (Speed command filter) |
| r23 | Motor 4 <br> (Slip compensation gain for driving) | J58 | PID control <br> (Detection width of dancer position error) | d10 | Speed control (JOG) (Speed detection filter) |
| r24 | Motor 4 (Slip compensation response time) | J59 | PID control P (Gain) 2 | d11 | Speed control (JOG) P (gain) |
| r25 | Motor 4 <br> (Slip compensation gain for braking) | J60 | PID control I (Integral time) 2 | d12 | Speed control (JOG) I (Integral time) |
| r43 | Speed control 4 <br> (Speed command filter) | J61 | PID control D (Differential time) 2 | d13 | Speed control 2 (Jogging) (Output filter) |
| r44 | Speed control 4 <br> (Speed detection filter) | J62 | PID control block selection | d16 | PG option Ch2 <br> (Pulse scaling factor 1 ) |
| r45 | Speed control 4 (P (Gain)) | J63 | Overload stop (Detection value) | d17 | PG option Ch2 <br> (Pulse scaling factor 2) |
| r46 | Speed control 4(I (Integral time)) | J64 | Overload stop (Detection value) | d18 | PG option Ch2 <br> (Filter time constant) |
| r47 | Speed control 4 (FF (Gain)) | J67 | Overload stop (Timer timer) | d21 | Speed agreement / PG error (Detection width) |
| r48 | Speed control 4 (Output filter) | J68 | Brake control signal (Brakerelease current) | d22 | Speed agreement / PG error (Detection timer) |
| r49 | Speed control 4 (Notch filter resonance frequency) | J69 | Brake control signal (Brake-release frequency/speed) | d24 | Zero speed control |
| r50 | Speed control 4 <br> (Notch filter attenuation level) | J70 | Brake control signal (Brakerelease timer) | d25 | ASR switching time |
| r58 | Speed control 4 (Notch filter width) | J71 | Brake control signal (Brake-apply frequency/speed) | d27 | Servo lock (Gain switching time) |
| r60 | Speed display coefficient 4 | J72 | Brake control signal (Brakeapply timer) | d28 | Servo lock (Gain 2) |
| r61 | Constant rate of feeding coefficient 4/Speed display auxiliary coefficient 4 | J90 | Overload stop (Torque limiting $P$ (Gain) | d29 | Speed control 1 (Notch filter width) |
| r62 | Starting frequency 4 (Holding time) | J91 | Overload stop (Torque limiting I (Integral time)) | d32 | Speed limit / Overspeed level (Level 1) |
| r63 | Stop frequency 4 | J92 | Overload stop (Current limiting level) | d33 | Speed limit / Overspeed level (Level 2) |
| r64 | Stop frequency 4 (Detection method) | J95 | Brake signal (Brake-release torque) | d35 | Over speed detection level |


| No. | Name | No. | Name | No. | Name |
| :---: | :--- | :---: | :--- | :--- | :--- |
| d 61 | d | PG option Ch1/X terminal <br> (Pulse train command filter <br> time constant) | d 152 | PID control (Dancer lower limit <br> warning position) | d 183 |
| d 62 | PID control (Line speed lower <br> limit for dancer PID output) <br> (Pulse scaling factor 1) | d 184 | Light load detection level <br> (Lowering) |  |  |
| d 63 | Heavy load detection level <br> (Hoisting) |  |  |  |  |
| PG option Ch1 / X terminal <br> (Pulse scaling factor 2) | d 153 | Constant surface speed <br> control <br> (Line speed compensation <br> gain) | d 185 | Heavy load detection level <br> (Lowering) |  |
| d 70 | Speed control (Limiter) | d 160 | Winding diameter calculation <br> (Calculation gain) | d 186 | Overload judgment delay time |
| d 71 | Master follower operation <br> (Main speed regulator gain) | d 161 | Winding diameter calculation <br> (Compensation gain) | d 187 | Overload detection level |
| d 73 | Master-follower operation <br> (APR P gain) | d 162 | Winding diameter calculation <br> (Low-speed line speed ratio) | d 189 | Hoist function auxiliary <br> (APR output positive side |
| (limiter) |  |  |  |  |  |

Function codes for the customizable logic

| Function code <br> number | Name | Range | Minimum unit | Remarks |
| :---: | :--- | :--- | :---: | :---: |
| U121 to U170 | User parameters <br> 1 to 50 | -9990.00 to 9990.00 <br> Effective number are <br> 3 digits. | 0.01 to 10 |  |
| U171 to U180 | Storage area 1 to 10 | -9990.00 to 9990.00 <br> Effective number are <br> 3 digits. | 0.01 to 10 | Memorizes the data <br> when powered off. |

## Configuration of function codes

If specifying function codes, set the code values (decimal values on left, hexadecimal values on right) in the following table for function 1 (U04, etc.), and set the last two digits of the function code number for function 2 (U05, etc.) Function codes that are not found in the following table cannot be specified. The data format that can be accessed correctly is as follows. (However, values are restricted to the -9990 to 9990 range) [1], [2], [3], [4], [5], [6], [7], [8], [9], [10], [12], [22], [24], [29], [35], [37], [45], [61], [67], [68], [74], [92], [93]
A data format other than the above cannot be accessed correctly, and should therefore not be used.

| Group | Code |  | Group | Code |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F | 0 | $00_{H}$ | X | 16 | $10_{H}$ |
| E | 1 | $01_{H}$ | $z$ | 17 | $11_{H}$ |
| C | 2 | $02_{H}$ | b | 18 | $12_{\mathrm{H}}$ |
| P | 3 | $03_{H}$ | d | 19 | $13_{H}$ |
| $H$ | 4 | $04_{H}$ | W1 | 22 | $16_{H}$ |
| A | 5 | $05_{H}$ | X1 | 25 | $19_{H}$ |
| o | 6 | $06_{H}$ | K | 28 | $1 C_{H}$ |
| M | 8 | $08_{H}$ | $H 1$ | 31 | $1 F_{H}$ |
| r | 10 | $0 A_{H}$ | o1 | 37 | $25_{H}$ |
| U | 11 | $0 B_{H}$ | U1 | 39 | $27_{H}$ |
| J | 13 | $0 D_{H}$ | J1 | 48 | $30_{H}$ |
| y | 14 | $0 E_{H}$ | d1 | 54 | $36_{H}$ |
| W | 15 | $0 F_{H}$ | d2 | 55 | $37_{H}$ |

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
J Codes
U Codes
y Codes
K Codes

## Operating precautions

The customizable logics are executed within 1 ms to 20 ms (according to U100) and processed in the following procedure:
(1) First, latch the external input signals for all the customizable logics from step 1 to 260 to maintain synchronism.
(2) Perform logical operations sequentially from step 1 to 260.
(3) If an output of a step is an input to the next step, outputs of step with high priority can be used in the same process.
(4) The customizable logic simultaneously updates 14 output signals.


The step execution order for multi-tasks is shown in the following diagram.


Note that if you do not consider the process order of customizable logic when configuring a function block, the expected output may not be obtained, the operation can be slower or a hazard signal can occur, because the output signal of a step is not available until the next cycle.

## $\triangle$ CAUTION

Changing a functional code related to the customizable logic (U code etc.) or turning ON the customizable logic cancel signal "CLC" causes change in operation sequence depending on the setting, which may suddenly start an operation or start an unexpected action. Fully ensure it is safe before performing the operation.

Failure to observe this could result in an accident or injury.

## Customizable logic timer monitor (Step selection) (U91, X89 to X93)

The monitor function codes can be used to monitor the I/O status or timer's operation state in the customized logics.
Table 5.3-49 Selection of monitor timer

| Function code | Function | Remarks |
| :---: | :--- | :--- |
| U91 | 0: Monitor not active <br> (the monitor data is 0) <br> 1 to 260: set the step No. to monitor | The setting value is cleared to 0 when <br> powered OFF. |

Table 5.3-50 Monitor method

| Monitor method | Function code | Content |
| :--- | :--- | :--- |
| Communication | X89 customizable logic <br> (digital I/O) | Digital I/O data for the step defined in U91 <br> (only for monitoring) |
|  | X90 customizable logic <br> (timer monitor) | Data of the timer/counter value for the step defined in U91 <br> (only for monitoring) |
|  | X91 customizable logic <br> (analog input 1) | Analog input 1 data for the step defined in U91 <br> (only for monitoring) |
|  | X92 customizable logic <br> (analog input 2) | Analog input 2 data for the step defined in U91 <br> (only for monitoring) |
|  | X93 customizable logic <br> (analog output) | Analog output data for the step defined in U91 <br> (only for monitoring) |

- Customizable logic output monitor (Step selection) (U98)

■ Customizable logic output monitor (Display unit selection) (U99)
The output status of the desired customizable logic steps can be monitored at the keypad.
This is enabled by setting "32: Customizable logic output" with keypad monitor selection E43.
Furthermore, when using the multi-function keypad (TP-A2SW), the desired display units can be selected.

| Function code | Function |  |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| U98 | 0 : Monitor not active <br> (the monitor data is 0 ) <br> 1 to 260: set the step No. to monitor |  |  |  | Setting values are retained even when the power is turned OFF. |
| U99 | 1: No unit <br> 2: \% <br> 4: r/min <br> 7: kW <br> 8: HP <br> 10: mm/s <br> 11: mm/m <br> 12: mm/h <br> 13: m/s <br> 14: $\mathrm{m} / \mathrm{min}$ <br> 15: m/h <br> 16: FPS <br> 17: FPM <br> 18: FPH <br> 20: m3/s <br> 21: m3/min | 22: m3/h <br> 23: L/s <br> 24: L/min <br> 25: L/h <br> 26: GPS <br> 27: GPM <br> 28: GPH <br> 29: CFS <br> 30: CFM <br> 31: CFH <br> 32: kg/s <br> 33: kg/m <br> 34: kg/h <br> 35: lb/s <br> 36: lb/m <br> 37: lb/h | 38: AF/Y <br> 40: Pa <br> 41: kPa <br> 42: MPa <br> 43: mbar <br> 44: bar <br> 45: mmHg <br> 46: PSI <br> 47: mWG <br> 48: inWG <br> 49: inHg <br> 50: WC <br> 51: FT WG <br> 60: K <br> 61: ${ }^{\circ} \mathrm{C}$ <br> 62: ${ }^{\circ} \mathrm{F}$ | 65: Nm 66: lb ft 70: mm 71: cm 72: m 73: km 74: in 75: Ft 76: Yd 77: mi 80: ppm 90: m 3 91: L 92: GAL | These are valid only when using the multi-function keypad (TP-A2SW). |

## ■ Cancel customizable logic "CLC" (Function codes E01 to E09, data =80)

Customizable logic operations can temporarily be disabled so that the inverter can be operated without the customizable logic's logical circuit and timer operation, for example during maintenance.

| "CLC" | Function |
| :---: | :--- |
| OFF | Customizable logic enabled (according to U00 setting) |
| ON | Customizable logic disabled |

If you turn ON the customizable logic cancellation signal "CLC", a sequence by the customizable logic is cleared, which can suddenly start operation depending on the settings. Ensure the safety and check the operation before switching the signal.

## Clear all customizable logic timers "CLTC" (Function codes E01 to E09, data = 81)

If the CLTC terminal function is assigned to a general-purpose input terminal and this input is turn ON, all the general-purpose timers and counters in the customizable logic are reset. It is used to reset and restart the system, when, for example, the timing of external sequence cannot be consistent with internal customizable logic due to a momentary power failure.

| "CLTC" |  |
| :---: | :--- |
| OFF | Normal operation |
| ON | Resets all the general-purpose timers and counters in the customizable logic. <br> (To reactivate it, turn it OFF again.) |

### 5.3.11 U1 codes (Customizable logic operation)

| U101 to U106 |
| :--- |
| U107 |

## Customizable logic

(Operating point 1 (X1, Y1), Operating point 2 (X2, Y2), Operating point 3 (X3, Y3)) Customizable logic (Automatic conversion factor calculation)

Operation coefficient $K A, K B$, and $K C$ used with Block 3001: Conversion 1 calculation formula (KA x input $1^{2}+K B$ $x$ input $1+K C$ ) is calculated automatically. By converting the applicable functions to graphical format, setting the 3 XY points in U101 to U106, and changing U107 from 0 to 1, the exponent part and Mantissa for KA, KB, and KC for U92 to U97 are calculated automatically, and data is updated.


Convert the applicable functions to graphical format, and set the 3 XY points as follows.

| Function <br> code | Name | Setting range |
| :---: | :---: | :---: |
| U101 | Operating point data P1 (X1) | -999.00 to 9990.00 |
| U102 | Operating point data P1 (Y1) | -999.00 to 9990.00 |
| U103 | Operating point data P2 (X2) | -999.00 to 9990.00 |
| U104 | Operating point data P2 (Y2) | -999.00 to 9990.00 |
| U105 | Operating point data P3 (X3) | -999.00 to 9990.00 |
| U106 | Operating point data P3 (Y3) | -999.00 to 9990.00 |


| U107 data | Function |
| :---: | :--- |
| 0 | Disable |
| 1 | U92 to U97 automatic calculation (Returns to 0 after automatic calculation) |

The following operation coefficients are automatically calculated, and then stored in each function code.

| Function <br> code | Name | Setting range |
| :---: | :--- | :--- |
| U92 | Coefficient KA mantissa portion | -9.999 to 9.999 |
| U93 | Coefficient KA exponent portion | -5 to 5 |
| U94 | Coefficient KB mantissa portion | -9.999 to 9.999 |
| U95 | Coefficient KB exponent portion | -5 to 5 |
| U96 | Coefficient KC mantissa portion | -9.999 to 9.999 |
| U97 | Coefficient KC exponent portion | -5 to 5 |

## FUNCTION

F Codes
E Codes
C Codes
P Codes H Codes
A Codes
b Codes
r Codes
J Codes
U Codes
y Codes
K Codes

## Setting examples of customizable logic

## Setting example 1: Use one switch to change multiple signals

If you use one switch to change the frequency setting $2 /$ frequency setting 1 and torque limit $2 /$ torque limit 1 simultaneously, replace an external circuit that is conventionally needed with a customizable logic reducing the general-purpose input terminals used to a single terminal.


To configure this customizable logic, set the function codes as follows. (Timer selection) and (Timer setting) do not need to be modified if no change is made.

| Function code |  | $\begin{array}{c}\text { Setting } \\ \text { value }\end{array}$ | Setting | Remarks |
| :---: | :--- | :---: | :--- | :--- |
| E01 | Terminal [X1] (Function selection) | 11 | $\begin{array}{l}\text { Select frequency command } \\ 2 / 1 \text { "Hz2/Hz1" }\end{array}$ | $\begin{array}{l}\text { Can be used in } \\ \text { parallel as } \\ \text { general-purpose } \\ \text { input terminals }\end{array}$ |
| U00 | Customizable Logic (Mode selection) | 1 | Enable |  |
| U01 | $\begin{array}{l}\text { Customizable logic: } \\ \text { Step 1 }\end{array}$ | $\begin{array}{l}\text { (Block } \\ \text { selection) }\end{array}$ | 10 | $\begin{array}{l}\text { Through output + General- } \\ \text { purpose timer }\end{array}$ |
|  | U02 | (input 1) | 4001 | Terminal [X1] input signal "X1" |$]$

## Setting example 2: Consolidating multiple output signals into one

If the general-purpose RUN signal is kept ON at restart after momentary power failure, replace an external circuit that is conventionally needed with a customizable logic sequence to reduce the general-purpose output terminals and external relays.


To configure this customizable logic, set the function codes as follows. (Timer selection) and (Timer setting) do not need to be modified if no change is made.

| Function code |  |  | Setting value | Setting | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| E20 | Terminal [Y1] (Function selection) |  | 111 | Customizable logic output signal 1 "CL01" |  |
| U00 | Customizable Logic (Mode selection) |  | 1 | Enable |  |
| U01 | Customizable logic: Step 1 | (Block selection) | 30 | Logical OR + general-purpose timer | Mode selection |
| U02 |  | (input 1) | 0 | During operation "RUN" |  |
| U03 |  | (input 2) | 6 | Auto-restarting after momentary power failure "IPF" |  |
| U71 | Customizable logic output signal 1 | (Output selection) | 1 | Output of step 1, "SO01" |  |
| U81 |  | (Function selection) | 100 | No function assigned "NONE" |  |

## Setting example 3: One-shot operation

The required operation is as follows: SW-FWD or SW-REV switch is short-circuited to start the operation and the SW-STOP switch is short-circuited to stop the operation (equivalent to keys and /(soo) key on keypad), if the above operation is required, replace an external circuit that is conventionally needed with customizable the customized logic.


To configure this customizable logic, set the function codes as follows. (Timer selection) and (Timer setting) do not need to be modified if no change is made.

| Function code |  |  | Setting value | Setting | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
| F02 | Operation method |  | 1 | External signal |  |
| E01 | Terminal [X1] (Function selection) |  | 100 | No function assigned "NONE" |  |
| E98 | Terminal [FWD] (Function selection) |  | 100 | No function assigned "NONE" |  |
| E99 | Terminal [REV] (Function selection) |  | 100 | No function assigned "NONE" |  |
| U00 | Customizable Logic (Mode selection) |  | 1 | Enable |  |
| U01 | Customizable logic: Step 1 | (Block selection) | 30 | Logical OR + general-purpose timer | Mode selection |
| U02 |  | (input 1) | 4011 | Terminal [REV] input signal "REV" |  |
| U03 |  | (input 2) | 4001 | Terminal [ X 1 ] input signal "X1" |  |
| U06 | Customizable logic: Step 2 | (Block selection) | 60 | Reset priority flip-flop + generalpurpose timer | Mode selection |
| U07 |  | (input 1) | 4010 | Terminal [FWD] input signal "FWD" |  |
| U08 |  | (input 2) | 2001 | Output of step 1 "SO01" |  |
| U11 | Customizable logic: Step 3 | (Block selection) | 30 | Logical OR + general-purpose timer | Mode selection |
| U12 |  | (input 1) | 4010 | Terminal [FWD] input signal "FWD" |  |
| U13 |  | (input 2) | 4001 | Terminal [ X 1 ] input signal "X1" |  |
| U16 | Customizable logic: Step 4 | (Block selection) | 60 | Reset priority flip-flop + generalpurpose timer | Mode selection |
| U17 |  | (input 1) | 4011 | Terminal [REV] input signal "REV" |  |
| U18 |  | (input 2) | 2003 | Output of step 3 "SO03" |  |


| Function code |  | Setting <br> value | Setting | Remarks |  |
| :---: | :--- | :--- | :---: | :--- | :--- |
| U71 | Customizable logic <br> output signal 1 | (Output <br> selection) | 2 | Output of step 2, "SO02" | "FWD" <br> command |
| U72 | Customizable logic <br> output signal 2 | 4 | Output of step 4, "SO04" | "REV" <br> command |  |
| U81 | Customizable logic <br> output signal 1 | (Function <br> selection) | 98 | Run forward/stop command <br> "FWD" |  |
| U82 | Customizable logic <br> output signal 2 | 99 | Run reverse/stop command <br> "REV" |  |  |

### 5.3.12 y codes (Link functions)

## y01 to y20 RS-485 setting 1, RS-485 setting 2

In the RS-485 communication, two systems can be connected.

| System <br> (Communication port) | Connection configuration | Function code | Equipment that can be connected |
| :--- | :--- | :---: | :--- |
| System 1 <br> (Port 1) | RJ-45 connector for <br> keypad connection | y01 to y10 | (1) Keypad (standard/multi-function) <br> (2) FRENIC Loader <br> (3) Host equipment |
| System 2 <br> (Port 2) | [Terminal] DX+, DX-, SD | y11 to y20 | (2) FRENIC Loader <br> (3) Host equipment |

An overview of all compatible devices is given below.
(1) Keypad (standard/multi-function)

The standard keypad or multi-function keypad can be connected to operate and monitor the inverter.
The standard keypad can be used regardless of the $y$ code setting.
(2) FRENIC Loader

Inverter supporting (monitor, function code editing, test operation) can be performed by connecting a computer with the FRENIC loader installed.

The FRENIC-MEGA keypad is equipped with a USB port. If connecting with FRENIC Loader via the USB port, use is possible simply by setting the station address (y01) to " 1 " (factory default).
(3) Host equipment

Host equipments such as PLC and controller can be connected to control and monitor the inverter. Modbus RTU* protocol or Fuji general-purpose inverter protocol can be selected for communication.

* Modbus RTU is a protocol stipulated by Modicon.

Refer to the "RS-485 Communication User's Manual" for details.

## - Station addresses (y01, y11)

Sets the station address for RS-485 communication. The setting range differs for each protocol.

| Protocol | Range | Broadcast |
| :--- | :---: | :---: |
| Modbus RTU | 1 to 247 | 0 |
| Fuji general-purpose inverter | 1 to 31 | 99 |

- When specifying a value outside the range, no response is returned.
- If using FRENIC Loader, set the station specified with FRENIC Loader.


## Communications error processing (y02, y12)

Selects the operation when an error occurs during RS-485 communication.
RS-485 errors are logical errors such as address errors, parity errors and framing errors, as well as transmission errors and disconnection errors set at y08/y18. These errors occur only when the inverter is configured to receive the operation command or frequency command via the RS-485 communication. If the operation command or frequency command is not issued via the RS-485 communication, or when the inverter is stopped, the system does not determine an error.

| y02, y12 data | Function |
| :---: | :---: |
| 0 |  stops the operation (trip by alarm). Displays an RS-485 communication error (ErG), and immediately stops operation (alarm stop). |
| 1 | Operates for a period specified in the error process timer (y03, y13), and then displays the RS-485 communication error ( $E$-G for y02, ErIfory12), and stops the operation (trip by alarm). |
| 2 | Retries the communication for a period specified in the error process timer ( $\mathrm{y} 03, \mathrm{y} 13$ ), and if the communication is recovered, the operation continues. Displays the RS-485 communication error ( $E \square$ and immediately stops the operation (trip by alarm). |
| 3 | Continues the operation if a communication error occurs. |

Refer to the "RS-485 Communication User's Manual" for details.

## Error process timer (y03, y13)

Sets the error process timer. An error is judged when the timer value set for which a response is required has elapsed due to such reasons as no response from the other end. Refer to the "Communication time-out detection timer (y08, y18)" item also.

- Data setting range: 0.0 to 60.0 (s)

Baud rate (y04, y14)
Sets the baud rate.

| $\mathrm{y} 04, \mathrm{y} 14$ data | Function |
| :---: | :---: |
| 0 | 2400 bps |
| 1 | 4800 bps |
| 2 | 9600 bps |
| 3 | 19200 bps |
| 4 | 38400 bps |
| 5 | 57600 bps |
| 6 | 76800 bps |
| 7 | 115200 bps |

## FUNCTION

## Data length selection (y05, y15)

Sets the character length.

- For Modbus RTU:

The value does not need to be set since it automatically becomes 8 bits.

| $\mathrm{y} 05, \mathrm{y} 15$ data | Function |
| :---: | :---: |
| 0 | 8 bits |
| 1 | 7 bits |

## Parity selection (y06, y16)

Sets the parity bit.

| y06, y16 data | Function |
| :---: | :--- |
| 0 | No parity bit <br> $(2$ bits of stop bit for Modbus RTU) |
| 1 | Even parity <br> (1 bit of stop bit for Modbus RTU) |
| 2 | Odd parity <br> $(1$ bit of stop bit for Modbus RTU) |
| 3 | No parity bit <br> $(1$ bit of stop bit for Modbus RTU) |

## Stop bit selection (y07, y17)

Sets the stop bit.

- For Modbus RTU:

The value does not need to be set since it is automatically determined in conjunction with the parity bit.

| $y 07, y 17$ data | Function |
| :---: | :---: |
| 0 | 2 bits |
| 1 | 1 bit |

## - Communication time-out detection timer (y08, y18)

Sets the period from the time the system detects a communication time-out (for any reason such as disconnection in equipment that periodically accesses the station within a specific time) during operation using RS-485 communication, until the time the system processes communication errors.

Refer to y02, y12 for details on communication error

| $y 08, y 18$ data | Function |
| :---: | :--- |
| 0 | Disconnection is not <br> detected. |
| 1 to 60 | Detection time from 1 to <br> $60(\mathrm{~s})$ | processing.

## Response interval time (y09, y19)

Sets the period from the time the system receives a request from host equipment (computer or PLC, etc.) until the time that a response is returned after receipt of the request is complete. Even with host devices for which processing from the completion of transmission to the completion of receipt preparation is delayed, the timing can be aligned by setting the response interval time.

- Data setting range: 0.00 to 1.00 (s)


T1 = Response interval time $+\alpha$
a: Processing time inside the inverter. This differs based on the timing and command.Refer to the "RS-485 Communication User's Manual" for details.

To set an inverter by the inverter supporting loader via the RS-485 communication, consider the performance and condition of the computer and converter (such as USB-RS-485 converter).
(Some converters monitor communication status and switch transmission and reception with timer.)

Protocol selection (y10, y20)
Selects the communication protocol.

| y10, y20 data | Function |
| :---: | :--- |
| 0 | Modbus RTU protocol |
| 2 | Fuji general-purpose <br> inverter protocol |

## y93 <br> RTU current format switching

It is possible to switch the format of the current data which can be be monitored by Modbus RTU protocol with RS485 communication.

If switching from the G1 or GX1 series, set 1: Data format 19 if not wishing to make changes to the controller program.

| y93 data |  | Function |
| :---: | :--- | :--- |
| 0 | Format 24 (factory default) |  |
| 1 | Format 19 (G1 compatible) |  |

Refer to the "RS-485 Communication User's Manual" for details on applicable function codes.
Data format [24] floating point data


Exponent part: 0~3 Mantissa : 1~9999

Numerical value expressed with this format = Mantissa x (Exponent part-2) to the power 10

| Numerical value (current <br> value) | Mantissa | Exponent part | (Exponent part-2) to the power 10 |
| :--- | :--- | :--- | :--- |
| 0.00 to 99.99 | 0 to 9999 | 0 | 0.01 |
| 100.0 to 999.9 | 1000 to 9999 | 1 | 0.1 |
| 1000 to 9999 | 1000 to 9999 | 2 | 1 |
| 10000 to 99990 | 1000 to 9999 | 3 | 10 |

## Data format [19] current value

The current value is decimal point data (positive). The increment width is 0.01 for inverters with capacity of 22 kW ( 30 HP ) or lower, and 0.1 for inverters with capacity of $30 \mathrm{~kW}(40 \mathrm{HP}$ ) or higher. With inverters with capacity of 22 kW ( 30 HP ) or lower, it is not possible to write data that exceeds 655 A . When reading after a data write instruction that exceeds 655 A , positive values are not read.
Current value data from the 5 th digit onward is rounded down inside the inverter. (Example: If a 107.54 A write instruction is issued to an inverter with capacity of $22 \mathrm{~kW}(30 \mathrm{HP}), 107.5 \mathrm{~A}$ is written.)
(Example) If F11 (electronic thermal overload relay operation level) $=107.0 \mathrm{~A}$

$$
107.0 \times 10=1070=042 \mathrm{EH}, \text { and therefore } \rightarrow 04 \mathrm{H} 2 \mathrm{EH}
$$

(Example) If F11 (electronic thermal overload relay operation level) $=3.60 \mathrm{~A}$
$3.60 \times 100=360=0168 \mathrm{H}$, and therefore $\rightarrow 01 \mathrm{H} 68 \mathrm{H}$

## FUNCTION

```
y94 Bus function (Operation command source selection)
 Related function codes: y98: Bus function (Operation selection)
 H30: Link function (Operation selection)
```

If operating the inverter via field bus communication, $X$ command operation will still be performed via field bus communication, but this function should be used if wishing to provide run commands (FWD/REV) only by a method other than communication (external contact signal input). When doing so, set the following values for $\mathrm{y} 98, \mathrm{H} 30$, and F02.

Refer to the H 30 section for details on operation if y 94 is set to 1 , and $\mathrm{y} 98, \mathrm{H} 30$, and F 02 are set to other than the following, and if y 94 is set to 0 .

| y94 | y98 | H30 | F02 | Frequency <br> commands <br> PID commands, <br> etc. | Run command <br> FWD, REV | Run command <br> Other than FWD, REV <br> (X command) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | 1 | 0 | 1 | Commands via field <br> bus communication | Inverter control <br> terminal | Commands via field bus <br> communication |



## y95 Data clear processing for communications error

If any of the communication error alarms (er8, erp, er4, er5) occurs in RS-485, CANopen communication or bus option, the data of communication command function codes (S codes) can automatically be cleared.

Since the frequency and operation commands are also disabled when the data is cleared, the inverter does not start unintentionally when an alarm is released.

| y95 data | Function |
| :---: | :--- |
| 0 | Do not clear the data of function codes Sxx when a communications error occurs. <br> (compatible with the conventional inverters) |
| 1 | Clear the data of function codes S01/S05/S19 when a communications error occurs. |
| 2 | Clear the run command assigned bit of function code S06 when a communications error <br> occurs. |
| 3 | Clear operations of 1 and 2 above are performed. |
| 4 | Clear operations for 1, 2 above and S02, S03, S13, S15, S20, S21 (ROM 0300 or later) |

When reading or writing inverter function code setting data via RS-485 communication or field bus communication, it is possible to select a compatibility mode that permits communication with the same function code and data format as the FRENIC-MEGA (G1,GX1) series. By using this function, it is possible to keep customer controller program changes to a minimum when replacing inverters.

| y96 data |  | Function |
| :---: | :--- | :--- |
| 0 | Disable |  |
| 1 | Reserved (Do not set.) |  |
| 2 | Operation (G1 compatibility) |  |
| 3 | Operation (GX1 compatibility) |  |

Only when y96=2 or 3 , and the communication command source is RS-485 communication or field bus communication, the following function codes are replaced with the equivalent of those for the G1 and GX1 series. Function codes that are not listed below are interchangeable, and therefore G1 and GX1 series settings can be replaced as is.

| $\begin{aligned} & \dot{0} \\ & z_{0} \\ & \stackrel{3}{3} \\ & \frac{1}{0} \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | G1S/GX1 function code |  |  |  | Replace:YES-:NO | Replace destination G2S function code |  | Replace <br> valid conditions <br> Function code conditions | Supplementary information |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Code | Name | R/W |  |  | Code |  |  |  |
| 1 | E40 | PID display coefficient A | R/W | [12] | $\bigcirc$ | J106 | [12] | $\mathrm{y} 96=2$ or 3 | - |
| 2 | E41 | PID display coefficient A | R/W | [12] | $\bigcirc$ | J107 | [12] | y96=2 or 3 | - |
| 3 | E90 | Motor selection | R/W | [1] | - | - | - | $\mathrm{y} 96=2$ or 3 | Exists for GX1 only <br> Not used with G2 |
| 4 | C23 | Stage 2 operating time | R/W | [12] | $\bigcirc$ | C23 | [84] | $\mathrm{y} 96=2$ or 3 | - |
| 5 | C23 | Stage 2 operating time | R/W | [12] | $\bigcirc$ | C23 | [84] | $\mathrm{y} 96=2$ | - |
| 6 | C24 | Stage 3 operating time | R/W | [12] | $\bigcirc$ | C24 | [84] | y96=2 | - |
| 7 | C25 | Stage 4 operating time | R/W | [12] | $\bigcirc$ | C25 | [84] | y96=2 | - |
| 8 | C26 | Stage 5 operating time | R/W | [12] | $\bigcirc$ | C26 | [84] | y96=2 | - |
| 9 | C27 | Stage 6 operating time | R/W | [12] | $\bigcirc$ | C27 | [84] | y96=2 | - |
| 10 | C28 | Stage 7 operating time | R/W | [12] | $\bigcirc$ | C28 | [84] | y96=2 | - |
| 11 | C82 | Stage 1 rotation direction, acceleration/deceleration time | R/W | [1] | $\bigcirc$ | C22 | [84] | $y 96=2$ | - |
| 12 | C83 | Stage 2 rotation direction, acceleration/deceleration time | R/W | [1] | $\bigcirc$ | C23 | [84] | $y 96=2$ | - |
| 13 | C84 | Stage 3 rotation direction, acceleration/deceleration time | R/W | [1] | $\bigcirc$ | C24 | [84] | $y 96=2$ | - |
| 14 | C85 | Stage 4 rotation direction, acceleration/deceleration time | R/W | [1] | $\bigcirc$ | C25 | [84] | $y 96=2$ | - |
| 15 | C86 | Stage 5 rotation direction, acceleration/deceleration time | R/W | [1] | $\bigcirc$ | C26 | [84] | $y 96=2$ | - |
| 16 | C87 | Stage 6 rotation direction, acceleration/deceleration time | R/W | [1] | $\bigcirc$ | C27 | [84] | $y 96=2$ | - |
| 17 | C88 | Stage 7 rotation direction, acceleration/deceleration time | R/W | [1] | $\bigcirc$ | C28 | [84] | $y 96=2$ | - |
| 18 | H86 | For adjustment by manufacturer | R/W | [1] | - | - | - | $\mathrm{y} 96=2$ | - |
| 19 | H87 | For adjustment by manufacturer | R/W | [3] | - | - | - | y96=2 | Exists for G1 only |
| 20 | H88 | EN display function selection | R/W | [1] | - | - | - | $y 96=2$ | Exists for G1 only Not used with G2 |
| 21 | J56 | PID speed command filter | R/W | [5] | - | - | - | $y 96=2$ | Not used with G2 |
| 22 | J68 | Brake control signal <br> (Brake-release current) <br> (Brake-release timer) <br> (Brake-apply timer) <br> (Brake-release torque) <br> (Gain) | R/W | [1] | $\bigcirc$ | J68 | [5] | $y 96=2$ or 3 | - |
| 23 | J70 |  | $\begin{aligned} & \text { R/W } \\ & \text { R/W } \end{aligned}$ | [3] | $\bigcirc$ | J70 | [5] | $\mathrm{y} 96=2$ or 3 | - |
| 24 | J72 |  |  | [3] | $\bigcirc$ | J72 | [5] | y96=2 or 3 | - |
| 25 | 195 |  | R/W | [1] | $\bigcirc$ | 195 | [5] | y96=2 or 3 | - |
| 26 | 197 |  | R/W | [5] | $\bigcirc$ | J97 | [7] | $y 96=2$ or 3 | - |

The inverter memory (non-volatile memory) has a limited rewritable times (100 thousand to 1 million times). If the count immoderately increases, the data cannot be modified or saved, causing a memory error.

If frequently rewriting data via communication, data can be stored to the temporary memory instead of writing it to the nonvolatile memory. By doing so, the number of times that data is written to the nonvolatile memory is suppressed, preventing memory errors.

If y97 is set to " 2 ", the data written in the temporary memory is stored (All Saved) in the non-volatile memory.
To change the y97 data, it is necessary to press the $+\checkmark$ keys (simultaneous keying).

| y97 data | Function |
| :---: | :--- |
| 0 | Store into nonvolatile memory (Rewritable times are limited) |
| 1 | Write into temporary memory (Rewritable times are unlimited) |
| 2 | Save all data from temporary memory to nonvolatile memory (After all save, y97 data <br> returns to 1) |

> | y98 | Bus function (Mode selection) |
| :--- | :--- |
| (Refer to H30) |  |

For details on setting the y98 bus function (mode selection), refer to the description of H30.

```
y99 Loader link function (Mode selection)
```

Function code to switch the links to the inverter supporting loader software (FRENIC Loader). Rewriting y99 with the inverter supporting loader software (FRENIC Loader) enables the set frequency and run command from the inverter supporting loader software (FRENIC Loader). You do not need to use the keypad since the data is rewritten from the inverter supporting loader.

If the operation command is configured to be given from the inverter supporting loader software, and if the computer starts to go out of control during the operation and a stop command from the loader software is ignored, remove the communication cable connected to the computer that runs the inverter supporting loader software, and connect the keypad to set the y99 data to 0 . By setting the y 99 data to 0 , the operation is isolated from the inverter supporting loader software's commands, switching to the commands of inverter's own settings (such as function code H30).
The y99 data is not saved in the inverter; the setting is lost and returned to 0 when powered off.

| y99 data | Function |  |
| :---: | :--- | :--- |
|  | Set frequency | Run command |
| 0 | From function codes H30 and y98 | From function codes H30 and y98 |
| 1 | Setting from FRENIC Loader | From function codes H30 and y98 |
| 2 | From function codes H30 and y98 | Command issued from FRENIC loader |
| 3 | Setting from FRENIC Loader | Command issued from FRENIC loader |

## 5．3．13 K codes（Keypad functions）

The multi－function keypad indicated in the description refers to the TP－A2SW．
［1］Refer to the TP－A2SW multi－function keypad Instruction Manual（Detailed version）（INR－SI47－2422■－JEC） for details on the multi－function keypad installation method，separately sold battery／SD card insertion and removal method，screen display and operation methods，and setting method for setting items other than K codes．

## K01 LCD monitor（Language selection）

Select the language displayed on the multi－function keypad LCD monitor．
－Data setting range： 0 to 19

| K01 data | Language | K01 data | Language | K01 data | Language |
| :---: | :--- | :---: | :--- | :---: | :--- |
| 0 | Japanese | 8 | Russian | 15 | Dutch |
| 1 | English | 9 | Greek | 16 | Malay |
| 2 | German | 10 | Turkish | 17 | Vietnamese |
| 3 | French | 11 | Polish | 18 | Thai |
| 4 | Spanish | 12 | Czech | 19 | Indonesian |
| 5 | Italian | 13 | Swedish |  |  |
| 6 | Chinese | 14 | Portuguese |  |  |

## K02 Backlight OFF time

Sets the LCD backlight OFF time for the multi－function keypad．Turns the backlight OFF if the time set for K02 has elapsed since stopping multi－function keypad operation．
－Data setting range： 1 to $30(\mathrm{~min})$ ，OFF

| K02 data | Function |
| :---: | :--- |
| OFF | Always OFF |
| 1 to $30(\mathrm{~min})$ | Automatically turns OFF after the set time has elapsed if no multi－function <br> keypad operation is performed． |

## K03 LCD monitor（Backlight brightness adjustment） <br> K04 （Contrast adjustment）

The multi－function keypad LCD brightness and contrast can be adjusted．
－Data setting range： 0 to 10
－Backlight brightness adjustment（K03）

| K03 data | 0，1，2，．．．．．．．．．．．．．．．．．8，9， 10 |  |
| :---: | :---: | :---: |
| 0 | Dark | $\rightarrow$ Bright |

Contrast adjustment（K04）

## FUNCTION

| K04 data | 0，1，2，．．．．．．．．．．．．．．．．．．8，9， 10 |
| :---: | :---: |
| 0 | Low $\longrightarrow$ High |

```
K08
Status display
```

The status message displayed on the multi-function keypad LCD can be hidden or displayed.

- Data setting range: 0,1

| K08 data |  | Function |
| :---: | :--- | :--- |
| 0 | Hide |  |
| 1 | Display (factory default) |  |


| FWDREM K $\mathrm{K}_{5}$ |  |
| :---: | :---: |
| Forced RUN |  |
| 6 | 00 Hz |
|  | 01/Jul, Thu <br> 11:45 PM |
| SV1 | $\begin{array}{r} 18.08 \mathrm{MPa} \\ 8.8 \text { MPa } \end{array}$ |
| PRGャPr | ogram Men? |

Status message
Displays operating statuses that the operator needs to be notified of.

## Display example

Undervoltage
Performing forced stoppage
Restarting after momentary power failure
Awaiting retry
Performing forced operation
Performing commercial operation, etc.

The multi-function keypad LCD sub-monitor display type can be selected.

- Data setting range: 0,1

| K15 data | Function |
| :---: | :--- |
| 0 | Numerical display (factory default) |
| 1 | Bar graph display |



| K16 | Sub-monitor 1 display content  <br> K17  <br> K20 Sub-monitor 2 display content <br> K21 Bar graph 1 display content <br> K22 Bar graph 2 display content <br> Bar graph 3 display content l |
| :--- | :--- |

The displayed content can be selected from the following function codes based on the display type selected with K15.
Refer to the description for function code E43, and "3.3.1 Operating Status Main Monitor and Sub-monitor" in Chapter 3 of the multi-function keypad Instruction Manual (Detailed version) (INR-SI47-2422 $\square$-JEC) for details of the display content, and set in the following function codes.

| Display location | Displayed content |
| :---: | :---: |
| Main monitor | E43 data |
| Sub-monitor 1 | K16 data |
| Sub-monitor 2 | K17 data |
| Bar graph 1 | K20 data |
| Bar graph 2 | K21 data |
| Bar graph 3 | K22 data |

## K40 Reserved

Do not change.

## K51 Traceback data overwrite selection

It is possible to set whether to allow or prohibit overwriting if the maximum number of data items that can be saved is reached.

0 : Allow (factory default), 1: Prohibit
Maximum number of data items that can be saved
When multi-function keypad TP-A2SW connected : max. 100 items (when microSD card inserted) (Note)
When standard keypad TP-E2 connected : up to 1 item
Note: Data cannot be saved when a microSD card has not been inserted.

K52 Traceback sampling cycle
Sets the analog input/output signal or digital input/output signal waveform sampling cycle when an event occurs. There are 500 samples (fixed).
The following table shows the relationship between sampling cycle and the length of time that sampling is possible.

| Sampling cycle | $500[\mu \mathrm{~s}]$ (Setting value: 8 ) | $\cdots \cdots$ | $200[\mathrm{~ms}]$ (Setting value: 7 ) |
| :---: | :---: | :---: | :---: |
| Sampling possible time | $250[\mathrm{~ms}]$ | $\cdots \cdots$ | $100[\mathrm{~s}]$ |

## FUNCTION

F Codes
E Codes
C Codes
P Codes
H Codes
A Codes
b Codes
r Codes
$J$ Codes
d Codes
U Codes
K Codes

| K53 | Traceback CH4 operation selection |
| :---: | :---: |
| K54 to K65 | Traceback analog Ch1 to 4 source selection |
| $\begin{aligned} & \text { K58 to } \\ & \text { K65 } \end{aligned}$ | Traceback digital Ch1 to 8 source selection |

By selecting the analog input/output signal or digital input/output signal to be saved when an event occurs using the FRENIC Loader4 inverter support software and setting it in the inverter, setting information is saved to this function code.
Events are set to when "alarms" occur by factory default.


Traceback data display example
Refer to the Instruction Manual (INR-SI47-2104 $\square$ ) for the FRENIC-Loader4 inverter support software for details on traceback.
K91
Multi-function keypad © shortcut
K92 Multi-function keypad $\odot$ shortcut

By pressing the multi-function keypad TP-A2SW (option) © or $\odot$ keys while in operation mode, it is possible to jump to the program mode (PRG) MENU screen set beforehand.

- Data setting range: 0 (disable), 11 to 99

The left data setting digit indicates the menu number, and the right digit indicates the sub-menu number.
Example: If K91 $=21$, by pressing the © key, the display jumps to the $\mathrm{PRG}>2>1$ function code data setting screen.

| K91, K92 <br> data | Setting screen display | Jump destination |  |
| :---: | :---: | :---: | :---: |
|  |  | Menu | Sub-menu |
| 0 | OFF | Disable | - |
| 11 | Language | Start-up | Language |
| 12 | Applnit |  | Application Selection |
| 13 | Date/Time |  | Clock Settings (Date/Time) |
| 14 | Display |  | Display Settings |
| 15 | Bluetooth |  | Bluetooth |
| 21 | DataSet | Function Code | Data Setting |
| 22 | DataCheck |  | Data Checking |
| 23 | ChgData |  | Change Data Checking |
| 24 | DataCopy |  | Data Copy |
| 25 | Schedule |  | Disable (Scheduled Operation) |
| 26 | Initial |  | Data Initialization |
| 31 | EnergyMon | Inverter Information | Disable (Energy Monitor) |
| 32 | OprMon |  | Operation Monitor |
| 33 | I/O Check |  | I/O Check |
| 34 | Mainte |  | Maintenance Information |
| 35 | UnitInfo |  | Unit Information |
| 36 | Dest. |  | Destination |
| 41 | AlarmHist | Alarm Information | Alarm History |
| 42 | Warn.Hist |  | Warning History |
| 43 | RetryHist |  | Retry History |
| 51 | Q.Setup | User Configurations | Select Favorites |
| 52 | Password |  | Password |
| 61 | PID Mon | Tools | PID Monitor |
| 62 | M-Op Mon |  | Disable (Multi-operation Monitor) |
| 63 | Resonant |  | Avoid Resonance |
| 64 | LoadFctr |  | Load Factor Measurement |
| 65 | COM Debug |  | Communication Debug |
| 70 | KP Update | KP Update | - |

## FUNCTION

## K96

TP-G1 compatibility mode
K96 is used if connecting a touch panel (TP-E1, TP-E1U, TP-G1, TP-G1-J1/C1) for the FRENIC-MEGA (G1) series (hereafter referred to at G1) to the FRENIC-MEGA (G2) series (hereafter referred to as G2) and copying function codes.
The following table shows the behavior when using the data copy function with a replacement touch panel.
Behavior when using data copy function with replacement touch panel

| Replacement touch panel | Function code saved to touch panel | K96 | Behavior when copying data |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { TP-E1 } \\ \text { TP-E1U } \\ \text { TP-E2*1 } \end{gathered}$ | For G1 | No setting necessary | "0" is set for function code K96 when copying data. |
|  | For G1X |  | "1" is set for function code K96 when copying data. |
| $\begin{gathered} \text { TP-G1 } \\ \text { TP-G1-J1/C1 } \end{gathered}$ | For G1 | 0 | Before copying data, set " 0 " for function code K96 with TPE2, replace the touch panel with the one indicated on the left, and copy data. |
|  | For G1X | 1 | Before copying data, set "1" for function code K96 with TPE2, replace the touch panel with the one indicated on the left, and copy data. |

*1: Supported from ROM 0300 or later.

- Multi-function Keypad TP-A2SW can only be used on the G2. It cannot be used on the G1/GX1.
- K96 appears if connected to G2 keypad TP-E2, but it does not appear if connected to TP-E1, TP-E1U, TP-G1, or TP-G1-J1/C1.
- If copying data from TP-G1 or TP-G1-J1/C1, it will not be possible if the K96 setting differs from the model for the data being copied.
- K96 is not initialized with H 03 .
- Certain function codes are replaced with other function codes, the value of certain function codes is converted, and certain function codes are not copied.

This chapter describes troubleshooting procedures to be followed when the inverter malfunctions or detects an alarm or a warning condition．

## Contents

6．1 Protective Functions ..... 6－1
6．2 Before Proceeding with Troubleshooting ..... 6－3
6．3 If an Alarm Code Appears on the LED Monitor ..... 6－4
6．3．1 Alarm code list ..... 6－4
6．3．2 Causes，checks and measures of alarms ..... 6－8
［1］ ..... 6－8
［2］Eif Current input terminals［C1］，［C2］signal line break ..... 6－8
［3］Braking transistor broken ..... 6－8
［4］Braking resistor overheat ..... 6－9
［5］EたEN circuit failure ..... 6－9
［6］EELCustomizable logic error ..... 6－10
［7］EFGround fault protection（FRN0032G2S－2G／FRN0018G2口－4G or above） ..... 6－10
［8］Eー＇Memory error ..... 6－10
［9］Erに Keypad communication error ..... 6－11
［10］ErラCPU error ..... 6－11
［11］EームOption communication error ..... 6－11
［12］Er5 Option error ..... 6－11
［13］Er旨Operation error ..... 6－12
［14］Er「T Tuning error ..... 6－13
［15］ErGRS－485 communication error（Communication port 1）／ Er．RS－485 communication error（Communication port 2） ..... 6－14
［16］Erd Step－out detection／detection failure of magnetic pole position at startup ..... 6－15
［17］Erí Magnetic pole position detection error ..... 6－16
［18］ErE Speed inconsistency／Excessive speed deviation ..... 6－17
［19］ErF Data saving error during undervoltage ..... 6－18
［20］ErH Hardware error ..... 6－18
［21］Era Positioning control error ..... 6－18
［22］Err Simulated failure ..... 6－19
［23］FíS Blown fuse ..... 6－19
［24］FGLDC fan lock ..... 6－19
［25］in Input phase loss ..... 6－19
［26］La！Password protection ..... 6－20
［27］in Undervoltage ..... 6－20
［28］$\pi \mathrm{m}_{\mathrm{t}} \mathrm{NTC}$ wire break error ..... 6－20
［29］售に Instantaneous overcurrent ..... 6－21
［30］itil ；Cooling fin overheat ..... 6－22
［31］［14i］External alarm ..... 6－22
［32］［ifis Inverter internal overheat ..... 6－22
［33］踣り Motor protection（PTC／NTC thermistor） ..... 6－23
［34］Difl Charging resistor overheat ..... 6－23
［35］ ［il $\cap$ Motor overloads 1 to 4 ..... 6－24
［36］int il Inverter overload ..... 6－25
［37］ $11 P L$ Output phase－failure detection ..... 6－26
 ..... 6－26
［39］Biiin Overvoltage ..... 6－27
［40］PbFCharge circuit fault（FRN0008G2S－2G／FRN0004G2口－4G or above） ..... 6－27
［41］PG wire break ..... 6－28
［42］Exil Excessive positioning deviation ..... 6－28
6．4 If a Warning Code is Displayed ..... 6－29
6．4．1 Warning code list ..... 6－29
6．4．2 Warning cause and check ..... 6－29
［1］E－ni＇Machine life（Number of startups） ..... 6－29
［2］ 2 IGBT lifetime alarm ..... 6－29
［3］Lif Lifetime alarm ..... 6－29
［4］Cooling fin overheat early warning ..... 6－30
［5］III Motor overload early warning ..... 6－30
［6］ 1 PID alarm output ..... 6－30
［7］FIC PTC thermistor activated ..... 6－30
［8］fiff Cooling capability drop ..... 6－30
［9］「EF Reference loss ..... 6－30
［10］ríE Machine life（Cumulative motor running hours） ..... 6－30
［11］ Lif $_{1}^{2}$ L Low torque detection ..... 6－31
［12］Lot Low battery warnig（for Multi－function Keypad（TP－A2SW）） ..... 6－31
6．5 Other Errors ..... 6－32
6．5．1 Abnormal motor operation ..... 6－32
［1］The motor does not rotate ..... 6－32
［ 2 ］The motor rotates，but the speed does not increase ..... 6－34
［3］The motor runs in the opposite direction to the command ..... 6－35
［4］Speed fluctuation or current oscillation（e．g．，hunting）occurs during running at constant speed ..... 6－36
［5］Unpleasant noises are emitted from motor or noises fluctuate ..... 6－37
［6］Motor is not accelerated or decelerated according to set－up acceleration or deceleration times ..... 6－38
［7］The motor does not restart even after the power recovers from a momentary power failure ..... 6－39
［8］Motor generates heat abnormally ..... 6－39
［9］The motor does not run as expected ..... 6－39
［10］Motor stalls during acceleration ..... 6－40
6．5．2 Problems with inverter settings ..... 6－41
［1］Nothing appears on the keypad ..... 6－41
［2］The desired menu is not displayed ..... 6－41
［3］Display of under bars（ ．．．．） ..... 6－41
[4] Display of center bars (-----) ..... 6-42
[5] [-] Display of parenthesis ..... 6-42
[6] Data of function codes cannot be changed ..... 6-42
[7] Function code data are not changeable (change from link functions) ..... 6-43
[8] En.bif appears ..... 6-43
[9] Other status display ..... 6-43

## 6．1 Protective Functions

In order to prevent the system going down or to shorten recovery time，FRENIC－MEGA is equipped with various protective functions shown in Table 6．1－1 below．The protective functions marked with an asterisk（＊）in the table are disabled by factory default．
Enable them according to your needs．
The protective functions include，for example，the＂Alarm＂detection function which，upon detection of an abnormal state，displays the alarm code on the LED monitor and causes the inverter to trip，the＂Warning＂detection function which displays the alarm code but lets the inverter continue the current operation，and other warning signal output functions．

If any problem arises，understand the protective functions listed below and follow the procedures given in sections 6.2 and onwards for troubleshooting．

Table 6．1－1 Abnormal state detection（alarms／warnings）

| Protective function | Description | Related function code |
| :---: | :---: | :---: |
| ＂Alarm＂detection | This function detects an abnormal state，displays the corresponding alarm code on the keypad，and causes the inverter to trip． <br> Refer to＂6．3．1 Alarm code list＂for alarm codes，and refer to＂6．3．2 Causes，checks and measures of alarms＂for details on the alarm content． <br> The inverter retains the last four alarm codes and their factors together with their running information applied when the alarm occurred，so it can display them． | H98 |
| ＂Warning＂detection＊ | All abnormal conditions are detected，and if a minor abnormality is detected，a warning code is displayed，and operation continues without tripping the inverter． <br> The warning display operation can be selected with the warning selection（function codes H81，H82，H83）． | $\begin{aligned} & \text { H81 } \\ & \text { H82 } \\ & \text { H83 } \end{aligned}$ |
| Stall prevention | When the output current exceeds the current limiter level（function code F44）during acceleration／deceleration or constant speed running，this function decreases the output frequency to avoid an overcurrent trip． | F44 |
| Overload prevention control＊ | Before the inverter trips due to a cooling fin overheat（ overload（（ill it it ，this function decreases the output frequency of the inverter to reduce the load． | H70 |
| Anti－regenerative control＊ | If regenerative energy returned exceeds the inverter＇s braking capability， this function automatically increases the deceleration time or controls the output frequency to avoid an overvoltage trip． | H69 |
| Deceleration characteristics＊ （Improvement of braking performance） | During deceleration，this function increases the motor energy loss and decreases the regenerative energy returned to avoid an overvoltage trip． | H71 |
| Reference loss detection＊ | This function detects a frequency reference loss（due to a broken wire， etc．），issues the alarm，and continues the inverter operation at the specified frequency． | E65 |
| Automatic lowering of carrier frequency | Before the inverter trips due to an abnormal surrounding temperature or output current，this function automatically lowers the carrier frequency to avoid a trip． | H98 |
| Motor overload early warning＊ | When the inverter output current has exceeded the specified level，this function issues the＂Motor overload early warning＂signal before the thermal overload protection function causes the inverter to trip for motor protection（only for the 1st motor）． | $\begin{aligned} & \text { E34 } \\ & \text { E35 } \end{aligned}$ |
| Retry＊ | When the inverter has stopped because of a trip，this function allows the inverter to automatically reset and restart itself． <br> The number of retries and the latency between stop and reset can be specified． | $\begin{aligned} & \mathrm{H} 04 \\ & \mathrm{H} 05 \end{aligned}$ |

Table 6.1-1 Cont.

| Protective function | Description | Related <br> function <br> code |
| :--- | :--- | :---: |
| Forced stop* | Upon receipt of the "Force to stop" terminal command STOP, this <br> function interrupts the run and other commands currently applied in <br> order to forcedly decelerate the inverter to a stop state. | H56 |
| Surge protection | This function protects the inverter from a surge voltage between main <br> circuit power lines and the ground. | - |
| Momentary power <br> failure protection* | - If a momentary power failure for 15 ms or longer occurs, a protective <br> operation (inverter stop) is activated. <br> When momentary power failure restart is selected, the inverter <br> restarts automatically after voltage restoration within a set-up time <br> (momentary power failure permissible time). | F14 |

### 6.2 Before Proceeding with Troubleshooting

## $\triangle$ WARNING $\triangle$

- If any of the protective functions has been activated, first remove the cause. Then, after checking that all run commands are set to OFF, release the alarm. If the alarm is released while any run command is set to ON, the inverter may supply the power to the motor, running the motor.


## Failure to observe this could result in injury.

- Even if the inverter cuts off the supply of power to the motor, if voltage is being applied to main power supply input terminals L1/R, L2/S, and L3/T, voltage may be output to inverter output terminals $\mathrm{U}, \mathrm{V}$ and W .
- Carry out an inspection after first waiting for at least 5 minutes for units of FRN0115G2S-2G/FRN0060G2■ -4G or below, or 10 minutes for units of FRN0146G2S-2G/FRN0075G2■-4G or above after turning off the power, ensuring that the LED monitor and charge lamp are off, and using a device such as a tester to ensure that the DC intermediate circuit voltage across main circuit terminals $\mathrm{P}(+)-\mathrm{N}(-)$ has dropped to a safe level (+25 VDC or less).
Failure to observe this could result in electric shock.

Follow the procedure below to solve problems.
(1) Is wire connection correct?

See Chapter 2 "2.2.1 Basic connection diagram".
(2) Check whether an alarm code or warning code is displayed on the LED monitor.

- If an Alarm Code Appears on the LED Monitor

To section 6.3

- If a Warning Code is Displayed

To section 6.4

- Other Errors

Abnormal motor operation
To section 6.5.1
6.5.1 [ 1 ] The motor does not rotate
6.5.1 [2] The motor rotates, but the speed does not increase
6.5.1 [3] The motor runs in the opposite direction to the command
6.5.1 [ 4 ] Speed fluctuation or current oscillation (e.g., hunting) occurs during running at constant speed
6.5.1 [5] Unpleasant noises are emitted from motor or noises fluctuate
6.5.1 [ 6 ] Motor is not accelerated or decelerated according to set-up acceleration or deceleration times
6.5.1 [ 7 ] The motor does not restart even after the power recovers from a momentary power failure
6.5.1 [ 8 ] Motor generates heat abnormally
6.5.1 [ 9 ] The motor does not run as expected
6.5.1 [10] Motor stalls during acceleration

## Problems with inverter settings

To section 6.5.2
6.5.2 [ 1 ] Nothing appears on the keypad
6.5.2 [2] The desired menu is not displayed
6.5.2 [ 3 ] Display of under bars ( . . . . )
6.5.2 [4] Display of center bars (----)
6.5.2 [5] [-] Display of parenthesis
6.5.2 [6] Data of function codes cannot be changed
6.5.2 [7] Function code data are not changeable (change from link functions)

If any problems persist after the above recovery procedure, contact your Fuji Electric representative.

### 6.3 If an Alarm Code Appears on the LED Monitor

### 6.3.1 Alarm code list

When an alarm is detected, check the alarm code displayed on the keypad 7-segment LED. Refer to "6.3.2 Causes, checks and measures of alarms" and take the appropriate countermeasures.
When one alarm code has more than one cause, alarm subcodes are provided to make it easy to identify the cause. When there is only one cause, the alarm subcode is displayed as "-" and described as "-."

Furthermore, certain types of alarms can be changed to warnings, allowing inverter operation to be continued. (Refer to "Warning selection possible" in Table 6.3-1 below.)

Note
Continuing operation while a warning is occurring may cause damage to devices, and therefore the inverter should be stopped promptly from an external source.
[D] To enter Programming mode while an alarm is occurring, press the $\qquad$ key while holding down the $\qquad$ key.
[D] See (Chapter 3 "3.4.6 Reading alarm information") for the method of checking the alarm codes.
Table 6.3-1 Alarm code and subcode list

| Alarm code | Alarm code name | Warning selection possible | Retry | Alarm subcode | Alarm subcode name | Ref. <br> page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| [91 <br> to 685 | User-defined alarm | Y | - | 0 | - | 6-8 |
| EOF | Current input terminals [C1], [C2] signal line break | Y | - | 1 | Terminal [C1] wire break | 6-8 |
|  |  |  |  | 2 | Terminal [C2] wire break |  |
|  |  |  |  | 3 | Terminal [C1], [C2] wire break |  |
| - 6 | Braking transistor broken | - | - | 0 | - | 6-8 |
| -1\% | Braking resistor overheat | Y | Y | 0 | - | 6-9 |
| EF | EN circuit failure | - | - | 0 | - | 6-9 |
| ELG | Customizable logic failure | - | - | 0 | - | 6-10 |
| $E F$ | Ground fault protection <br> (FRN0032G2S-2G/ <br> FRN0018G2■-4G or above) | - | - | 0 | - | 6-10 |
| Eri | Memory error | - | - | 1-16 | For investigation by manufacturer | 6-10 |
| Ere | Keypad communication error | - | - | 1-2 | For investigation by manufacturer | 6-11 |
| Er 3 | CPU error | - | - | 1-9000 | For investigation by manufacturer | 6-11 |
| $E-4$ | Option communication error | Y | - | 1 | Communication error at option A | 6-11 |
|  |  |  |  | 2 | Communication error at option B |  |
|  |  |  |  | 3 | Communication error at option C |  |
|  |  |  |  | 10 | Communication error due to multiple causes |  |
|  | Option error | Y | - | 0 | Timeout | 6-11 |
|  |  |  |  | 1-10 | For investigation by manufacturer |  |

Table 6.3-1 cont.

| Alarm code | Alarm code name | Warning selection possible | Retry | Alarm <br> subcode | Alarm subcode name | Ref. page | | | |
|---|---|---|---|---|---|---|---|---|---|
| ErG | Operation error | - | - | 1 | STOP key priority/forced stop (STOP terminal) | 6-12 |
|  |  |  |  | 2 | Start check function |  |
|  |  |  |  | 3 | Start check function (when operation is permitted) |  |
|  |  |  |  | 4 | Start check function (when reset is turned on) |  |
|  |  |  |  | 5 | Start check function <br> (when the power recovers in powering on) |  |
|  |  |  |  | 6 | Start check function (keypad connection) |  |
|  |  |  |  | 8 | Brake signal error |  |
|  |  |  |  | 9-14 | For investigation by manufacturer |  |
| $E r 7$ | Tuning error | - | - | 7 | Operation command OFF during motor tuning | 6-13 |
|  |  |  |  | 8 | Forced stop during motor tuning |  |
|  |  |  |  | 9 | BX command during motor tuning |  |
|  |  |  |  | 10 | Hardware current limit during motor tuning |  |
|  |  |  |  | 11 | Occurrence of low voltage (LV) during motor tuning |  |
|  |  |  |  | 12 | Failure due to prevention of reverse rotation during motor tuning |  |
|  |  |  |  | 13 | Over upper limit frequency during motor tuning |  |
|  |  |  |  | 14 | Switching to commercial power during motor tuning |  |
|  |  |  |  | 15 | Occurrence of alarm during motor tuning |  |
|  |  |  |  | 16 | Change of run command source during motor tuning |  |
|  |  |  |  | 18 | Over acceleration time during motor tuning |  |
|  |  |  |  | 24 | Terminal [EN1], [EN2] error during motor tuning |  |
|  |  |  |  | 5000 or higher | Refer to Chapter 4 "4.7.2 [3], ■ Tuning errors". |  |
|  |  |  |  | Other than above | For investigation by manufacturer |  |
| Erg | RS-485 communication error (Communication port 1) | Y | - | 0 | - | 6-14 |
| Erd | Step-out detection | - | - | 5001-5010 | For investigation by manufacturer | 6-15 |
| Erí | Magnetic pole position detection error | - | - | 5002-5008 | For investigation by manufacturer | 6-16 |
| ErE | Speed inconsistency/ excessive speed deviation | Y | - | 1 | Signs of speed command and speed detection are inconsistent. | 6-17 |
|  |  |  |  | 3 | In the case of excessive speed deviation (\|detected speed|>|speed command|) |  |
|  |  |  |  | 5 | Detected speed remains 0 Hz irrespective of speed command. |  |
|  |  |  |  | 7 | In the case of excessive speed deviation (\|detected speed|<|speed command|) |  |
| Eri | Data saving error during undervoltage | - | - | 0 | - | 6-18 |

Table 6．3－1 cont．

| Alarm code | Alarm code name | Warning selection possible | Retry | Alarm <br> subcode | Alarm subcode name | Ref． page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| ErH | Hardware error | － | － | 11 | Option board（A port） connection defect | 6－18 |
|  |  |  |  | 12 | Option board（B port） connection defect |  |
|  |  |  |  | 13 | Option board（C port） connection defect |  |
|  |  |  |  | Other than above | For investigation by manufacturer |  |
| Era | Positioning control error | Y | － | 1 to 5 | For investigation by manufacturer | 6－18 |
| Eri | RS－485 communication error （Communication port 2） | Y | － | 0 | － | 6－14 |
| Err | Simulated failure | － | － | 0 | － | 6－19 |
| FiS | Blown fuse | － | － | 0 | FRN0346G2S－2G or higher（200V series） <br> FRN0216G2■－4G or higher（400V series） | 6－19 |
|  | DC fan lock | Y | － | 0 | FRN0215G2S－2G or higher（200V series） <br> FRN0180G2■－4G or higher（400V series） | 6－19 |
| 117 | Input phase loss | － | － | 1－2 | For investigation by manufacturer | 6－19 |
| （8） | Password protection | － | － | 1 | Password 1 protection | 6－20 |
|  |  |  |  | 2 | Password 2 protection |  |
| Li． | Undervoltage | － | － | 1 | Occurrence of low voltage during gate ON （F14＝0） | 6－20 |
|  |  |  |  | 2 | Run command ON during low voltage (F14=0, 2) |  |
|  |  |  |  | 3 | LV trip on power recovery from a momentary power failure（ $\mathrm{F} 14=1$ ） |  |
|  |  |  |  | 4 to 5 | For investigation by manufacturer |  |
| $\pi \pi^{6}$ | NTC wire break error | － | － | 0 | － | 6－20 |
| Bii i | Instantaneous overcurrent | － | Y | $\begin{gathered} 1 \text { to } 13 \\ 5001 \end{gathered}$ | For investigation by manufacturer | 6－21 |
| （17） |  |  |  |  |  |  |
| 817） |  |  |  |  |  |  |
| 加 | Cooling fin overheat | Y | Y | 1 to 14 | For investigation by manufacturer | 6－22 |
| ロHE＇ | External alarm | Y | － | 0 | － | 6－22 |
| ロ173 | Inverter internal overheat | Y | Y | 0 | Internal air overheat | 6－22 |
|  |  |  |  | 1 | Charging resistor overheat |  |
|  |  |  |  | Other than above | For investigation by manufacturer |  |
| 18114 | Motor protection（PTC／NTC thermistor） | － | Y | 0 | － | 6－23 |
| 8146 | Charging resistor overheat | Y | Y | 0 | － | 6－23 |
| Bil i to 874 | Motor overload 1 to 4 | Y | Y | 0 | － | 6－24 |
| ［iil il | Inverter overload | － | Y | 1 | IGBT protection | 6－25 |
|  |  |  |  | 2 | Inverter overload |  |
|  |  |  |  | 10 | For investigation by manufacturer |  |
| $\mathrm{BIT}_{17}$ | Output phase－failure detection | － | － | 1－10 | For investigation by manufacturer | 6－26 |

Table 6.3-1 cont.

| Alarm code | Alarm code name | Warning selection possible | Retry | Alarm subcode | Alarm subcode name | Ref. <br> page |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 175 | Overspeed protection | - | - | 0 | - | 6-26 |
| [iti 1 | Overvoltage | - | Y | 1 to 12 | For investigation by manufacturer | 6-27 |
| (10io' |  |  |  |  |  |  |
| 17i) |  |  |  |  |  |  |
| PbF | Charger circuit error <br> (FRN0008G2S-2G/ <br> FRN0004G2■-4G or above) | - | - | 0 to 2 | For investigation by manufacturer | 6-27 |
| Fi, | PG wire break | - | - | 10 to 20 | For investigation by manufacturer | 6-28 |
| dit | Excessive positioning deviation | - | - | 0 | - | 6-28 |

Note) - All protective functions are automatically reset if the control power voltage drops to a level at which inverter control circuit operation can no longer be sustained.

- The protection stop condition can be canceled by pressing the keypad key, or turning between the $X$ (assigned to RST) and CM terminals OFF to ON. However, the reset operation will not be valid until the cause of the alarm has been eliminated.
- If multiple alarms have occurred, the reset operation will not be valid until the cause of all alarms has been eliminated. (The cause of uncleared alarms can be checked at the keypad.)
- When assigned to warnings, terminals [30A/B/C] do not work.


### 6.3.2 Causes, checks and measures of alarms

## [1] [Gito to User-defined alarm

Phenomenon: An alarm defined with customizable logic occurred.

| Possible cause | Check and measures |
| :--- | :--- |
| An error is displayed if the alarm <br> conditions defined by the user with <br> customizable logic are met. (This is <br> not an error at the inverter itself.) | Check the input/output status in accordance with the alarm conditions <br> set with customizable logic. |

## [2] Lín Current input terminals [C1], [C2] signal line break

Phenomenon: A current input signal line break occurred.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) Current input command wire break <br> [Subcodes: 1, 2, 3] | Check whether current is flowing to current input terminals [C1] and [C2]*. <br> Terminal [C1] wire break detection [Subcode: 1] <br> Terminal [C2]* wire break detection [Subcode: 2] <br> Terminal [C1], [C2]* wire break detection [Subcode: 3] <br> *: When equipped with OPC-AIO (option). |
| (2) The inverter was affected by strong electrical noise. | Check noise countermeasures (grounding condition, signal line and communication cable/main circuit wiring installation method, etc.) <br> $\rightarrow$ Enhance noise countermeasures. <br> $\rightarrow$ Keep the main circuit wiring and control circuit wiring as far apart as possible. |

## [3] Braking transistor broken

Phenomenon: Faulty operation of the braking transistor was detected.

| Possible cause | Check and measures |
| :--- | :--- |
| Braking resistor connection terminal <br> miswiring | Check whether the braking resistor has been correctly wired between <br> main circuit terminals $[\mathrm{P}+]$ and $[\mathrm{DB}]$. <br> Check whether the motor wiring has been mistakenly connected to <br> terminal [DB]. <br> $\rightarrow$ Ask for inverter repair to be carried out if wiring work has been <br> carried out incorrectly. |
| The braking transistor is broken. | Check whether resistance of the braking resistor is correct or there is a <br> misconnection of the resistor. <br> $\rightarrow \quad$ If there are no problems, ask for inverter repair to be carried out. |

## [4] Braking resistor overheat

Phenomenon: The electronic thermal protection for the braking resistor has been activated.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) Braking load is too heavy. <br> [Subcode: 0] | Reconsider the relationship between the braking load estimated and the real load. <br> $\rightarrow$ Lower the real braking load. <br> $\rightarrow$ Review the selection of the braking resistor and increase the braking capability. <br> Modification of related function codes data (F50, F51, and F52) may be also required. |
| (2) Specified deceleration time is too short. <br> [Subcode: 0] | Recalculate the deceleration torque and time needed for the load currently applied, based on a moment of inertia for the load and the deceleration time. <br> $\rightarrow$ Increase the deceleration time (function codes F08, E11, E13, E15, and H56). <br> $\rightarrow$ Review the selection of the braking resistor and increase the braking capability. <br> Modification of related function codes data (F50, F51, and F52) may be also required. |
| (3) Incorrect setting of function code data F50, F51, and F52. <br> [Subcode: 0] | Recheck the modes of the braking resistor. <br> If using a braking resistor (option) on a model (FRN0046G2S-2G/ <br> FRN0023G2■-4G or below) with built-in braking resistor, check whether the braking resistor electronic thermal overload relay setting been changed. <br> $\rightarrow$ Review data of function codes F50, F51, and F52, then modify them if required. |

Note
The inverter issues an overheat alarm of the braking resistor by monitoring the magnitude of the braking load, not by measuring its surface temperature.
When the braking resistor is used so frequently as to exceed the settings made by function codes F50, F51, and F52, therefore, the inverter issues an overheat alarm even if the surface temperature of the braking resistor does not rise. To obtain full performance of the braking resistor, configure function codes F50, F51, and F52 while actually measuring the surface temperature of the braking resistor.

## [5] ELFEN circuit failure

Phenomenon: Enable circuit state was diagnosed and a circuit failure was detected.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) Control terminal block board contact defect | Confirm that the control terminal block board has been firmly mounted in the inverter. <br> $\rightarrow$ Alarm is released by turning on again. |
| (2) Enable circuit logic failure | - Confirm that outputs from safety switch etc. are inputted by the same logic (High/High or Low/Low) with terminals [EN1] and [EN2]. <br> - Ensure that the 2 poles for the SW7 switch on the control board are both ON/ON or OFF/OFF. <br> $\rightarrow$ The alarm is cleared by pressing the key, or by turning the power OFF and ON again. |
| (3) A failure (single failure) of enable circuit (safety stop circuit) was detected. | If the circuit failure is not removable by the procedures above, the inverter is out of order. <br> $\rightarrow$ Contact your Fuji Electric representative. |

## [6] E[i. Customizable logic error

Phenomenon: A customizable logic setting error was detected.

| Possible cause | Check and measures |
| :---: | :--- |
| (1) Setting of the selection of |  |
| customizable logic operation |  |
| was changed during operation. | Check whether the selection (Function code U00) of customizable logic <br> operation is changed during operation. <br> $\rightarrow$ Do not change the selection of customizable logic operation during <br> operation to prevent a danger. |

## [7] EF Ground fault protection (FRN0032G2S-2G/FRN0018G2口-4G or above)

Phenomenon: Ground-fault current flowed from the inverter output terminals.

| Possible cause | Check and measures |
| :---: | :---: |
| (1)Ground faults have occurred at <br> the inverter output terminals. | • Disconnect the wiring from the output terminals $(\mathrm{U}, \mathrm{V}$, and W$)$ and <br> perform a Megger test. |

$\rightarrow$ Remove the grounded parts (including replacement of the wires, relay terminals and motor).

- If ground fault protection is displayed when the inverter is run with the wiring disconnected from the inverter output terminals ( $\mathrm{U}, \mathrm{V}$, and W ).
$\rightarrow$ The inverter may be faulty. Contact your Fuji Electric representative.
Note The purpose of this ground fault protection is to protect the inverter. If used to prevent accidents involving the human body, or to prevent fire, connect a separate earth leakage protective relay or earth leakage circuit breaker.


## [8] Er ; Memory error

Phenomenon: Error occurred in writing the data to the memory in the inverter.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) When writing data (especially initializing or copying data), the inverter was shut down so that the voltage to the control PCB has dropped. | Initialize data by data initialization (H03), and check whether an alarm can be released by key after finishing the initialization. <br> $\rightarrow$ Revert the initialized function code data to their previous settings, then restart the operation. |
| (2) The inverter was affected by strong electrical noise when writing data (especially initializing). | Check if appropriate noise control measures have been implemented (e.g., correct grounding and routing of control and main circuit wires). Also, perform the same check as described in (1) above. <br> Implement noise control measures. Revert the initialized function code data to their previous settings, then restart the operation. |
| (3) The control PCB failed. | Initialize data by data initialization (H03), and check whether an alarm continues even when the release of the alarm is attempted by after finishing the initialization. <br> $\rightarrow$ The control PCB (on which the CPU is mounted) is defective. Contact your Fuji Electric representative. |
| (4) The power was cut and the control power supply dropped while saving user setting values with function code H 193 . | Save the user setting values with function code H193, and confirm whether the alarm persists even after canceling the alarm with the key when saving is complete. <br> $\rightarrow$ The control PCB (on which the CPU is mounted) is defective. Contact your Fuji Electric representative. |
| (5) The inverter was affected by external noise while saving user setting values with function code H193. | Check if appropriate noise control measures have been implemented (e.g., correct grounding and routing of control and main circuit wires). Also, perform the same check as described in (4) above. <br> The control PCB (on which the CPU is mounted) is defective. Contact your Fuji Electric representative. |

## ［9］ErごKeypad communication error

Phenomenon：A communication error occurred between the keypad and the inverter．

| Possible cause | Check and measures | | |
|---|---|---|---|
| （1）Broken communication cable or |  |
| poor contact． |  | | Check continuity of the cable，contacts and connections． |
| :--- |
| $\rightarrow \quad$ Re－insert the connector firmly． |
| $\rightarrow$ Replace the cable． |

## ［10］Erラ CPU error

Phenomenon：A CPU error（e．g．erratic CPU operation）occurred．

| Possible cause | Check and measures |
| :---: | :--- |
| （1）The inverter was affected by | Check noise countermeasures（grounding condition，signal line and |
| strong electrical noise． | communication cable／main circuit wiring installation method，etc．） |

## ［11］ErサOption communication error

Phenomenon：A communication error occurred between the option card and the inverter．

| Possible cause | Check and measures | | |
|---|---|---|---|
| （1）There was a problem with the |  |
| connection between the option |  |
| card and the inverter． |  | | Check whether the connector on the option card is properly engaged |
| :--- |
| with that of the inverter． |
| $\rightarrow$ Reload the option card into the inverter． |

## ［12］Erfoption error

An error detected by the option card．
Refer to the instruction manual of the option card for details．

## [13] Er白Operation error

Phenomenon: An incorrect operation was attempted.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) stop key was pressed when the key is effective (function code H96=1, 3). <br> [Subcode: 1] | Check whether the srop key was pressed in a state that a run command is inputted via terminal block or communication. <br> $\rightarrow$ If this was not intended, check the setting of function code H96. |
| (2) The start check function was activated when function code $\mathrm{H} 96=2$ or 3. <br> [Subcode: 2 to 6] | Check that any of the following operations has been performed with a run command being entered. <br> - Power on <br> - Release of alarm <br> - Switching to link operation command <br> $\rightarrow$ Review the sequence, etc. to avoid input of a run command when this error occurs. <br> If this was not intended, check the setting of function code H96. Turn the run command OFF before releasing the alarm. |
| (3) The forced stop (digital input terminal) STOP was turned OFF. <br> [Subcode: 1] | Check that the forced stop STOP is turned off. <br> $\rightarrow$ If this was not intended, check the settings of function codes E01 to E09 for terminals [X1] to [X9]. |
| (4) Brake check signal BRKE and brake signal BRKS mismatch <br> [Subcode: 8] | Check whether the signal input to the $X$ terminal to which the brake check signal BRKE is assigned matches the brake signal BRKS output from the $Y$ terminal. <br> - Check for a signal line break. <br> - Check whether the logic is correct. <br> - If there is an operation delay, check the function code H 180 (brake signal) time. |

## [14] Er7 Tuning error

Phenomenon: Auto-tuning failed.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) A phase was missing in the connection between the inverter and the motor. | $\rightarrow$ Properly connect the motor to the inverter. |
| (2) V/f or the rated current of the motor was not properly set. | Check whether the data of function codes (F04*, F05*, H50, H51, H52, H53, H65, H66, P02*, P03*) agree with the motor modes. |
| (3) The wiring length between the inverter and the motor was too long. | Check whether the wiring length between the inverter and the motor exceeds $50 \mathrm{~m}(164 \mathrm{ft})$. Inverters with a small capacity are greatly affected by the wiring length. <br> $\rightarrow$ Review, and if necessary, change the layout of the inverter and the motor to shorten the connection wire. Alternatively, minimize the wiring length without changing the layout. <br> $\rightarrow$ Disable both auto-tuning and auto-torque boost (set data of function code F37* to "1"). |
| (4) The rated capacity of the motor was significantly different from that of the inverter. | Check whether the rated capacity of the motor is three or more ranks lower, or two or more ranks higher than that of the inverter. <br> $\rightarrow$ Replace the inverter with one with an appropriate capacity. <br> $\rightarrow$ Set motor constants (function codes P06*, P07*, P08*) manually. <br> $\rightarrow$ Disable both auto-tuning and auto-torque boost (set data of function code F37* to " 1 "). |
| (5) The motor was a special type such as a high-speed motor. | $\rightarrow$ Disable both auto-tuning and auto-torque boost (set data of function code F37* to "1"). |
| (6) Tuning (function code $\mathrm{P} 04^{*}=2$ ) operation was performed of rotating a motor in a state that brake is applied to the motor. | $\rightarrow$ Specify the tuning that does not involve the motor rotation (function code P04* = 1). <br> Perform the tuning (function code $\mathrm{P} 04^{*}=2$ ) with the motor brake released. |

The explanations for function codes with an asterisk (*) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [15] E-GRS-485 communication error (Communication port 1)/ $E-F$ RS-485 communication error (Communication port 2)

Phenomenon: A communication error occurred during RS-485 communication.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) Communication conditions of the inverter do not match that of the host equipment. | Compare the settings of the function codes (y01 to $\mathrm{y} 10, \mathrm{y} 11$ to y 20 ) with those of the host equipment. <br> $\rightarrow$ Correct any settings that differ. |
| (2) Even though no-response error detection time (functoin codes $y 08, y 18)$ has been set, communication is not performed within the specified cycle. | Check the host equipment. <br> $\rightarrow$ Change the settings of host equipment software or disable the no-response error detection (function codes y08, y18 = 0). |
| (3) The host equipment did not operate due to defective software, settings, or defective hardware. | Check the host equipment (e.g., PLCs and personal computers). <br> $\rightarrow$ Remove the cause of the equipment error. |
| (4) The RS-485 converter did not operate due to incorrect connections and settings, or defective hardware. | Check the RS-485 converter (e.g., check for poor contact). <br> $\rightarrow$ Change the various RS-485 converter settings, reconnect the wires, or replace hardware with recommended devices as appropriate. |
| (5) Broken communication cable or poor contact. | Check the continuity of the cables, contacts and connections. <br> $\rightarrow$ Replace the cable. |
| (6) The inverter was affected by strong electrical noise. | Check if appropriate noise control measures have been implemented (e.g., correct grounding and routing of communication cables and main circuit wires). <br> $\rightarrow$ Take noise countermeasures. <br> $\rightarrow$ Take noise reduction measures at the host side. <br> $\rightarrow$ Replace the RS-485 converter with a recommended insulated one. |
| (7) Terminating resistor is not properly configured. | Check that the inverter serves as a terminating device in the network. <br> $\rightarrow$ Set terminal resistor select switches for RS-485 communication (SW3/SW2) correctly. <br> In other words, turn the switch(es) to ON if required. |

## [16] Era Step-out detection/detection failure of magnetic pole position at startup

Phenomenon: Synchronous motor step-out was detected. The magnetic pole position at startup failed to be detected.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) Function code settings do not agree with the motor characteristics. | Check whether function codes F04*, F05*, P01*, P02*, P03*, P60*, P61*, P62*, P63*, P64* agree with the motor constants. <br> $\rightarrow$ Perform auto-tuning. |
| (2) Magnetic pole position detection method is not appropriate. | Confirm that the magnetic pole position detection mode matches the motor type. <br> $\rightarrow$ Match the magnetic pole position detection mode selection (function code P30*) to the motor type. |
| (3) Starting frequency (continuation time) (function code F24) is insufficient. | Check whether a starting frequency (continuation time) (function code F24*) is set optimally, after setting the magnetic pole position detection mode selection (function code P30*) to " 0 " or " 3 ." <br> $\rightarrow$ Set a period of time during which motor can rotate by one or more revolutions. <br> F24* $\geq$ P01*/2/F23* (P01*: Number of poles, F23*: Starting frequency) |
| (4) Starting torque is insufficient. | Check the data of acceleration times (function codes F07, E10, E12, E14) and a current command value on a start (function code P74*). <br> $\rightarrow$ Change the acceleration time to match the load. <br> $\rightarrow$ Increase the current command value at startup. <br> $\rightarrow$ Increase the control switching level (function code P89) setting. |
| (5) Load is small. | Check the data of a reference current at starting (function code P74*). <br> Decrease the reference current at starting. <br> Set it to $80 \%$ or lower when running a motor single unit in a test run etc. |
| (6) A phase was missing in the connection between the inverter and the motor. | $\rightarrow$ Properly connect the motor to the inverter. |

The explanations for function codes with an asterisk (*) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [17] Erí Magnetic pole position detection error

Phenomenon: When performing vector control with sensor (synchronous motors), an error occurred when performing synchronous motor magnetic pole position detection.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) The inverter settings are not appropriate. | Check whether the motor being used, the existence and type of the speed/magnetic pole position sensor, the control method (F42*) and feedback pulse input method (d14), and the feedback pulse count (d15) are consistent. <br> $\rightarrow$ Check the machine configuration (motor speed/magnetic pole position sensor type and specifications), and set F42*, d14, and d15 correctly. <br> Ensure that the magnetic pole position detection method selection (P30*) has been set to either " 0 " or " 3 ", and that the magnetic pole position sensor offset (P95*) is not "999 (offset not adjusted)". <br> $\rightarrow$ Set P95* correctly. (Auto tuning is also possible. <br> 1 See "4.7.2 [3] Synchronous motor tuning method".) |
| (2) There is a problem with the speed/magnetic pole position sensor connection. | Check for speed/magnetic pole position sensor output wiring contact defects, and check the AB phase or UVW phase sequence. <br> $\rightarrow$ Connect the feedback input option card and speed/magnetic pole |
| (3) The motor rotation direction and sensor output do not match. | position sensor correctly. <br> Check for motor wiring contact defects, and check the phase sequence. <br> $\rightarrow$ Connect the motor correctly to the inverter. |
| (4) There is a problem with the option card connection. | Check whether the connector on the option card is properly engaged with that of the inverter. <br> $\rightarrow$ Reinsert the option card into the inverter. |
| (5) The inverter was affected by strong electrical noise. | Check noise countermeasures (grounding condition, signal line and communication cable/main circuit wiring installation method, etc.) <br> $\rightarrow$ Take noise countermeasures. |

The explanations for function codes with an asterisk ( ${ }^{*}$ ) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [18] E-E Speed inconsistency / Excessive speed deviation

Phenomenon: An excessive deviation appears between the speed command and the detected speed.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) Incorrect setting of function code data. | Check the motor parameter "Number of poles" (P01*). <br> $\rightarrow$ Specify the P01* data in accordance with the motor to be used. |
| (2) Overload | Measure the inverter output current. <br> $\rightarrow$ Reduce the load. |
|  | Check whether any mechanical brake is applied. <br> $\rightarrow$ Release the mechanical brake. |
| (3) The motor speed does not increase due to the current limiter operation. | Check the data of function code F44 (Current limiter (Level)). <br> $\rightarrow$ Change the F44 data correctly. Or, set the F43 data to "0" (Disable) if the current limiter operation is not needed. |
|  | Check the data of the function codes (F04*, F05*, P01*-P12*) to see if $\mathrm{V} / \mathrm{f}$ is set correctly. <br> $\rightarrow$ Match the V/f pattern setting with the motor ratings. <br> $\rightarrow$ Change the function code data in accordance with the motor parameters. |
| (4) Function code settings do not match the motor characteristics. | Confirm that P01*, P02*, P03*, P06*, P07*, P08*, P09*, P10*, P12* match the motor constants. <br> $\rightarrow$ Perform auto-tuning of the inverter, using the function code P04*. |
| (5) Wiring to the motor is incorrect. | Check the wiring to the motor. <br> $\rightarrow$ Connect the inverter output terminals $\mathrm{U}, \mathrm{V}$, and W to the motor input terminals $\mathrm{U}, \mathrm{V}$, and W , respectively. |
| (6) The motor speed does not increase due to the torque limiter operation. | Check the data of F40 (Torque limiter (Level)). <br> $\rightarrow$ Change the F40 data correctly. Or, set the F40 data to " 999 " (Disable) if the torque limiter operation is not needed. |
| (7) The wire between the pulse generator (PG) and the option card is broken or incorrect. | Check whether the pulse generator (PG) is correctly connected to the option card or any wire is broken. <br> $\rightarrow$ Check whether the PG is connected correctly. Or, tighten the related terminal screws. <br> $\rightarrow$ Check whether any contact part bites the wire sheath. <br> $\rightarrow$ Replace the wiring. |

The explanations for function codes with an asterisk ( ${ }^{*}$ ) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [19] Erf Data saving error during undervoltage

Phenomenon: The inverter failed to save data such as the frequency commands and PID commands (which are specified through the keypad), or the output frequencies modified by the UP/DOWN signal commands when the power was turned OFF.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) During data saving performed when the power was turned OFF, the voltage fed to the control PCB dropped in an abnormally short period due to the rapid discharge of the DC intermediate circuit. | Check how long it takes for the DC intermediate circuit voltage to drop to the preset voltage when the power is turned OFF. <br> $\rightarrow$ Remove whatever is causing the rapid discharge of the DC intermediate circuit voltage. After pressing the key and releasing the alarm, return the data of the relevant function codes (such as the frequency commands and PID commands (specified with the keypad) or the output frequencies modified by the UP/DOWN signal commands) back to the original values and then restart the operation. |
| (2) The inverter operation was affected by strong electrical noise during data saving performed when the power was turned OFF. | Check if appropriate noise control measures have been implemented (e.g., correct grounding and routing of control and main circuit wires). <br> Take noise countermeasures. After pressing the key and releasing the alarm, return the data of the relevant function codes (such as the frequency commands and PID commands (specified with the keypad) or the output frequencies modified by the UP/DOWN signal commands) back to the original values and then restart the operation. |
| (3) The control circuit failed. | Check if $G$ に $\mathscr{F}^{\circ}$ occurs each time the power is turned ON. <br> $\rightarrow$ The control PCB (on which the CPU is mounted) is defective. Contact your Fuji Electric representative. |

## [20] Eril Hardware error

Phenomenon: The combination between PCBs is abnormal.

| Possible cause | Check and measures | | |
|---|---|---|---|
| (1) Control PCB and power supply |  |
| PCB combination abnormality |  |$\quad$| It is necessary to replace the control PCB or power supply PCB. |
| :--- |
| $\rightarrow$ Contact your Fuji Electric representative. |

## [21] Era Positioning control error

Phenomenon: Excessive position deviation occurred on servo lock / position control.

| Possible cause | Check and measures | | |
|---|---|---|---|
| (1) Insufficient gain in positioning |  |
| control system (servo lock) |  |$\quad$| Readjust the settings of J97 (Servo lock (Gain)) and d03 (Speed control |
| :--- |
| 1 P (Gain)). |

## [22] Err Simulated failure

Phenomenon: The LED displays the alarmEr.

| Possible cause | Check and measures |
| :---: | :---: |
|  pressed for five seconds or longer. | $\rightarrow$ To escape from this alarm state, press the key. |
| (2) Set function code H 45 (simulation fault) to " 1 ". |  |

## [23] FiS Blown fuse

Phenomenon: The fuse inside the inverter is blown.

| Possible cause | Check and measures |
| :---: | :--- |
| (1) The fuse blew due to shorting of | Check whether excessive external surge or noise has occurred. |
| the inverter internal circuits. | $\rightarrow$ Take surge and noise countermeasures. |
|  | $\rightarrow$ Consult your Fuji Electric representative for repair. |

## [24] FGiL DC fan lock

Phenomenon: An inverter internal DC fan lock was detected.

| Possible cause | Check and measures |
| :--- | :--- |
| (1) Inverter internal cooling fan | Failure of the air circulation fan inside the inverter |
| error | (FRN0215G2S-2G/FRN0180G2■-4G or above) |
|  | $\rightarrow$ Replace the cooling fan. |

## [25] Lin Input phase loss

Phenomenon: Input phase loss occurred, or interphase voltage unbalance rate was large.

| Possible cause | Check and measures |
| :--- | :--- |
| (1) Breaks in wiring to the main <br> power input terminals. | Measure the input voltage. <br> $\rightarrow \quad$Repair or replace the main circuit power input wires or input devices <br> (MCCB, MC, etc.). <br> (2) The screws on the main power <br> input terminals are loosely <br> tightened.Check if the screws on the main power input terminals have become <br> loose. <br> $\rightarrow$ Tighten the terminal screws to the recommended torque. |
| (3) Interphase voltage unbalanceamong three phases was too <br> large. | Measure the input voltage. <br> $\rightarrow \quad$ Connect an AC reactor (ACR) to lower the voltage unbalance <br> between input phases. |
| (4) Overload cyclically occurred. | Measure the ripple wave of the DC intermediate circuit voltage. <br> $\rightarrow$ If the ripple is large, increase the inverter capacity. |
| (5) Single-phase voltage was input |  |
| to the three-phase input <br> inverter. | Check the inverter type. <br> $\rightarrow$ Apply three-phase power. |

The purpose of this function is to protect the inverter. Even with open phase input, if the motor load is light, the motor may continue to run without being detected.

The input phase loss protection can be disabled with the function code H 98 .

## [26] Lロ! Password protection

Phenomenon: The wrong user password was entered more than the prescribed number of times.

| Possible cause | Check and measures |
| :---: | :--- |
| Phenomenon: User password 1 or 2 | Clear the alarm. |
| was entered incorrectly more | $\rightarrow$ Turn OFF the inverter power, and then turn it back ON again. |
| than the prescribed number of |  |
| times. | If you have forgotten your password: <br>  Contact the distributer or machine set manufacturer. |

## [ 27] í il Undervoltage

Phenomenon: DC intermediate circuit voltage has dropped below the undervoltage detection level.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) A momentary power failure occurred. <br> [Subcode: 1] <br> [Subcode: 3] | $\rightarrow$ Release the alarm. <br> $\rightarrow$ If you want to restart running the motor without treating this condition as an alarm, set F14 to " 3 ," " 4 ," or " 5 ," depending on the load type. |
| (2) The power to the inverter was switched back to ON too soon ( when F14 = 1). <br> [Subcode: 2] | Check if the power to the inverter was switched back to ON while the control power was still alive. Check whether the LEDs on the keypad are lit. <br> Turn the power ON again after all LEDs on the keypad turn OFF. |
| (3) The power supply voltage did not reach the inverter's type correct range. | Measure the input voltage. <br> $\rightarrow$ Increase the voltage to within the specified range. |
| (4) Peripheral equipment for the power circuit malfunctioned, or the connection was incorrect. | Measure the input voltage to find which peripheral equipment malfunctioned or which connection is incorrect. <br> $\rightarrow$ Replace any faulty peripheral equipment, or correct any incorrect connections. |
| (5) Any other loads connected to the same power supply has required a large starting current, causing a temporary voltage drop. | Measure the input voltage and check the voltage fluctuation. <br> $\rightarrow$ Reconsider the power supply system configuration. |
| (6) Inverter's inrush current caused the power voltage drop because the power supply transformer capacity was insufficient. | Check if the alarm occurs when a molded case circuit breaker (MCCB), earth leakage circuit breaker (ELCB) (with overcurrent protection) or magnetic contactor (MC) is turned ON. <br> Reconsider the capacity of the power supply transformer. |

## [28] $\pi \pi^{\circ}$ NTC wire break error

Phenomenon: A wire break was detected on the NTC thermistor detection circuit.

| Possible cause | Check and measures |
| :---: | :--- |
| (1) The motor thermistor cable is <br> broken. | Check whether the motor cable is broken. <br> $\rightarrow$ Replace the cable. |
| (2) The motor ambient temperature <br> is low $\left(-30^{\circ} \mathrm{C}\left(-22^{\circ} \mathrm{F}\right)\right.$ or below $)$. | Measure the surrounding temperature. <br> $\rightarrow$ Review the operating environment. |
| (3) The motor thermistor is <br> damaged. | Measure the motor thermistor resistance. <br> $\rightarrow$ Replace the motor. |

## [29] Min Instantaneous overcurrent

Phenomenon: The inverter momentary output current exceeded the overcurrent level.
[17) 1 Overcurrent occurred during acceleration.
Ol
[7] Overcurrent occurred immediately after starting operation, or during running at constant speed.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) The inverter output lines were short-circuited. | Disconnect the wiring from the inverter output terminals ( $\mathrm{U}, \mathrm{V}$ and W ) and measure the interphase resistance of the motor wiring. Check if the resistance is too low. <br> $\rightarrow$ Remove the short-circuited part (including replacement of the wires, relay terminals and motor). <br> If overcurrent is displayed when the inverter is run with the wiring disconnected from the inverter output terminals ( $\mathrm{U}, \mathrm{V}$, and W ). <br> $\rightarrow$ The inverter may be faulty. Contact your Fuji Electric representative. |
| (2) Ground faults have occurred at the inverter output lines. | Disconnect the wiring from the output terminals ( $\mathrm{U}, \mathrm{V}$, and W ) and perform a Megger test. <br> $\rightarrow$ Remove the grounded parts (including replacement of the wires, relay terminals and motor). <br> If overcurrent is displayed when the inverter is run with the wiring disconnected from the inverter output terminals ( $\mathrm{U}, \mathrm{V}$, and W ). <br> $\rightarrow$ The inverter may be faulty. Contact your Fuji Electric representative. |
| (3) Overload | Measure the motor current with a measuring device to trace the current trend. Then, use this data to judge if the trend is over the calculated load value for your system design. <br> $\rightarrow$ If the load is too heavy, reduce it or increase the inverter capacity. |
|  | Trace the current trend and check if there are any sudden changes in the current. <br> $\rightarrow$ If there are any sudden changes, make the load fluctuation smaller or increase the inverter capacity. <br> $\rightarrow$ Enable instantaneous overcurrent limiting (H12 = 1). |
| (4) Excessive torque boost specified. The manual torque boost is set if $\mathrm{F} 37^{*}=0,1,3$, or 4. | Check whether decreasing the torque boost (F09*) decreases the output current but does not stall the motor. <br> If no stall occurs, decrease the torque boost (F09*). |
| (5) The specified acceleration/ deceleration time was too short. | Check that the motor generates enough torque required during acceleration/deceleration. That torque is calculated from the moment of inertia of the load and the acceleration/deceleration times. <br> $\rightarrow$ Increase the acceleration/deceleration times (F07, F08, E10 through E15, and H56). <br> $\rightarrow$ Enable the current limiter (F43) and torque limiter (F40, F41, E16, and E17). <br> $\rightarrow$ Increase the inverter capacity. |
| (6) Built-in braking transistor short circuit detection activates: <br> (FRN0003G2S-2G to FRN0288G2S-2G) (FRN0002G2■-4G to FRN0180G2■-4G) | Check whether the braking resistor connection terminals ( $\mathrm{P}+\mathrm{DB}$ ) have shorted. <br> Check whether the resistance of the connected braking resistance is excessively low. <br> $\rightarrow$ Connect an appropriate braking resistor. |
| (7) Malfunction caused by noise. | Check if appropriate noise control measures have been implemented (e.g., correct grounding and routing of control and main circuit wires). <br> $\rightarrow$ Take noise countermeasures. For details, refer to Appendix A. <br> $\rightarrow$ Enable the retry function (H04). <br> $\rightarrow$ Connect a surge absorber to magnetic contactor's coils or other solenoids (if any) causing noise. |

DD The explanations for function codes with an asterisk (*) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [30] [ilif ; Cooling fin overheat

Phenomenon: Temperature around heat sink has risen abnormally.

| Possible cause | Check and measures |
| :--- | :--- |
| (1) The surrounding temperature <br> exceeded the inverter's mode <br> limit. | Measure the surrounding temperature. <br> $\rightarrow$ Lower the temperature (e.g., ventilate the panel where the inverter <br> is mounted). |
| (2) Ventilation paths are blocked. | Check if there is sufficient clearance around the inverter. <br> $\rightarrow$ Change the mounting place to ensure the clearance. |
|  |  |
|  | $\rightarrow$ Clean the fins. |

## [31] R17) External alarm

Phenomenon: External alarm was inputted THR.
(when the "Enable external alarm" signal $T H R$ has been assigned to any of digital input terminals)

| Possible cause | Check and measures |
| :---: | :---: |
| (1) An alarm function of external equipment was activated. | Check the operation of external equipment. <br> $\rightarrow$ Remove the cause of the alarm that occurred. |
| (2) Wrong connection or poor contact in external alarm signal wiring. | Check if the external alarm signal wiring is correctly connected to the terminal to which the "external alarm" has been assigned (Any of E01 to E09, E98, and E99 should be set to " 9 ."). <br> Connect the external alarm signal wire correctly. |
| (3) Incorrect setting of function code data. | Check whether an "external alarm" is assigned to a terminal not used yet among E01 to E09, E98, E99. <br> $\rightarrow$ Correct the assignment. |
|  | Check whether the logic of THR set up at E01 to E09, E98, E99 agrees with that (positive/negative) of external signals. <br> $\rightarrow$ Set the logic correctly. |

## [32] [714 Inverter internal overheat

Phenomenon: Temperature inside the inverter has exceeded the allowable limit.

| Possible cause | Check and measures |
| :--- | :--- |
| (1) The surrounding temperature |  |
| exceeded the inverter's mode <br> limit. | Measure the surrounding temperature. <br> $\rightarrow \quad$Lower the temperature around the inverter (e.g., ventilate the panel <br> where the inverter is mounted). <br> [Subcode: 0] |

## [33]

Phenomenon: Temperature of the motor has risen abnormally.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) The temperature around the motor exceeded the motor's mode range. | Measure the surrounding temperature. <br> $\rightarrow$ Lower the temperature around the motor. |
| (2) Cooling system for the motor is defective. | Check if the cooling system of the motor is operating normally. <br> $\rightarrow$ Repair or replace the cooling system of the motor. |
| (3) Overload | Measure the inverter output current. <br> $\rightarrow$ Reduce the load (e.g., Use the overload early warning (E34) and reduce the load before the overload protection is activated.) In winter, the load tends to increase. <br> $\rightarrow$ Lower the temperature around the motor. <br> $\rightarrow$ Increase the Carrier frequency (function code F26). |
| (4) The activation level ( $\mathrm{H} 27^{*}$ ) of the PTC thermistor for motor overheat protection was set inadequately. | Check the PTC thermistor modes and recalculate the detection voltage. <br> $\rightarrow$ Modify the data of function code $\mathrm{H} 27^{*}$. |
| (5) The setting of the PTC/NTC thermistor is not adequate. | Check thermistor Mode selection (H26*) and the select switches (SW5) of terminal [V2]. <br> $\rightarrow$ Set an appropriate value for $\mathrm{H} 26^{*}$ for the thermistor being used, and set SW5 to the PTC/NTC side. |
| (6) Excessive torque boost specified (F09*) | Check whether decreasing the torque boost ( $\mathrm{F} 09^{*}$ ) does not stall the motor. <br> $\rightarrow$ If no stall occurs, decrease the F09* data. |
| (7) The V/f pattern did not match the motor. | Check if the base frequency (F04*) and the rated voltage at base frequency (F05*) match the rated values on the motor's nameplate. <br> $\rightarrow$ Match the function code data with the values on the motor's nameplate. |
| (8) Incorrect setting of function code data. | Although PTC/NTC thermistor is not used, the thermistor Mode selection (H26*) is set to the operation state. <br> Set the H26* data to "0" (Disable). |

The explanations for function codes with an asterisk ( ${ }^{*}$ ) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [ 34 ] 际 14 Charging resistor overheat

Phenomenon: Temperature of the charging resistor inside the inverter has risen abnormally.

| Possible cause | Check and measures |
| :--- | :--- |
| (1) The inverter power is turned ON | Suppress the inverter power ON/OFF cycles. <br> and OFF frequently. |
| (2) The inverter power is not turned | Check that this alarm always occurs when the inverter power is turned <br> ON and OFF frequently. |
|  | ON. <br> $\rightarrow \quad$ The charging circuit of the inverter is faulty. Consult your Fuji <br> Electric representative for repair. |

## [35] Mill Motor overloads 1 to 4

Phenomenon: Electronic thermal function for motor overload detection of motors 1-4 worked.
iif Motor 1 overload
Til $\mathrm{Z}^{2}$ Motor 2 overload
ifil Motor 3 overload
ifil 4 Motor 4 overload

| Possible cause | Check and measures |
| :--- | :--- |
| (1) The electronic thermal <br> characteristics do not match the <br> motor overload characteristics. | Check the motor characteristics. <br> $\rightarrow$ Review the data of related function codes P99*, F10*, F12*. <br> $\rightarrow$ Use an external thermal relay. |
| (2) Activation level for the <br> electronic thermal protection <br> was inadequate. | Check the continuous allowable current of the motor. <br> $\rightarrow$ Reconsider and change the data of function code F11*. |
| (3) The specified acceleration/ |  |
| deceleration time was too short. | Recalculate the acceleration/deceleration torque and time needed for <br> the load, based on the moment of inertia of the load and the <br> acceleration/deceleration times. <br> $\rightarrow \quad$ Increase the acceleration/deceleration times (F07, F08, E10 to E15, <br> and H56). |
| (4) Overload | Measure the inverter output current. <br> $\rightarrow \quad$Reduce the load (e.g., Use the overload early warning (E34) and <br> reduce the load before the overload protection is activated.) In <br> winter, the load tends to increase. <br> (5) Excessive torque boost <br> specified (F09*)Check whether decreasing the torque boost (F09*) does not stall the <br> motor. <br> $\rightarrow \quad$ If no stall occurs, decrease the F09* data. |

The explanations for function codes with an asterisk ( ${ }^{*}$ ) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## ［ 36 ］III il Inverter overload

Phenomenon：Temperature inside inverter has risen abnormally．

| Possible cause | Check and measures |
| :---: | :---: |
| （1）The surrounding temperature exceeded the inverter＇s mode limit． | Measure the surrounding temperature． <br> $\rightarrow$ Lower the temperature（e．g．，ventilate the panel where the inverter is mounted）． |
| （2）Excessive torque boost specified（F09＊） | Check whether decreasing the torque boost（F09＊）does not stall the motor． <br> $\rightarrow$ If no stall occurs，decrease the F09＊data． |
| （3）The specified acceleration／ deceleration time was too short． | Recalculate the acceleration／deceleration torque and time needed for the load，based on the moment of inertia of the load and the acceleration／deceleration times． <br> $\rightarrow$ Increase the acceleration／deceleration times（F07，F08，E10 to E15， and H56）． |
| （4）Overload | Measure the inverter output current． <br> $\rightarrow$ Reduce the load（e．g．Use the overload early warning（E34）and reduce the load before the overload protection is activated．）In winter，the load tends to increase． <br> $\rightarrow$ Decrease the Carrier frequency（function code F26）． <br> $\rightarrow$ Enable overload prevention control（H70）．。 |
| （5）Ventilation paths are blocked． | Check if there is sufficient clearance around the inverter． <br> $\rightarrow$ Change the mounting place to ensure the clearance． |
|  | Check if the fin is not clogged． <br> $\rightarrow$ Clean the fins． |
| （6）Cooling fan＇s airflow volume decreased due to the service life expired or failure． | Check the cumulative run time of the cooling fan．（See Chapter 3 ＂3．4．5 Reading maintenance information＂．） <br> $\rightarrow$ Replace the cooling fan． |
|  | Visually check that the cooling fan rotates normally． <br> $\rightarrow$ Replace the cooling fan． |
| （7）The wires to the motor are too long，causing a large leakage current from them． | Measure the leakage current． <br> Insert an output circuit filter（OFL）． |

DD The explanations for function codes with an asterisk（＊）are limited to motor 1 ．If using motor 2 to 4 ，replace with the relevant function codes in Chapter 5 ＂Table 5．3－21 Function codes to be switched＂．

## 

Phenomenon: Output phase loss occurred.

| Possible cause | Check and measures |
| :--- | :--- |
| $\begin{array}{l}\text { (1) Inverter output wires are } \\ \text { broken. }\end{array}$ | $\begin{array}{l}\text { Measure the inverter output current. } \\ \rightarrow \text { Replace the output wires. }\end{array}$ |
| (2) The motor winding is broken. | $\begin{array}{l}\text { Measure the inverter output current. } \\ \rightarrow \text { Replace the motor. }\end{array}$ |
| (3) The terminal screws for inverter |  |
| output were not tight enough. | $\begin{array}{l}\text { Check if any screws on the inverter output terminals have become } \\ \text { loose. } \\ \rightarrow \quad \text { Tighten the terminal screws to the recommended torque. }\end{array}$ |
| (4) A single-phase motor has been |  |
| connected. |  |\(\left.\quad \begin{array}{l}The inverter cannot be used. FRENIC-MEGA has been designed for <br>

driving three-phase induction motors and synchronous motors.\end{array}\right]\).

## [38] Overspeed protection

Phenomenon: Motor rotated at excessive speed (When motor speed $\geq$ (F03 x 1.2))

| Possible cause |  | Check and measures |
| :---: | :---: | :---: |
| (1) | Incorrect setting of function code data. | Check the motor parameter "Number of poles" (P01*). <br> $\rightarrow$ Specify the P01* data in accordance with the motor to be used. |
|  |  | Check the maximum frequency setting (F03*). <br> $\rightarrow$ Specify the F03* data in accordance with the output frequency. |
|  |  | Check the speed limiting function (d32, d33) setting. <br> $\rightarrow$ Disable the speed limiting function (d32, d33). |
|  |  | Check the overspeed detection level (d35) setting. <br> $\rightarrow$ Set the overspeed detection level (d35) to 120\%. |
| (2) | The speed regulator gain is insufficient. | Check whether the speed has overshot when performing high-speed operation. <br> $\rightarrow$ Increase the speed regulator gain ( $\mathrm{d} 03^{*}$ ). <br> (Depending on the situation, it may be necessary to change the filters or adjust the integral time.) |
| (3) | Noise is superimposed on the PG signal. | Check the PG signal input monitor, and check noise countermeasures (grounding condition, signal line/main circuit wiring installation method, etc.) <br> Take noise countermeasures. For details, refer to Appendix A. |
| (4) | The output frequency and motor rotation speed exceeded 599 Hz . | If running the motor near 599 Hz , check whether the acceleration time is too short, whether there are any load fluctuations. and whether the speed regulator gain ( $\mathrm{d} 03^{*}$ ) and integral time ( $\mathrm{d} 04^{*}$ ) are appropriate. <br> $\rightarrow$ Reduce the operating frequency. |

The explanations for function codes with an asterisk (*) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [39] 华in Overvoltage

Phenomenon: The DC intermediate circuit voltage was over the detection level of overvoltage.
[iti! ; Overvoltage occurred during acceleration.
[iiiie' Overvoltage occurred during deceleration.
[1iil Overvoltage occurred during running at constant speed.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) The power supply voltage exceeded the inverter's mode range. | Measure the input voltage. <br> $\rightarrow$ Decrease the voltage to within the specified range. <br> $\rightarrow$ If the power supply voltage is within the specification range, the inverter may be faulty. Contact your Fuji Electric representative. |
| (2) A surge current entered the input power supply. | In the same power line, if a phase-advancing capacitor is turned ON/OFF or a thyristor converter is activated, a surge (momentary large increase in the voltage or current) may be caused in the input power. <br> Install a DC reactor. |
| (3) The deceleration time was too short for the moment of inertia of the load. | Recalculate the deceleration torque based on the moment of inertia of the load and the deceleration time. <br> $\rightarrow$ Increase the deceleration time (F08, E11, E13, E15, and H56). <br> $\rightarrow$ Enable the anti-regenerative control (H69), or deceleration characteristics (H71). <br> $\rightarrow$ Set torque limit (F40, F41, E16, E17) to become effective. <br> $\rightarrow$ Set the rated voltage at base frequency ( $\mathrm{F} 05^{*}$ ) to " 0 " to improve the braking capability. <br> $\rightarrow$ Consider the use of a braking resistor. |
| (4) The acceleration time was too short. | Check if the overvoltage alarm occurs after rapid acceleration. <br> $\rightarrow$ Increase the acceleration time (F07, E10, E12, and E14). <br> $\rightarrow$ Select the Curve acceleration/ deceleration (H07). <br> $\rightarrow$ Consider the use of a braking resistor. |
| (5) Braking load is too heavy. | Compare the braking torque of the load with that of the inverter. <br> $\rightarrow$ Set the rated voltage at base frequency ( $\mathrm{F} 05^{*}$ ) to " 0 " to improve the braking capability. <br> $\rightarrow$ Consider the use of a braking resistor. |
| (6) A ground fault occurred at the output side. | If the motor runs normally with the wiring disconnected from the inverter output terminals (U, V, W). <br> $\rightarrow$ Check whether a ground fault has occurred at the output wiring or motor. <br> If overvoltage is displayed when the inverter is run with the wiring disconnected from the inverter output terminals ( $\mathrm{U}, \mathrm{V}$, and W ). <br> $\rightarrow$ The inverter may be faulty. Contact your Fuji Electric representative. |
| (7) Malfunction caused by noise. | Check if the DC intermediate circuit voltage was below the protective level when the overvoltage alarm occurred. <br> $\rightarrow$ Take noise countermeasures. For details, refer to Appendix A. <br> $\rightarrow$ Enable the retry function (H04). <br> $\rightarrow$ Connect a surge absorber to magnetic contactor's coils or other solenoids (if any) causing noise. |

The explanations for function codes with an asterisk (*) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [40] Par Charge circuit fault (FRN0008G2S-2G/FRN0004G2ロ-4G or above)

Phenomenon: The magnetic contactor for short-circuiting the charging resistor failed to work.

| Possible cause | Check and measures |
| :---: | :--- |
| (1) The charging circuit is faulty. | Inverter repair is necessary. <br> $\rightarrow$ Contact your Fuji Electric representative. |

## [41] Fís PG wire break

Phenomenon: The pulse generator (PG) wire has been broken somewhere in the circuit.

| Possible cause | Check and measures |
| :---: | :--- |
| (1) PG(Z phase) wire break under | Check whether the pulse generator (PG) is correctly connected to the <br> option card or any wire is broken. |
| master-follower operation. | $\rightarrow \quad$Check whether the PG is connected correctly. Or, tighten the related <br> terminal screws. |
|  | $\rightarrow$ Check whether the coating is trapped in the connecting part. |
|  | $\rightarrow$ Replace the wire(s). |

## [42] [ifill Excessive positioning deviation

Phenomenon: The position deviation during position control was excessive.

| Possible cause | Check and measures |
| :--- | :--- |
| (1) Encoder wire break | Check whether an encoder wire break has occurred. |
| (2) Encoder rotation direction (wiring <br> phase sequence), motor rotation <br> direction (inverter output wiring <br> phase sequence) mismatch | Connect and set so that all directions match. <br> Review the setting values for d14 to d17 and H190. |
| (3) The deviation overflow setting <br> value is too small. | Review the setting values for d223 and d224. <br> Increase the setting value if too small. |
| (4) The position control gain is too | Review the setting values for d203 and d204. <br> Increase the setting value if too small. |
| (5) The speed control gain is too | Review the setting values for d03 (A45, b45, r45). <br> small. |
| Increase the setting value if too small. |  |
| (6) Torque limiting has been applied. | If torque limiting is triggered, it will not be possible to perform position <br> control or speed control correctly. Take the following countermeasures <br> to prevent torque limiting being applied. |
|  | - Reduce the load. |
| - Review the acceleration/deceleration time. |  |
| - Review the machine configuration such as the reduction ratio and |  |
| motor capacity to reduce the load. |  |

## 6．4 If a Warning Code is Displayed

## 6．4．1 Warning code list

It is possible to display a warning cause code while the inverter continues to run，and output a warning signal from the $Y$ terminal．To display the warning，select with function codes H81，H82，or H83．（See Chapter 5 ＂FUNCTION CODES＂．）
If outputting warning signals from the $Y$ terminal，set $98 L-A L M$ for the function codes corresponding to E20 to E24．
Table 6．4－1 Warning code list

| Warning code | Warning name | Mode selection <br> Function code | Setting method | Ref． <br> page |
| :---: | :---: | :---: | :---: | :---: |
| Eni | Machine life（Number of startups） | $\begin{gathered} \hline \mathrm{H} 82 \\ \text { Bit } 13 \\ \hline \end{gathered}$ | Refer to Chapter 5 ＂FUNCTION CODES＂－ ＂5．3．5 H codes（High performance functions）＂． | － |
| ハ6 | IGBT lifetime alarm | H83 <br> Bit 13 |  |  |
| 115 | Lifetime alarm | $\begin{aligned} & \mathrm{H} 82 \\ & \text { Bit } 7 \end{aligned}$ |  |  |
| 171 | Cooling fin overheat early warning | $\begin{aligned} & \hline \text { H82 } \\ & \text { Bit } 6 \end{aligned}$ |  |  |
| 17. | Motor overload early warning | $\begin{aligned} & \mathrm{H} 82 \\ & \text { Bit } 5 \\ & \hline \end{aligned}$ |  |  |
| Pid | PID alarm output | $\begin{aligned} & \mathrm{H} 82 \\ & \mathrm{Bit} 9 \end{aligned}$ |  |  |
| $\mathrm{Pr}_{5}$ | PTC thermistor activated | H82 <br> Bit 11 |  |  |
| rif | Cooling capability drop | H83 <br> Bit 14 |  |  |
| ref | Reference loss | H82 <br> Bit 8 |  |  |
| rit | Machine life（Cumulative motor running hours） | $\begin{gathered} \hline \text { H82 } \\ \text { Bit } 12 \end{gathered}$ |  |  |
| ifit | Low torque detection | $\begin{gathered} \hline \text { H82 } \\ \text { Bit } 10 \\ \hline \end{gathered}$ |  |  |
| Lロロ | Low battery warning | H82 <br> Bit 15 |  |  |

## 6．4．2 Warning cause and check

## ［1］［＇ní Machine life（Number of startups）

| Possible cause | Check and measures |
| :--- | :--- |
| （1）Inverter life（Number of <br> startups） | This is displayed when the number of times that the motor is started <br> reaches the number of times set with function code H79（maintenance <br> setting startup count）． |
|  | Furthermore，the current startup count can be checked at function code <br> H44（startup count），and therefore the H44 data should be set to＂0000＂ <br> to reset the count． |

## ［2］風 IGBT lifetime alarm

| Possible cause | Check and measures |
| :---: | :--- |
| （1）IGBT power cycle life | The element temperature power cycle life for the main circuit <br> semiconductor IGBT due to frequent acceleration and deceleration <br> stoppages is estimated，and this is displayed before the design life is <br> reached． |

## ［3］ĹN Lifetime alarm

| Possible cause | Check and measures |
| :---: | :--- |
| （1）Lifetime alarm | It is judged that the service life of any one of the capacitors（DC link bus <br> capacitors or electrolytic capacitors on PCBs），the cooling fan，or the <br> IGBT has expired． <br> （Refer to＂7．4．1 Judgment on service life＂in Chapter 7，and check the <br> part service life status in the keypad maintenance information．） |

## [4] 保 Cooling fin overheat early warning

| Possible cause | Check and measures |
| :---: | :---: |
| (1) Cooling fin overheat early warning | This is displayed as a warning before cooling fin overheating trip 保i occurs. <br> Refer to "[ 30 ] Rifi ; Cooling fin overheat" for details on countermeasures. |

## [5] īii Motor overload early warning

| Possible cause | Check and measures |
| :---: | :---: |
| (1) Motor overload early warning | This is displayed as a warning before the motor overload ini i alarm occurs. Set the current at which this is triggered at overload warning operation level (E34). <br> Check whether the actual motor current is greater than the current set at E34. |

## [6] PID alarm output

| Possible cause | Check and measures |
| :--- | :--- |
| (1) PID alarm output | This is displayed if a PID control warning (absolute value warning, <br> deviation warning) occurs. Refer to Chapter 5 "FUNCTION CODES " - <br>  <br>  <br>  <br>  <br>  <br> 5.3 .8 J Codes (Applied functions)" (J11 to J13 PID Control (Select <br> warning output)). |

## [7]

| Possible cause | Check and measures |
| :--- | :--- |
| (1) Thermistor detection (PTC) | This warning is displayed when the temperature detected with the motor <br> PTC thermistor exceeds the operation level (H27) threshold value. Refer <br> to "[ 33 ] Lith'I Motor protection (PTC thermistor)" for details on <br> countermeasures. |

## [8] rifl Cooling capability drop

| Possible cause | Check and measures |
| :---: | :--- |
| (1) Cooling capability drop | Drops in cooling capability due to the clogging of cooling fins with dust, <br> etc., or drops in cooling fan air flow are detected and displayed. <br> Clean the cooling fins or replace the cooling fan as necessary. |

Depending on the usage conditions, cooling fin overheating protection ifili may occur first. By using cooling fin overheating early warning ${ }^{-7} 1 \mathrm{HI}$, an overheating early warning can be detected before cooling fin overheating protection inilio occurs.

## [9] rEF Reference loss

| Possible cause | Check and measures |
| :---: | :--- |
| (1) Command loss | If the analog frequency setting (terminals [12], [C1], [V2]) command <br> drops rapidly to $10 \%$ or lower, a wire break is determined, and " $-\Sigma \xi^{\prime}$ " is <br> displayed. Check the wiring. |

## [10] TIE Machine life (Cumulative motor running hours)

| Possible cause | Check and measures |
| :--- | :--- |
| (1) Inverter life (Cumulative run <br> time) | This is displayed when the motor cumulative running time reaches the <br> time set with function code H78 (maintenance setting time). The motor <br> cumulative running time can be checked at H94* (motor cumulative <br> running time). Furthermore, the time can be reset by setting the H94* <br> value to "0". |

## [11] ilil L L Low torque detection

| Possible cause | Check and measures |
| :---: | :--- |
| (1) Low torque detection | This is displayed when the output torque drops to the low torque <br> detection level (E80) or below, and persists for the timer (E81) time or <br> longer. |

## [12] Líl Low battery warnig (for Multi-function Keypad (TP-A2SW))

| Possible cause | Check and measures |
| :---: | :--- |
| (1) The TP-A2SW multi-function | - Check whether the trip history date and time information has been lost. |
| keypad (option) remaining |  |
| battery capacity is insufficient. | - Refer to the TP-A2SW multi-function keypad instruction manual, and <br> replace the battery (sold separately) and set the date and time <br> information again. |

### 6.5 Other Errors

### 6.5.1 Abnormal motor operation

## [ 1] The motor does not rotate

| Possible cause | Check and measures |
| :--- | :--- |
| (1) The main power supply is not <br> being input correctly. | Check the input voltage and interphase voltage unbalance. <br> Switch on the molded-case circuit breaker, an earth-leakage circuit <br> breaker (with overcurrent protective function) or a magnetic <br> contactor. |
|  | $\rightarrow$Check for voltage drop, phase loss, poor connections, or poor <br> contacts, and fix them if necessary. |


| Possible cause | Check and measures |
| :---: | :---: |
| （7）The reference frequency was below the starting or stop frequency． | Check that a reference frequency has been entered correctly，using Menu＂I／O Checking＂on the keypad． <br> $\rightarrow$ Set the reference frequency at the same or higher value than that of the starting and stop frequencies（F23＊and F25＊）． <br> $\rightarrow$ Reconsider the starting and stop frequencies（F23＊and F25＊），and if necessary，change them to lower values． <br> $\rightarrow$ Inspect the external frequency command potentiometers，signal converters，switches，and relay contacts．Replace any ones that are faulty． <br> $\rightarrow$ Connect external circuit wirings of terminals［13］，［12］，［11］，［C1］， and［V2］correctly． |
| （8）A frequency command with higher priority than the one attempted was active． | Based on the frequency setting block diagram（See Chapter 8 ＂BLOCK DIAGRAMS FOR CONTROL LOGIC＂），check the data by function code data check and I／O checking from Menu using the keypad． <br> $\rightarrow$ Correct any incorrect function code data（e．g．cancel the higher priority run command）． |
| （9）The upper and lower frequencies for the frequency limiters were set incorrectly． | Check the data of function codes F15（Frequency limiter（High））and F16（Frequency limiter（Low））． <br> $\rightarrow$ Change the settings of F15 and F16 to the correct ones． |
| （10）The coast－to－stop command was effective． | Check the data of the function codes（E01 to E09，E98，E99），and check the input state by using＂I／O Checking＂from the Menu on the keypad． <br> $\rightarrow$ Release the coast－to－stop command setting． <br>  entered． |
| （11）Broken wires，incorrect connection or poor contact with the motor． | Check the wiring（Measure the output current）． <br> $\rightarrow$ Repair the wires to the motor，or replace them． |
| （12）Overload | Measure the inverter output current． <br> $\rightarrow$ Reduce the load（In winter，the load tends to increase．） |
|  | Check whether any mechanical brake is applied． <br> $\rightarrow$ Release the mechanical brake． |
| （13）Torque generated by the motor was insufficient． | Check that the motor starts running if the value of the torque boost （F09＊）is increased． <br> Increase the value of torque boost（F09＊）． |
|  | Check the data of function codes（F04＊，F05＊，H50，H51，H52，H53， H65，and H66）． <br> $\rightarrow$ Change the V／f pattern to match the motor＇s characteristics． |
|  | Check that the motor switching signal（selecting motor 1－4）is correct and the data of function codes matches each motor． <br> $\rightarrow$ Correct the motor switching signal． <br> $\rightarrow$ Modify the function code data to match the connected motor． |
|  | Check whether the reference frequency is below the slip frequency of the motor． <br> $\rightarrow$ Change the reference frequency so that it becomes higher than the slip frequency of the motor． |
| （14）Wrong connection or poor contact of DC reactor． | Check the wiring．If using motors with output of 75 kW or higher，be sure to use a DC reactor（option）． <br> $\rightarrow$ Connect the DCR correctly．Repair or replace DCR wires． |
| （15）Simulated operation mode | Check whether the function code（ $\mathrm{H} O \mathrm{O}$ ）is 1 （simulated operation mode）． <br> $\rightarrow$ Set the function code（ HOO ）to 0 （normal running mode）． |

Check whether any mechanical brake is applied．
$\rightarrow$ Release the mechanical brake．
Check that the motor starts running if the value of the torque boost （F09＊）is increased．
$\rightarrow$ Increase the value of torque boost（F09＊）．
Check the data of function codes（F04＊，F05＊，H50，H51，H52，H53， H65，and H66）．
$\rightarrow$ Change the V／f pattern to match the motor＇s characteristics．
Check that the motor switching signal（selecting motor 1－4）is correct and the data of function codes matches each motor．
$\rightarrow$ Correct the motor swiching signal．

Check whether the reference frequency is below the slip frequency of the motor．
$\rightarrow$ Change the reference frequency so that it becomes higher than the slip frequency of the motor．
Check the wiring．If using motors with output of 75 kW or higher，be sure to use a DC reactor（option）．
$\rightarrow$ Connect the DCR correctly．Repair or replace DCR wires．
Check whether the function code（ H 00 ）is 1 （simulated operation mode）．
$\rightarrow$ Set the function code（ HOO ）to 0 （normal running mode）．
［1］The explanations for function codes with an asterisk（＊）are limited to motor 1 ．If using motor 2 to 4 ，replace with the relevant function codes in Chapter 5 ＂Table 5．3－21 Function codes to be switched＂．

## [ 2 ] The motor rotates, but the speed does not increase

|  | Possible cause | Check and measures |
| :---: | :---: | :---: |
| (1) | The maximum frequency currently specified was too low. | Check the data of function code F03* (Maximum output frequency 1). <br> $\rightarrow$ Correct the F03* data. |
| (2) | The data of frequency limiter (Upper limit) currently specified was too low. | Check the data of function code F15 (Frequency limiter (Upper limit)). <br> $\rightarrow$ Correct the F15 data. <br> The factory default is set to 70 Hz . If running the motor with maximum output frequency 1 (F03*) set to 70 Hz or higher, it will also be necessary to increase the F15 value. |
| (3) | The reference frequency is too low. | Check that the reference frequency has been entered properly using Menu "I/O Checking" on the keypad. <br> $\rightarrow$ Increase the reference frequency. <br> $\rightarrow$ Inspect the external frequency command potentiometers, signal converters, switches, and relay contacts. Replace any ones that are faulty. <br> $\rightarrow$ Connect external circuit wirings of terminals [13], [12], [11], [C1], and [V2] correctly. |
| (4) | A frequency command (e.g., multi-frequency or via communication) with higher priority than the one attempted was active and its reference frequency was too low. | Based on the frequency setting block diagram (See Chapter 8), check the function code data from the Menu using the keypad, and perform an I/O check to check the input frequency command. <br> $\rightarrow$ Correct any incorrect data of function codes (e.g. cancel the higher priority frequency command). |
| (5) | The acceleration time was too long or too short. | Check the data of acceleration times (F07, E10, E12, E14). <br> Change the acceleration time to match the load. |
| (6) | Overload | Measure the inverter output current. <br> $\rightarrow$ Reduce the load. |
|  |  | Check whether any mechanical brake is applied. <br> $\rightarrow$ Release the mechanical brake. |
| (7) | Function code settings do not agree with the motor characteristics. | When automatic torque boost and automatic energy-saving operations are performed, confirm that P02*, P03*, P06*, P07*, P08* agree with motor constants. <br> $\rightarrow$ Perform auto-tuning of the inverter for every motor to be used. |
| (8) | The output frequency does not increase due to the current limiter operation. | Make sure that F43 (Current limiter (Mode selection)) is set to " 2 " and check the data of F44 (Current limiter (Level)). <br> $\rightarrow$ Change the F44 data correctly. Or, set the F43 data to "0" (Disable) if the current limiter operation is not needed. |
|  |  | Decrease the value of torque boost (F09*), then run the motor again and check if the speed increases. <br> If no stall occurs, decrease the F09* data. |
|  |  | Check the data of function codes (F04*, F05*, H50, H51, H52, H53, H 65 , and H66) to ensure that the V/f pattern setting is right. <br> Match the V/f pattern setting with the motor ratings. |
| (9) | The output frequency does not increase due to the torque limiter operation. | Check whether the data of torque control levels (F40, F41, E16, E17) are set to appropriate values. Also, check whether torque limit $2 / 1$ switching signal [TL2/TL1] is correct. <br> $\rightarrow$ Correct the data of F40, F41, E16 and E17 or reset them to the factory defaults. <br> $\rightarrow$ Set the TL2/TL1 correctly. |


| (10) Bias and gain incorrectly <br> specified. | Check the data of function codes (F18, C50, C32, C34, C37, C39, C42, <br> and C44). <br> $\rightarrow$ Readjust the bias and gain to appropriate values. |
| :--- | :--- |
| (11)When performing vector control <br> with speed sensor, the motor <br> rotates slowly, and is unable to <br> run at the specified speed. | Check whether the encoder wiring and rotation direction, and motor <br> wiring and rotation direction match the function code settings. <br> $\rightarrow$ Wire the encoder and motor correctly, and set the correct rotation <br> direction. |

Dd The explanations for function codes with an asterisk (*) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [ 3] The motor runs in the opposite direction to the command

| Possible cause | Check and measures | | |
|---|---|---|---|
| (1) Wiring to the motor is incorrect. | Check the wiring to the motor. <br> $\rightarrow$ Connect terminals $\mathrm{U}, \mathrm{V}$, and W of the inverter to the $\mathrm{U}, \mathrm{V}$, and W <br> terminals of the motor, respectively. |
| (2) Incorrect connection and <br> settings for run commands and <br> rotation direction commands <br> (FWD and REV). | Check the data of function codes (E98 and E99) and the connection. <br> $\rightarrow$ Correct the data of the function codes and the connection. |
| (3) A run command (with fixed <br> rotational direction) from the <br> keypad is active, but the <br> rotational direction setting is <br> incorrect. | Check the data of function code F02 (Operation method). <br> $\rightarrow$ Change the data of function code F02 to "2: / Keypad operation <br> (forward rotation)" or "3: / Keypad operation (Reverse rotation)". |
| (4) The rotation direction mode of |  |
| the motor is opposite to that of |  |
| the inverter. |  | | The rotation direction of IEC-compliant motors is opposite to that of |
| :--- |
| non-compliant motors. |
| $\rightarrow$ Switch the FWD/REV signal setting. |

## [ 4 ] Speed fluctuation or current oscillation (e.g., hunting) occurs during running at constant speed

| Possible cause | Check and measures |
| :---: | :---: |
| (1) The frequency setting is fluctuating. | Check the signals for the frequency command with Menu "I/O Checking" using the keypad. <br> $\rightarrow$ Increase the filter constants (C33, C38, and C43) in the frequency settings. |
| An external frequency command potentiometer is used for frequency setting. | Check that there is no noise in the control signal wires from external sources. <br> $\rightarrow$ Keep the main circuit wiring and control circuit wiring as far apart as possible. <br> $\rightarrow$ Use shielded or twisted wires for control signals. |
|  | Check whether the external frequency command potentiometer is malfunctioning due to noise from the inverter. <br> $\rightarrow$ Connect a capacitor to the output terminal of the potentiometer or insert a ferrite core on the signal wire. (See Chapter 2.) |
| (3) Frequency switching or multi-frequency command was enabled. | Check whether the relay signal for switching the frequency command is chattering. <br> If the relay contact is defective, replace the relay. |
| (4) The wiring length between the inverter and the motor is too long. | Check whether auto-torque boost, auto-energy saving operation, or dynamic torque vector control is enabled. <br> $\rightarrow$ Perform auto-tuning of the inverter for every motor to be used. <br> $\rightarrow$ Disable the automatic control systems by setting F37* to "1" (Constant torque load) and F42* to "0" (V/f control), then check that the motor vibration stops. <br> $\rightarrow$ Make the output wires as short as possible. |
| (5) The machinery is hunting due to vibration caused by low rigidity of the load. Or the current is irregularly oscillating due to special motor parameters. | After disabling all the automatic control systems such as auto torque boost, auto energy saving operation, overload prevention control, current limiter, torque limiter, anti-regenerative control, auto search for idling motor speed, slip compensation, dynamic torque vector control, droop control, overload stop function, speed control, online tuning, notch filter, and observer, check that the motor vibration disappears. <br> $\rightarrow$ Disable the functions causing the vibration. <br> $\rightarrow$ Readjust the output current fluctuation damping gain (H80*). <br> $\rightarrow$ Readjust the speed control system. (d01* to d06*) |
|  | Check that the motor vibration is suppressed if you decrease the value of F26 (Motor sound (Carrier frequency)) or set F27 (Motor sound (Tone)) to "0." <br> $\rightarrow$ Decrease the carrier frequency (F26) or set the tone to "0" (F27 = $0)$. |

(1) The explanations for function codes with an asterisk ( ${ }^{*}$ ) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [5] Unpleasant noises are emitted from motor or noises fluctuate

| Possible cause | Check and measures |
| :---: | :---: |
| (1) The specified carrier frequency is too low. | Check the data of motor operation noise (Carrier frequency) (F26) and motor operation noise (Tone) (F27). <br> $\rightarrow$ Increase the carrier frequency (F26). <br> $\rightarrow$ Correct the F27 data. |
| (2) Ambient temperature of inverter is high. (In the selection of carrier frequency automatic reduction function (H98)) | Measure the temperature inside the panel where the inverter is mounted. <br> $\rightarrow$ If it is over $40^{\circ} \mathrm{C}\left(104^{\circ} \mathrm{F}\right)$, lower it by improving the ventilation. <br> $\rightarrow$ Reduce the load to lower the inverter temperature (for fans or pumps, decrease the frequency limiter upper limit (F15)). <br>  |
| (3) Resonance with the load. | Check the machinery mounting accuracy or check whether there is resonance with the mounting base. <br> $\rightarrow$ Sort out the resonance cause by running the motor independently. <br> $\rightarrow$ Avoid continuous running at the frequency range where the resonance occurs by setting the jump frequency (C01-C04) <br> $\rightarrow$ Set speed control (notch filter) (d07*, d08*) and observer (d18, d19, d20) to suppress vibrations. (Depending on the load characteristics, this may not be effective.) |

The explanations for function codes with an asterisk ( ${ }^{*}$ ) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [6] Motor is not accelerated or decelerated according to set-up acceleration or deceleration times

| Possible cause | Check and measures |
| :---: | :---: |
| (1) The inverter runs the motor with S-curve or curvilinear pattern. | Check the data of function code H 07 (Curve acceleration/ deceleration). <br> $\rightarrow$ Set linear acceleration/deceleration. (H07=0) <br> $\rightarrow$ Shorten the acceleration/deceleration times (F07, F08, E10 through E15). |
| (2) The current limiting operation prevented the output frequency from increasing (during acceleration). | Make sure that F43 (Current limiter (Mode selection)) is set to 2, then check that the setting of F44 (Current limiter (Level)) is reasonable. <br> $\rightarrow$ Readjust the setting of F44 to appropriate value, or disable the function of current limiter with F43. <br> $\rightarrow$ Increase the acceleration/deceleration times (F07, F08, E10 through E15). |
| (3) The anti-regenerative control is enabled (during deceleration). | Check the data of function code H69 (Anti-regenerative control (Mode selection)). <br> Increase the deceleration time (F08, E11, E13, and E15). |
| (4) Overload | Measure the inverter output current. <br> $\rightarrow$ Reduce the load. For fans or pumps, decrease the frequency limiter Upper limit (F15). In winter, the load tends to increase. In winter, the load tends to increase. |
| (5) Torque generated by the motor was insufficient. | Check that the motor starts running if the value of the torque boost (F09*) is increased. <br> Increase the value of the torque boost (F09*). |
| (6) An external frequency command potentiometer is used for frequency setting. | Check that there is no noise in the control signal wires from external sources. <br> $\rightarrow$ Keep the main circuit wiring and control circuit wiring as far apart as possible. <br> $\rightarrow$ Use shielded or twisted wires for control signals. <br> $\rightarrow$ Connect a capacitor to the output terminal of the potentiometer or insert a ferrite core on the signal wire. (See Chapter 2.) |
| (7) The output frequency is limited by the torque limiter. | Check whether the data of torque control levels (F40, F41, E16, E17) are set to appropriate values. Also, check whether torque limit 2/1 switching signal TL2/TL1 is correct. <br> $\rightarrow$ Correct the data of F40, F41, E16 and E17 or reset them to the factory defaults. <br> $\rightarrow$ Set the TL2/TL1 correctly. <br> $\rightarrow$ Increase the acceleration/deceleration times (F07, F08, E10 through E15). |
| (8) The specified acceleration or deceleration time was incorrect. | Check the terminal commands RT1 and RT2 for acceleration/ deceleration times. <br> $\rightarrow$ Correct the RT1 and RT2 settings. |

The explanations for function codes with an asterisk (*) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [ 7 ] The motor does not restart even after the power recovers from a momentary power failure

| Possible cause | Check and measures |
| :---: | :---: |
| (1) The data of function code F14 is either " 0 ," " 1 ," or " 2 ." | Check if an undervoltage trip iL íl occurs. <br> $\rightarrow$ Change the data of function code F14 (Restart mode after momentary power failure (Mode selection)) to " 3 ," " 4 ," or " 5 ." |
| (2) The run command remains OFF even after the power has been restored. | Check the input status with Menu "I/O Checking" using the keypad. (See Chapter 3 "3.4.4 Checking I/O signal status".) <br> $\rightarrow$ Check the power recovery sequence with an external circuit. If necessary, consider the use of a relay that can keep the run command ON. |
|  | In a 3-wire operation, momentary power failure duration is long so that control circuit power source of inverter is shut off once. Therefore, "select 3-wire operation" signal HLD is switched OFF once. <br> $\rightarrow$ Change the design or the setting so that a run command can be issued again within 2 seconds after the power has been restored. |

## [ 8] Motor generates heat abnormally

| Possible cause | Check and measures |
| :--- | :--- |
| (1) Excessive torque boost <br> specified. | Check whether decreasing the torque boost (F09*) decreases the output <br> current but does not stall the motor. <br> $\rightarrow$ If no stall occurs, decrease the torque boost (F09*). |
| (2) Continuous running in <br> extremely slow speed. | Check the running speed of the inverter. <br> $\rightarrow \quad$Change the speed setting or replace the motor with a motor <br> exclusively designed for inverters. <br> (3) Overload <br> Measure the inverter output current. <br> $\rightarrow \quad$Reduce the load. In the case of fans/pumps, lower the setting value <br> of F15 (Frequency limiter (Upper limit)). In winter, the load tends to <br> increase. |

Dd The explanations for function codes with an asterisk (*) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

## [ 9] The motor does not run as expected

| Possible cause | Check and measures |
| :--- | :--- |
| (1) Incorrect setting of function <br> code data. | Check that function codes are correctly configured and no unnecessary <br> configuration has been done. <br> $\rightarrow$ Configure all the function codes correctly. |
|  | Make a note of function code data currently configured and then <br> initialize all function code data using H03. <br> $\rightarrow \quad$ After the above process, reconfigure function codes one by one, <br> checking the running status of the motor. |
| (2) The forced operation function(Fire Mode) is being used. | Check that function codes are correctly configured and no unnecessary <br> configuration has been done. <br> $\rightarrow$ Check the operation selection (H116) setting for forced operation. <br> $\rightarrow$ Check digital input terminal forced operation command "FMS". |

## [ 10 ] Motor stalls during acceleration

| Possible cause | Check and measures |
| :--- | :--- |
| (1) The acceleration time was too <br> short. | Check the data of acceleration time (F07, E10, E12, E14, H57, H58). <br> $\rightarrow$ Extend the acceleration time. |
| (2) Moment of inertia of load is <br> large. | Measure the inverter output current. <br> $\rightarrow$ Reduce the moment of inertia of the load. <br> $\rightarrow$ Increase the inverter capacity. |
| (3) Voltage drop of wiring is large. | Check the terminal voltage of motor. <br> $\rightarrow \quad$ Increase the diameter or shorten the distance of wirings between <br> the inverter and motor. |
| (4) Load torque of load is large. | Measure the inverter output current. <br> $\rightarrow$ Reduce the load torque of load. <br> $\rightarrow$ Increase the inverter capacity. |
| (5) Torque generated by the motor |  |
| was insufficient. | Check whether the motor starts when torque boost (F09*, F37*, H51) is <br> increased. <br> $\rightarrow$ Increase F09, F37, and H51. |

The explanations for function codes with an asterisk ( ${ }^{*}$ ) are limited to motor 1 . If using motor 2 to 4 , replace with the relevant function codes in Chapter 5 "Table 5.3-21 Function codes to be switched".

### 6.5.2 Problems with inverter settings

## [ 1] Nothing appears on the keypad

| Possible cause | Check and measures |
| :---: | :---: |
| (1) No power (neither main power nor auxiliary control power) is supplied to the inverter. | Check the input voltage and interphase voltage unbalance. <br> $\rightarrow$ Switch on the molded-case circuit breaker, an earth-leakage circuit breaker (with overcurrent protective function) or a magnetic contactor. <br> $\rightarrow$ Check for voltage drop, phase loss, poor connections, or poor contacts and fix them if necessary. |
| (2) The power for the control PCB did not reach a sufficiently high level. | Check if the shorting bar has been removed between terminals P1 and $P(+)$ or if there is a poor contact between the shorting bar and those terminals. <br> $\rightarrow$ Mount a shorting bar or a DC reactor between terminals P1 and $\mathrm{P}(+)$. In case of poor contact, tighten the screws. |
| (3) The keypad was not properly connected to the inverter. | Check whether the keypad is properly connected to the inverter. <br> $\rightarrow$ Remove and then reattach the keypad. <br> $\rightarrow$ Replace the keypad with another one and check whether the problem recurs. |

When running the inverter remotely, ensure that the extension cable is securely connected both to the keypad and to the inverter.
$\rightarrow$ Disconnect the cable, reconnect it, and see whether the problem recurs.
$\rightarrow$ Replace the keypad with another one and check whether the problem recurs.

## [ 2 ] The desired menu is not displayed

| Possible cause | Check and measures |
| :---: | :--- |
| (1) The menu display mode is not |  |
| selected appropriately. | Check the data of function code E52 (keypad (Menu display mode)). <br> $\rightarrow \quad$ Change the E52 data so that the desired menu appears. |

## [ 3] Display of under bars ( . . . . )

Phenomenon: Although © key, run forward command FWD, or key, run reverse command REV, was pressed, the motor did not rotate and under bars were displayed.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) The voltage of the DC intermediate circuit was low. | Select $\xi^{〔}$ - 171 from menu item 5 "Maintenance Information" in keypad program mode. (Three-phase 200 V : 200 VDC or less, three-phase 400 V : 400 VDC or less) <br> $\rightarrow$ Connect the inverter to a power supply that meets its voltage supply range. |
| (2) The main power is not ON, while the auxiliary input power to the control circuit is supplied. | Check whether the main power is turned ON. <br> $\rightarrow$ Turn on the main power. <br> Check if the shorting bar has been removed between terminals P1 and $\mathrm{P}(+)$ or if there is a poor contact between the shorting bar and those terminals. <br> $\rightarrow$ Mount a shorting bar or a DC reactor between terminals P1 and $P(+)$. In case of poor contact, tighten the screws. |
| (3) AC power source is not connected due to the connection of DC power supply, but the detection of main power interruption is activated ( $\mathrm{H} 72=1$ ). | Check the connection to the main power and check if the H72 data is set to "1" (factory default). <br> Review the data of H72. |
| (4) Breaks in wiring to the main power input terminals. | Measure the input voltage. <br> $\rightarrow$ Repair or replace the main circuit power input wires or input devices (MCCB, MC, etc.). |

## ［ 4］Display of center bars（－－－－－）

Phenomenon：A center bar（－－－－）appeared on the LED monitor．

| Possible cause | Check and measures |
| :---: | :---: |
| （1）When PID control had been disabled（J01＝0），E43（LED Monitor（Item selection））is set to 10 or 12. <br> PID control has been disabled $(\mathrm{J} 01=0)$ when the LED monitor had been set to display the PID command or PID feedback amount by pressing the © key． | Make sure that when you wish to view other monitor items，E43 is not set to＂10：PID command＂or＂12：PID feedback value．＂ <br> $\rightarrow$ Set E43 to a value other than＂10＂or＂12．＂ <br> Make sure that when you wish to view a PID command or a PID feedback value，J01（PID control）is not set to＂ 0 ：Disable．＂ <br> $\rightarrow$ Set J01 to＂1：Enable（Process control normal operation），＂＂2： Enable（Process control inverse operation），＂or＂3：Enable（Dancer control）．＂ |
| （2）The keypad was poorly connected． | Prior check：Even when key is pressed，the display is not switched． Check continuity of the extension cable used in remote operation． <br> $\rightarrow$ Replace the cable． |

## ［5］［－］Display of parenthesis

Phenomenon：［－］was displayed during speed monitoring by keypad．

| Possible cause | Check and measures |
| :---: | :--- |
| （1）The display data overflows the | Check whether the product of the output frequency and the display <br> LED monitor． |
|  | coefficient（E50）exceeds 99，999． Review the data of E50． |

## ［6］Data of function codes cannot be changed

| Possible cause | Check and measures |
| :---: | :---: |
| 1）An attempt was made to change function code data that cannot be changed when the inverter is running． | Check if the inverter is running with Menu＂Drive Monitoring＂using the keypad and then confirm whether the data of the function codes can be changed when the motor is running by referring to the function code tables． <br> Stop operation，and then change the function code data． |
| （2）The data of the function codes is protected． | Check the data of function code F00（Data protection）． <br> $\rightarrow$ Change the data of FOO from a data protection state（ $\mathrm{FOO}=1$ or 3 ）to a data changeable state（ $\mathrm{FOO}=0$ or 2）． |
| （3）The WE－KP terminal command （＂Enable data change with keypad＂）is not entered，though it has been assigned to a digital input terminal． | Check the data of the function codes（E01 to E09，E98，E99），and check the input state by using＂I／O Checking＂from the Menu on the keypad． <br> $\rightarrow$ Input a WE－KP command through a digital input terminal． |
| （4）The | Check whether the $\qquad$ key was pressed after changing the function code data． <br> $\rightarrow$ Press the－ $\square$ key after changing data． <br>  |
| （5）The data of the function codes F02，E01－E05，E98，E99 are not changeable． | Either one of the $F W D$ and $R E V$ terminal commands is turned ON． <br> $\rightarrow$ Turn OFF both FWD and REV． |
| （6）The function code（s）to be changed does not appear． |  <br> $\rightarrow$ Call the menu of $1 . F^{\prime}$＿to $1.1^{\prime}$＿by pressing $\triangle$ key from the favorites（ $17.1 \mathrm{~F} \cap \mathrm{IL}$ ）state on the Menu to display the intended function code and to change the value．（See Chapter 3，section 3.4 ＂Table 3．4－1 Menus available in programming mode＂for details．） |

## [7] Function code data are not changeable (change from link functions)

| Possible cause | Check and measures |
| :--- | :--- |
| 1)An attempt was made to <br> change function code data that <br> cannot be changed when the <br> inverter is running. | Check if the inverter is running with Menu "Drive Monitoring" using the <br> keypad and then confirm whether the data of the function codes can be <br> changed when the motor is running by referring to the function code <br> tables. <br> $\rightarrow$ Stop operation, and then change the function code data. |
| (2) The data of the function code | Either one of the FWD and $R E V$ terminal commands is turned ON. <br> F02 is not changeable. |

## [8] En. $8 \mathrm{Cl}=$ appears

Phenomenon: Even when keys and FWD/REV signals are input, the motor did not rotate, and En. MFF was displayed.

| Possible cause | Check and measures |
| :---: | :---: |
| (1) EN terminals are OFF. | Check whether terminals [EN1] and [EN2] are ON. <br> $\rightarrow$ Turn those terminals ON. <br> (1) When the EN terminal function is not used: Check whether the 2 poles on the SW7 switch on the control board are both ON (factory default). <br> (2) To enable the EN terminal function: Check whether the safety relay EMERGENCY STOP button is open (OFF) (turn terminals [EN1] and [EN2] ON). <br> $\rightarrow$ When the FWD/REV signals are ON, turn them OFF and then ON again. <br> En. MifF will disappear, and the inverter will be ready to run. |

## [ 9 ] Other status display

Refer to "3.3.2 Status display" in Chapter 3 for details on other status codes which display the inverter running and operation status.

This chapter describes the maintenance and inspection items of the inverter.

## Contents

7.1 Inspection Interval ..... 7-2
7.2 Daily Inspection ..... 7-3
7.3 Periodic Inspection ..... 7-4
7.3.1 Periodic inspection 1--Before the inverter is powered ON or after it stops running. ..... 7-4
7.3.2 Periodic inspection 2--When the inverter is ON or it is running ..... 7-6
7.4 List of Periodic Replacement Parts ..... 7-7
7.4.1 Judgment on service life ..... 7-8
[ 1] Measuring the capacitance of DC link bus capacitor in comparison with initial value at time of shipment ..... 7-10
[ 2 ] Measuring the capacitance of the DC link bus capacitor under ordinary operating conditions ..... 7-11
[ 3 ] Early warning of lifetime alarm ..... 7-11
7.5 Measuring the Amount of Electricity in Main Circuit ..... 7-12
7.6 Insulation Test ..... 7-13
7.6.1 Megger test of main circuit ..... 7-13
7.6.2 Insulation test of control circuit ..... 7-13
7.6.3 Insulation test of external main circuit and sequence control circuit ..... 7-13
7.7 Product Inquiries and Warranty ..... 7-14
7.7.1 Inquiry request ..... 7-14
7.7.2 Product warranty ..... 7-14
[ 1] Free of charge warranty period and warranty range ..... 7-14
[ 2 ] Exclusion of liability for loss of opportunity, etc. ..... 7-15
[ 3 ] Repair period after production stoppage, spare parts supply period (maintenance period) ..... 7-15
[4] Delivery conditions ..... 7-15
[5] Service description ..... 7-15
[6] Applicable scope of service ..... 7-15

Perform daily and periodic inspections to avoid trouble and keep reliable operation of the inverter for a long time. When performing inspections, follow the instructions given in this chapter.

## WARNING』

- Carry out inspection after waiting 5 minutes or longer for units of FRN0115G2S-2G / FRN0060G2口-4G or lower, or 10 minutes or longer for units of FRN0146G2S-2G / FRN0075G2■-4G or higher.
Furthermore, ensure that the LED monitor or charge lamp are OFF, and use a device such as a tester to ensure that the DC intermediate circuit voltage across main circuit terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$ has dropped to a safe level (+25 VDC or less).
Failure to observe this could result in electric shock.
- Maintenance and inspection, and part replacement should only be carried out by the authorized personnel.
- Remove all metal objects (watches, rings, etc.) before beginning work.
- Be sure to use insulated tools.
- Never modify the product.

Failure to observe this could result in electric shock or injury.

### 7.1 Inspection Interval

Table 7.1-1 lists the inspection intervals and check items as a guide.
Table 7.1-1 List of inspections

| Inspection type | Inspection interval | Inspection details |
| :--- | :--- | :--- |
| Daily Inspection | Every day | See section 7.2 . |
| Periodic Inspection | Every year | See section 7.3. |
| 10 year inspection *1 | Every 10 years | Replacement of cooling fans *2 <br> Replacement of DC link bus capacitors and <br> close checks |

*1 The decennial inspection (except replacement of cooling fans) should be performed only by the persons who have finished the Fuji Electric training course.
Contact the sales agent where you purchased the product or your nearest Fuji Electric representative. (Excl. cooling fan replacement.)
*2 Refer to "7.4 List of Periodic Replacement Parts" for the number of years for standard replacement of cooling fans.

The replacement intervals are based on the inverter's service life estimated at an ambient temperature of $40^{\circ} \mathrm{C}$ at $100 \%$ (HHD specification inverters) or $80 \%$ (HND specification inverters) of full load. In environments with an ambient temperature above $40^{\circ} \mathrm{C}$ or a large amount of dust or dirt, the replacement intervals may be shorter.
The standard replacement frequency is merely a guide, and the life expectancy indicated is not guaranteed. Refer to "7.4 List of Periodic Replacement Parts."

### 7.2 Daily Inspection

Visually inspect the inverter for operation errors from the outside without removing the covers when the inverter is running or the power is ON. Table 7.2-1 lists daily inspection items.

Table 7.2-1 Daily inspection list

| Inspection location | Inspection item | Inspection method | Criteria |
| :---: | :---: | :---: | :---: |
| Ambient environment | 1) Check the ambient temperature, humidity, vibrations, and atmosphere (presence of dust, gas, oil mist, water droplets, etc.) <br> 2) Have any foreign objects such as tools or dangerous objects been left in the surrounding area? | 1) Perform a visual inspection, and perform measurement with the respective measuring instruments. <br> 2) Visual inspection | 1) Chapter 1 "1.3.1 Operating environment" must be satisfied. <br> 2) No tools or dangerous objects should have been left in the surrounding area. |
| External appearance, other | 1) Check that the bolts securing the wires to the main circuit terminals and control circuit terminals are not loose (* Carry out inspection before turning ON the power.) <br> 2) Are there any abnormalities such as signs of overheating or discoloration? <br> 3) Are there any abnormal noises, abnormal vibrations, or abnormal odors, etc.? | 1) Retighten (* Do so before turning ON the power.) <br> 2) Visual inspection <br> 3) Auditory, visual, and olfactory inspection | 1) There should be no looseness. If loose, retighten the screws. <br> 2), 3) There should be no abnormalities. |
| Cooling fans | Check for abnormal noise or excessive vibration when the cooling fans are in operation. | Auditory and visual inspections | There should be no abnormalities. |
| Keypad display | Check for alarm indication. | Visual inspection | If any alarm is displayed, refer to Chapter 6 "6.3. If an Alarm Code Appears on the LED Monitor". |
| Performance | Is the unit performing as expected (does it satisfy standard specifications)? | Check the keypad monitor. | There should be no abnormalities in the output speed, current and voltage and other running data. |

### 7.3 Periodic Inspection

### 7.3.1 Periodic inspection 1 --Before the inverter is powered ON or after it stops running

Perform periodic inspection 1 according to the items listed in Table 7.3-1 Periodic inspection list 1. Before performing periodic inspection 1, shut down the power and then remove the front cover.

It takes time for the main circuit DC part smoothing capacitor to dissipate even after turning OFF the power. To eliminate any danger, wait until the charge lamp (CHARGE) has turned OFF, and use a device such as a tester to ensure that the DC voltage has dropped to a safe level ( 25 VDC or less) before carrying out work.

Table 7.3-1 Periodic inspection list 1

| Insp | ection location | Inspection item | Inspection method | Criteria |
| :---: | :---: | :---: | :---: | :---: |
| Structural parts such as frames, covers |  | 1) Is there any bolt looseness (at secured parts)? <br> 2) Is there any deformation or damage? <br> 3) Is there any discoloration due to overheating? <br> 4) Is there any staining or dust adhesion? | 1) Retighten <br> 2), 3), 4) <br> Visual inspection | 1), 2), 3), 4) There should be no abnormalities. <br> (If any section is stained, clean it with a soft cloth.) |
|  | Common | 1) Are there any loose or missing bolts? <br> 2) Is there any device or insulating material deformation, cracking, damage, or overheating, or any discoloration due to degradation? <br> 3) Is there any staining or dust adhesion? | 1) Retighten <br> 2), 3) <br> Visual inspection | 1), 2), 3) There should be no abnormalities. <br> (If any section is stained, clean it with a soft cloth.) |
|  | Conductors, wires | 1) Is there any discoloration or distortion of conductors due to overheating? <br> 2) Are there any wire coating tears, cracks, or discoloration? | 1), 2) <br> Visual inspection | 1), 2) There should be no abnormalities. |
|  | Terminal blocks | Is there any damage? | Visual inspection | There should be no abnormalities. |
|  | Smoothing capacitors | 1) Is there any electrolyte leakage, discoloration, cracks, or case expansion? <br> 2) Is there any safety valve protrusion, and are there any smoothing capacitors with significant valve expansion? | 1), 2) <br> Visual inspection | 1), 2) There should be no abnormalities. |
|  | Breaking resistors | 1) Is there an abnormal odor due to overheating, or insulating material cracks? <br> 2) Are any resistors disconnected? | 1) Olfactory and visual inspection <br> 2) Check the wires visually, or disconnect either one of the wires and measure the conductivity with a tester. | 1) There should be no abnormalities. <br> 2) Within $\pm 10 \%$ of the resistance of the braking resistor |


| Inspection location |  | Inspection item | Inspection method | Criteria |
| :---: | :---: | :---: | :---: | :---: |
|  | PCBs | 1) Check for loose screws and connectors. <br> 2) Are there any abnormal odors or discoloration? <br> 3) Are there any cracks, damage, deformation, or significant rust? <br> 4) Is there any electrolyte leakage or signs of deformation in the capacitors? | 1) Retighten <br> 2) Olfactory and visual inspection <br> 3), 4) Visual inspection <br> * Judgment on service life using "Menu \#5 Maintenance Information" in Chapter 3, Section 3.4.5. | 1), 2), 3), 4) There should be no abnormalities. |
|  | Cooling fans | 1) Check for catching or abnormal vibration. <br> 2) Is there any bolt looseness? <br> 3) Is there any discoloration due to overheating? | 1) Turn by hand. (Be sure to turn the power OFF beforehand.) <br> 2) Retighten <br> 3) Visual inspection <br> Judgment on service life using "Menu \#5 Maintenance Information" in Chapter 3, Section 3.4.5. | 1) The fan should rotate smoothly. <br> 2), 3) There should be no abnormalities. |
|  | Ventilation route | Is there any cooling fin, air intake, or exhaust port clogging or foreign material adhesion? | Visual inspection | There should be no clogging or accumulation of dust, dirt or foreign materials. Clean it, if any, with a brush or air gun. |

### 7.3.2 Periodic inspection 2--When the inverter is ON or it is running

Visually inspect the inverter for operation errors from the outside without removing the covers when the inverter is running or the power is ON.
Perform periodic inspections according to the items listed in Table 7.3-2 Periodic inspection list 2.
Table 7.3-2 Periodic inspection list 2

| Inspection location | Inspection item | Inspection method | Criteria |
| :--- | :--- | :--- | :--- |
| Voltage | Is the main circuit and control circuit <br> voltage normal? | Measure with a <br> device such as a <br> tester. | The standard <br> specifications should <br> be satisfied. |
| Structural parts <br> such as frames, <br> covers | Check for abnormal noise or <br> excessive vibration when the cooling <br> fans are in operation. | Perform a visual <br> check, check by <br> listening. | There should be no <br> abnormalities. |
| Transformers, <br> reactor | Check that the input voltages of the <br> main and control circuits are correct. | Auditory, visual, and <br> olfactory inspection | There should be no <br> abnormalities. |
| Magnetic <br> contactors, <br> relays | Check for chatters when the inverter is <br> running. | Auditory inspection | There should be no <br> abnormalities. |
| Smoothing <br> capacitors | Measure the capacitance if necessary. | * Judgment on <br> service life using <br> "Menu \#5 <br> Maintenance <br> Information" in <br> Chapter 3, Section <br> 3.4.5. | Capacitance $\geq$ Initial <br> value x 0.85 |
| Cooling fans | Check for abnormal noise or <br> excessive vibration when the cooling <br> fans are in operation. | Auditory and visual <br> inspections | There should be no <br> abnormalities. |

* Refer to Chapter 3 "3.4.5 Reading maintenance information "Maintenance information S.L HE".


## [Supplementary information]

(1) The inspection interval (every year) of check items given in Table 7.3-1 and Table 7.3-2 is merely a guide. Make the interval shorter depending on the usage environment.
(2) Store and organize the inspection results to utilize them as a guide for operation and maintenance of the equipment and service life estimation.
(3) At the time of an inspection, check the cumulative run times on the keypad to utilize them as a guide for replacement of parts. Refer to "7.4.1 Judgment on service life".
(4) The inverter has cooling fans inside to ventilate itself for discharging the heat generated by the power converter section. This will accumulate dust or dirt on the heat sink depending on the ambient environment. In a dusty environment, the heat sink requires cleaning in a shorter interval than that specified in periodic inspection. Neglecting cleaning of the heat sink can rise its temperature, activating protective circuits to lead to an abrupt shutdown or causing the temperature rise of the surrounding electronic devices to adversely affect their service life.

### 7.4 List of Periodic Replacement Parts

Each part of the inverter has its own service life that will vary according to the environmental and operating conditions. It is recommended that the following parts be replaced at the specified intervals indicated in Table 7.4-1. When the replacement is necessary, consult your Fuji Electric representative.

Table 7.4-1 Replacement parts

| Part name | Standard replacement intervals (See Note below.) | Replacement method, other |
| :---: | :---: | :---: |
|  | HHD/HND specification |  |
| DC link bus capacitor | 10 years | - |
| Electrolytic capacitors on PCBs | 10 years | PCB replacement |
| Cooling fans | 10 years | - |
| Fuses | 10 years | FRN0346G2S-2G or higher / FRN0216G2 $\square$-4G or higher |
| Waterproof gaskets | 10 years | - |
| Contact output [30 A/B/C] [Y5 A/C] | - | $\begin{gathered} 200,000 \text { times } \\ (250 \mathrm{VAC}, 0.3 \mathrm{~A} \mathrm{COS} \varphi=0.3 \text { or, } 48 \mathrm{VDC}, \\ 0.5 \mathrm{~A} \text { (with resistive load) }) \end{gathered}$ |
| Charging resistance short circuit 73X | - | $100,000 \text { times }$ <br> (if power turned ON within once an hour) |
| IGBT | - | Check "7.4.1 Judgment on service life" for details. |

(Note 1) The estimated life expectancy is calculated based on the following conditions for each inverter specification. In environments with an ambient temperature above $40^{\circ} \mathrm{C}$ or a large amount of dust or dirt, the standard replacement interval may be shorter.
HHD specification: Inverter ambient temperature: $40^{\circ} \mathrm{C}$, load factor: $100 \%$
HND specification: Inverter ambient temperature: $40^{\circ} \mathrm{C}$, load factor: $80 \%$

Pay attention to the following items.
(1) The replacement intervals listed above are a guide for almost preventing parts from failure if those parts are replaced with new ones at the intervals. They do not guarantee the completely fault-free operation.
(2) Table 7.4-1 does not apply to unused spare parts being kept in storage. It applies only when they are stored under the temporary and long-term storage conditions given in Chapter 1 "1.3.2 Storage environment" and energized approximately once a year.
(3) Cooling fans and waterproof gaskets can be replaced by users. For details, refer to the maintenance related documents. As for other parts, only the persons who have finished the Fuji Electric training course can replace them. For the purchase of spare cooling fans and the request for replacement of other parts, contact the sales agent where you purchased the product or your nearest Fuji Electric representative.

### 7.4.1 Judgment on service life

The inverter has the life prediction function for some parts which measures the discharging time or counts the voltage applied time, etc. The function allows you to monitor the current lifetime state on the LED monitor and judge whether those parts are approaching the end of their service life. The predicted values should be used only as a guide since the part life is influenced by the surrounding temperature and other usage environments. (Refer to Chapter 3 "3.4.5 Reading maintenance information "Maintenance information 5.6

Table 7.4-2 Life prediction

| Object of life prediction | Prediction function | End-of-life criteria | Prediction timing | Keypad " 5 : MAINTENANCE" on the LED monitor |
| :---: | :---: | :---: | :---: | :---: |
| DC link bus capacitor | Measurement of discharging time <br> The discharging time of the DC link bus capacitor when the main power is turned OFF is measured, and the capacity is calculated. | 85\% or lower than initial capacitance at time of shipping | At periodic inspection <br> (H98: bit $3=0$ ) | $\begin{aligned} & 5.175 \\ & \text { (Capacitance) } \end{aligned}$ |
|  |  | $85 \%$ or lower than main circuit capacitor capacitance (necessary to measure at startup) under normal user operating conditions. | During ordinary operation <br> (H98: bit $3=1$ ) | $\begin{aligned} & 5-15 \\ & \text { (Capacitance) } \end{aligned}$ |
|  | Main power supply ON time count <br> The time elapsed when the voltage is applied to the DC link bus capacitor is counted. <br> Furthermore, the time is corrected based on the capacity measurement. | When 87,600 hours (10 years) of operation has been exceeded | During ordinary operation | 5.26 <br> (Elapsed time) $5$ <br> (Remaining time) |
| Electrolytic capacitors on PCBs | The time elapsed when the voltage is applied to the capacitors is counted. <br> Furthermore, the elapsed time based on the ambient temperature is corrected. | When 87,600 hours (10 years) of operation has been exceeded | During ordinary operation | 5.26 (Cumulative run time) |
| Cooling fans | The cooling fan run time is counted. | When 87,600 hours (10 years) of operation has been exceeded | During ordinary operation | 5.17 <br> (Cumulative run time) |
| IGBT | The IGBT life expectancy is estimated from changes in IGBT temperature. | The system determines that the life has been reached when the estimated IGBT life expectancy drops below $10 \%$ of the design life. | Normal run time H83: bit $13=1$ | $\begin{aligned} & 5.59 \\ & \text { (Estimated IGBT } \\ & \text { life expectancy) } \end{aligned}$ |

The service life of the DC link bus capacitor can be judged by "(1) Measurement of discharging time of the DC link bus capacitor" or "(2) ON-time counting of DC link bus capacitor."

## (1) Measurement of discharging time of the DC link bus capacitor

- The discharging time of the DC link bus capacitor depends largely on the inverter's internal load conditions, e.g., options attached or ON/OFF of digital I/O signals. If different from the initial value load conditions subject to comparison (excl. terminal [EN1], [EN2]), it will not be possible to obtain measurement accuracy, and therefore measurement is not be performed.
- When connecting a converter, or when connecting a DC common to another inverter, measurement is not performed.
- The capacitance measuring conditions at the time of shipping are drastically restricted, e.g., all input terminals being OFF in order to stabilize the load and measure the capacitance accurately. Those conditions are, therefore, different from the actual operating conditions in almost all cases. If conditions are the same as the factory default conditions (excl. terminal [EN1], [EN2]), the discharge time is automatically measured when the power is turned OFF. However, the time will not be automatically measured if the conditions are different. In such a case, return the conditions to the factory default values, and turn OFF the inverter. Measurement is performed automatically (see capacitance measurement procedure below.)

2] Refer to "[1] Measuring the capacitance of DC link bus capacitor in comparison with initial value at time of shipment".

- To measure the capacitance of the DC link bus capacitor under ordinary operating conditions when the power is turned OFF, it is necessary to set up the load conditions for ordinary operation and measure the reference capacitance (initial setting) when the inverter is introduced. Refer to (2) on the following page for details on the procedure used to set the capacitor capacitance (default value). Performing the setup procedure automatically detects and saves the measuring conditions of the DC link bus capacitor.Refer to "[2] Measuring the capacitance of the DC link bus capacitor under ordinary operating conditions"
Setting bit 3 of H98 data at " 0 " restores the inverter to the measurement in comparison with the initial capacitance measured at shipment.

When the inverter uses an auxiliary control power input, the load conditions widely differ so that the discharging time cannot be accurately measured.
In this case, measurement of the discharging time can be disabled with function code H98 (bit $4=0$ ) for preventing unintended measurement.

## (2) ON-time counting of DC link bus capacitor

- In a machine system where the inverter main power is rarely shut down, the inverter does not measure the discharging time. For this reason, a function is also provided to count the length of time that voltage is applied to main circuit capacitors (main circuit ON time) in order to determine the capacitor life expectancy. (The display
 Table 7.4-2 Life prediction.)


## [ 1] Measuring the capacitance of DC link bus capacitor in comparison with initial value at time of shipment

The measuring procedure given below measures the capacitance of DC link bus capacitor in comparison with initial one at shipment when the power is turned OFF. The measuring result can be displayed on the keypad as a ratio (\%) to the initial capacitance.

## Capacitance measuring procedure

1) To ensure validity in the comparative measurement, put the condition of the inverter back to the state at factory shipment.

- Remove the option card (if already in use) from the inverter.
- In case another inverter is connected via the $D C$ link bus to the $P(+)$ and $N(-)$ terminals of the main circuit, disconnect the wires. It is not required to disconnect the DC reactor (optional), if any.
- Disconnect power wires for the auxiliary input to the control circuit (R0, TO).
- Install the standard keypad (TP-E2).
* If the keypad has been replaced with the multi-function keypad (TP-A2SW) (option) after purchasing the inverter, return it to the standard keypad.
- Turn OFF all the digital input signals fed to terminals [FWD], [REV], and [X1] to [X9] of the control circuit.
- If a potentiometer is connected to terminal [13], disconnect it.
- If an external apparatus is attached to terminal [PLC], disconnect it.
- Ensure that transistor outputs [Y1] to [Y4] and relay output terminals [Y5 A/C] and [30 A/B/C] do not turn ON.
- Disable the RS-485 communications link and CANopen communications link.


## Note

If negative logic is specified for the transistor output and relay output signals, they are considered ON when the inverter is not running. Specify positive logic for them.

- Keep the ambient temperature within $25 \pm 10^{\circ} \mathrm{C}\left(77 \pm 18^{\circ} \mathrm{F}\right)$.

2) Turn $O N$ the main circuit power.
3) Confirm that the cooling fan is rotating and the inverter is in stopped state. Disable the cooling fan ON/OFF control ( $\mathrm{H} 06=0$ ).
4) Shut down the main circuit power.
5) The inverter automatically starts the measurement of the capacitance of the DC link bus capacitor. Ensure that ". . . . " " appears on the LED monitor.

## Note <br> If ". . . . . " does not appear on the LED monitor, the measurement has not started. Check the conditions listed in 1).

6) After ". . . . . " has disappeared from the LED monitor, turn ON the main circuit power again.
7) Select Menu \#5 "Maintenance Information" in Programming mode and check the reading (electrostatic capacity ratio (\%) of the DC link bus capacitor).

## [ 2] Measuring the capacitance of the DC link bus capacitor under ordinary operating conditions

The inverter automatically measures the capacitance of the DC link bus capacitor under ordinary operating conditions when the power is turned OFF. This measurement requires setting up the load conditions for ordinary operation and measuring the reference capacitance when the inverter is introduced to the practical operation, using the setup procedure given below.

Perform measurement immediately after purchasing the inverter (after trial run), or immediately after replacing the DC link bus capacitor.
---------------------------------------------- Reference capacitance setup procedure

1) Set bit 3 of function code H 98 at " 1 " (User mode) to enable the user to specify the judgment criteria for the service life of the DC link bus capacitor.
2) Turn OFF all run commands.
3) Make the inverter ready to be turned OFF under ordinary operating conditions.
4) Set both function codes H42 (Capacitance of DC link bus capacitor) and H47 (Initial capacitance of DC link bus capacitor) to " $[7$ ".
5) Turn OFF the inverter, and the following operations are automatically performed.

The inverter measures the discharging time of the DC link bus capacitor and saves the result in function code H47 (Initial capacitance of DC link bus capacitor).
DC link bus capacitor measurement conditions (terminal [X1 to X9], [Y1 to Y5] ON/OFF status, whether inverter equipped with option card or keypad) are automatically detected and saved. During measurement, " . . . . " appears on the LED monitor.
6) Turn ON the inverter again.

Ensure that function code H 42 (capacitance of DC link bus capacitor) and H 47 (initial capacitance of DC link bus capacitor) values are appropriate.
Shift to Menu \#5 "Maintenance Information" and ensure that the electrostatic capacity ratio (\%) of the DC link bus capacitor is $100 \%$.

If the measurement has failed, " $l$ " is entered into both H 42 and H 47 . Remove the factor of the failure and conduct the measurement again.

Hereafter, each time the inverter is turned OFF, the DC link bus capacitor discharge time is automatically measured if the above conditions are met. Periodically check the electrostatic capacity ratio (\%) of the DC link bus capacitor with Menu \#5 "Maintenance Information" in Programming mode.
Note The condition given above tends to produce a rather large measurement error. If this mode gives you a lifetime alarm, revert bit 3 of H 98 (Main circuit capacitor life judgment selection) to the default setting (bit $3=0$ ) and conduct the measurement under the condition at the time of factory shipment.

## [ 3] Early warning of lifetime alarm

For the components listed in Table 7.4-2, the inverter can issue an early warning of lifetime alarm LIFE at one of the transistor output terminals [Y1] to [Y4] and relay output terminals [Y5 A/C] and [30 A/B/C] as soon as any one of the levels specified in Table 7.4-2 has been exceeded. If even one of the service life-limited parts exceeds the criteria, an ON signal is output.

### 7.5 Measuring the Amount of Electricity in Main Circuit

Because the voltage and current of the power supply (input, primary circuit) of the main circuit of the inverter and those of the motor (output, secondary circuit) contain harmonic components, the readings may vary with the type of the meter. Use meters indicated in Table 7.5-1 when measuring main circuit.
The power factor cannot be measured by a commercially available power-factor meter that measures the phase difference between the voltage and current. To obtain the power factor, measure the power, voltage and current on each of the input and output sides and use the following formula.

## Three-phase input

Power factor $=\frac{\text { Power }(\mathrm{W})}{\sqrt{3} \times \text { voltage }(\mathrm{V}) \times \text { current }(\mathrm{A})} \times 100(\%)$

## Single-phase input

Power factor $=\frac{\text { Power }(\mathrm{W})}{\operatorname{Voltage}(\mathrm{V}) \times \operatorname{current}(\mathrm{A})} \times 100(\%)$

Table 7.5-1 Meters for main circuit measurement

| $\stackrel{\text { ¢ }}{ \pm}$ | Input (primary) side |  |  | Output (secondary) side |  |  | DC link bus voltage ( $\mathrm{P}(+)-\mathrm{N}(-))$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \xi \\ & \frac{y}{0} \\ & 40 \\ & \stackrel{0}{0} \\ & 3 \end{aligned}$ | Voltage <br> Current |  |  |  |  |  | - |
|  | Ammeter AR, AS, AT | Voltmeter VR, VS, VT | Wattmeter WR, WT | Ammeter AU, AV, AW | Voltmeter VU, VV, VW | Wattmeter WU, WW | DC voltmeter V |
|  | Moving iron type | Rectifier or moving iron type | Digital AC power meter | Digital AC power meter | Digital AC power meter | Digital AC power meter | Moving coil type |
|  | $\$$ | K $\%$ | - | - | - | - | ๑) |

[^37]

Fig. 7.5-1 Connection of meters

### 7.6 Insulation Test

Since the inverter has undergone an insulation test before shipment, avoid making a Megger test at the customer's site.

If a Megger test is unavoidable for the main circuit, observe the following instructions; otherwise, the inverter may be damaged. A withstand voltage test may also damage the inverter if the test procedure is wrong.

As with the megger test, performing a withstand voltage test incorrectly may damage the product. When the withstand voltage test is necessary, consult your Fuji Electric representative.

### 7.6.1 Megger test of main circuit

1) Use a 500 V DC megohmmeter, and be sure to measure with the main power turned OFF.
2) If the test voltage is also applied to the control circuit due to the way in which the system is wired, disconnect all connections to the control circuit.
3) Connect the main circuit terminals with common wire as shown in Fig. 7.6-1. (Terminals [R0] and [T0] can be found on the FRN0008G2S-2G/FRN0004G2 $\square-4 \mathrm{G}$ or above.)
4) Perform the megger test only across the main circuit common wires and ground ( $\Theta$ ).
5) The result is normal if the megohmmeter reads $5 \mathrm{M} \Omega$ or higher. (The value is measured on the inverter alone.)


Fig. 7.6-1 Main circuit terminal connection for Megger test

### 7.6.2 Insulation test of control circuit

Do not make a Megger test or withstand voltage test for the control circuit. Use a high resistance range tester for the control circuit.

1) Disconnect all the external wiring from the control circuit terminals.
2) Perform a continuity test to the ground. The result is normal if the reading is $1 \mathrm{M} \Omega$ or higher.

### 7.6.3 Insulation test of external main circuit and sequence control circuit

Disconnect all the wiring connected to the inverter so that the test voltage is not applied to the inverter.

### 7.7 Product Inquiries and Warranty

### 7.7.1 Inquiry request

If necessary to make an inquiry relating to such aspects as product failure or damage, or anything that is in doubt, please notify Fuji Electric of the following.

1) Inverter type. (Refer to Chapter 1 "1.1 Acceptance Inspection (Nameplates and Inverter Type)".
2) SER No. (serial number of equipment). (Refer to Chapter 1"1.1 Acceptance Inspection (Nameplates and Inverter Type)".
3) Function codes and their data that you changed. (Refer to Chapter 3 "3.4.2 Checking changed function codes "Data Checking: | I |
| :--- |
4) ROM version. (Refer to the maintenance item 5. 14 in Chapter 3 "3.4.5 Reading maintenance information "Maintenance Information: 5.L HE"".
5) Date of purchase
6) Inquiries (for example, point and extent of breakage, uncertainties, failure phenomena, and other circumstances)

### 7.7.2 Product warranty

To all our customers who purchase Fuji Electric products included in this documentation:
Please take the following items into consideration when placing your order.
When requesting an estimate and placing your orders for the products included in these materials, please be aware that any items such as specifications which are not specifically mentioned in the contract, catalog, specifications or other materials will be as mentioned below.

In addition, the products included in these materials are limited in the use they are put to and the place where they can be used, etc., and may require periodic inspection. Please confirm these points with your sales representative or directly with this company.

Furthermore, regarding purchased products and delivered products, we request that you take adequate consideration of the necessity of rapid receiving inspections and of product management and maintenance even before receiving your products.

## [ 1] Free of charge warranty period and warranty range

## (1) Free of charge warranty period

1) The product warranty period is " 1 year from the date of purchase" or 24 months from the manufacturing date imprinted on the name place, whichever date is earlier.
2) However, in cases where the use environment, conditions of use, use frequency and times used, etc., have an effect on product life, this warranty period may not apply.
3) Furthermore, the warranty period for parts restored by Fuji Electric's Service Department is " 6 months from the date that repairs are completed."

## (2) Warranty range

1) In the event that breakdown occurs during the product's warranty period which is the responsibility of Fuji Electric, Fuji Electric will replace or repair the part of the product that has broken down free of charge at the place where the product was purchased or where it was delivered. However, if the following cases are applicable, the terms of this warranty may not apply.
(1) The failure was caused by inappropriate conditions, environment, handling or usage methods, etc., which are not specified in the catalog, instruction manual, specifications, or other relevant documents.
(2) The failure was caused by some reason other than the purchased or delivered Fuji Electric product.
(3) The failure was unrelated to a Fuji Electric product, such as a problem with the design of the customer's equipment or software.
(4) The failure was caused by running a program other than that supplied by Fuji Electric for a programmable Fuji Electric product, or as a result of using such a program.
(5) The failure was caused by disassembly, modifications, or repairs carried out by a party other than Fuji Electric.
(6) The failure was caused by a failure to properly maintain or replace the consumable parts, etc. specified in the instruction manual or catalog, etc.
(7) The failure was caused by a scientific or technical problem that was not foreseen when making practical application of the product at the time it was purchased or delivered.
(8) The product was not used in the manner in which it was originally intended to be used.
(9) The failure was caused by a reason for which Fuji Electric holds no responsibility, such as natural or other disaster.
2) Furthermore, the warranty specified herein shall be limited solely to the purchased or delivered product.
3) The upper limit for the warranty scope shall be as specified in item (1) above, and any damages (damage to or loss of machinery or equipment, or lost profits from the same, etc.) consequent to or resulting from a failure of the purchased or delivered product shall be excluded from coverage by this warranty.
(3) Trouble diagnosis

As a rule, the customer is requested to carry out a preliminary trouble diagnosis. However, at the customer's request, Fuji Electric or its service network can perform the trouble diagnosis for a fee. In this case, the customer is asked to assume the burden for charges levied in accordance with Fuji Electric's fee regulations.

## [ 2 ] Exclusion of liability for loss of opportunity, etc.

Regardless of whether a failure occurs during or after the free of charge warranty period, Fuji Electric shall not be liable for any loss of opportunity, loss of profits, or damages arising from special circumstances, secondary damages, accident compensation to another company, or damages to products other than Fuji Electric's products, whether foreseen or not, which Fuji Electric is not responsible for causing.

## [3] Repair period after production stoppage, spare parts supply period (maintenance period)

With regards to models (products) which have gone out of production, Fuji Electric shall carry out repairs for a period of 7 years following production stoppage, from the month and year when the production stoppage occurs. In addition, Fuji Electric shall continue to supply the spare parts required for repairs for a period of 7 years, from the month and year when the production stoppage occurs. However, if it is estimated that the life cycle of certain electronic and other parts is short and it will be difficult to procure or produce those parts, there may be cases where it is difficult to provide repairs or supply spare parts even within this 7 -year period. For details, please confirm with the Fuji Electric business office or our service office.

## [4] Delivery conditions

The product delivered and handed over to the customer shall be the standard product for which no settings have been specified, or adjustments made with an application, and Fuji Electric accepts no responsibility for any on-site adjustments or test operation.

## [ 5] Service description

The price of the purchased or delivered product does not include service costs such as those required for dispatching technicians and so on. Fuji Electric will be more than happy to discuss this further upon request.

## [ 6] Applicable scope of service

The above content applies to transactions and use within Japan. Please consult your dealer or Fuji Electric regarding transactions or use outside Japan.

This chapter describes the main block diagrams of the control section.

## Contents

8.1 Meanings of Symbols Used in the Control Block Diagrams ..... 8-1
8.2 Frequency Setting Section ..... 8-2
8.3 Operation Command Section ..... 8-5
8.4 PID Control Section (for Processing) ..... 8-6
8.5 PID Control Section (for Dancer) ..... 8-7
8.6 Position Control Section ..... 8-8
8.7 Control Section ..... 8-9
8.7.1 V/f control ..... 8-9
[1] Common ..... 8-9
[2] Without speed sensor ..... 8-10
[3] With speed sensor ..... 8-11
8.7.2 Vector control ..... 8-12
[1] Common ..... 8-12
[2] Torque command / torque limit ..... 8-13
[ 3] Speed control / torque control ..... 8-14
[ 4 ] Speed limit and over speed protection processing ..... 8-15
[5] Motor drive ..... 8-16
[6] PMSM drive ..... 8-17
8.8 FM Output Section ..... 8-19

The high-performance, multi-function inverter FRENIC-MEGA is provided with various functions that allow operations to meet the application requirements. Refer to Chapter 5 "FUNCTION CODES" for details of each function code.

Function codes are mutually related and priority order is given depending on the function codes and data thereof.
This chapter shows major internal control block diagrams. Understand the diagrams together with the explanation of each function code to correctly set up each function code.

Note that the internal control block diagrams show only the function codes mutually related. Refer to Chapter 5 "FUNCTION CODES" for function codes operated individually and each function code explanation.

### 8.1 Meanings of Symbols Used in the Control Block Diagrams

This section explains major codes, with examples, used in the block diagrams from the next item.
Table 8.1-1 Codes and meanings

| Symbol | Meaning |
| :---: | :---: |
| "FWD", "Y1", etc. | These symbols denote general-purpose input/output terminals of the inverter control circuit terminal blocks. |
| "FWD", "REV", etc. | These symbols denote control signals (input) or state signals (output) allocated to the control circuit terminals. |
| $-$ | This is a low-pass filter. Time constant is changeable based on function code data. |
| SET FREQUENCY: | This symbol denotes control command used inside the inverter. |
| $\stackrel{F 15}{(5)}$ | This indicates upper limit limiter. This limits an upper limit value by function code setting or a constant. |
|  | This indicates lower limit limiter. This limits a lower limit value by function code setting or a constant. |
|  | This is 0 (zero) limiter. This prevents data from becoming minus. |
|  | This denotes a set frequency given by a current or a voltage. This is a gain analog multiplier for an analog output signal etc., calculated by $\mathrm{C}=\mathrm{A} \times \mathrm{B}$. |
|  | This denotes an adder of two signals or amounts, calculated by $\mathrm{C}=\mathrm{A}+\mathrm{B}$. <br> This becomes a subtracter when $B$ is a minus sign, calculated by $\mathrm{C}=\mathrm{A}-\mathrm{B}$. |


| Meaning |
| :--- | :--- |

### 8.2 Frequency Setting Section



Fig. 8.2-1 Frequency setting section block diagram


Fig. 8.2-2 Frequency setting section block diagram


Fig. 8.2-3 Frequency setting section block diagram

### 8.3 Operation Command Section



Fig. 8.3-1 Operation command section block diagram

### 8.4 PID Control Section (for Processing)



Fig. 8.4-1 PID control section (for processing) block diagram

### 8.5 PID Control Section (for Dancer)



Fig. 8.5-1 PID control section (for dancer) block diagram

### 8.6 Position Control Section



Fig. 8.6-1 Position control block diagram

### 8.7 Control Section

### 8.7.1 V/f control

## [1] Common



Fig. 8.7-1 V/f control (common) section block diagram

## [ 2 ] Without speed sensor



Fig. 8.7-2 V/f control (without speed feedback) section block diagram

## [ 3] With speed sensor



Fig. 8.7-3 V/f control (with speed feedback) section block diagram

### 8.7.2 Vector control

## [1] Common



Fig. 8.7-4 Vector control (common) section block diagram

## [ 2 ] Torque command / torque limit



Fig. 8.7-5 Vector control (torque command / torque limit) section block diagram

## [ 3] Speed control / torque control



Fig. 8.7-6 Vector control (speed control / torque control) section block diagram

## [ 4] Speed limit and over speed protection processing



Fig. 8.7-7 Vector control (speed control / over speed protection processing) section block diagram

## [5] Motor drive



Fig. 8.7-8 Vector control (motor drive) section block diagram

## [ 6] PMSM drive



Fig. 8.7-9 Vector control (PMSM drive 1) section block diagram

## [ 6] PMSM drive (Continued)



Fig. 8.7-10 Vector control (PMSM drive 2) section block diagram

### 8.8 FM Output Section



Fig. 8.8-1 FM output section block diagram

## Chapter 9

## COMMUNICATION FUNCTIONS

This chapter describes an overview of inverter operation through the RS-485 communications.Refer to the "RS-485 Communication User's Manual" for details.
Contents
9.1 Overview of RS-485 Communication ..... 9-1
9.1.1 RS-485 common specifications ..... 9-2
9.1.2 RS-485 communication terminal specifications ..... 9-3
[ 1] RS-485 COM port 1 (RJ-45 connector for keypad connection) specification ..... 9-3
[ 2 ] RS-485 COM port 2 (terminal block) specifications ..... 9-3
9.1.3 Connection method ..... 9-4
9.1.4 RS-485 connection devices ..... 9-6
[1] Converter ..... 9-6
[2] Requirements for the cable (COM port 1: for RJ-45 connector) ..... 9-6
[ 3 ] Requirements for the cable (COM port 2: for RS-485 terminal block connection) ..... 9-6
[4] Branch adapter for multi-drop ..... 9-6
9.1.5 RS-485 noise suppression ..... 9-7
9.2 FRENIC Loader Overview ..... 9-8
9.2.1 Specifications ..... 9-8

### 9.1 Overview of RS-485 Communication

The FRENIC-MEGA has two RS-485 COM ports at the locations shown below.
(1) COM port 1: RJ-45 connector for keypad connection (modular jack)
(2) COM port 2: RS-485 terminals (control terminals [SD], [DX-], [DX+])


Using the RS-485 COM ports shown above enables the extended functions listed below.

- Remote operation from keypad (COM port 1)

The standard keypad enables remote operation by mounting the keypad on a remote panel and connecting the keypad to RJ-45 connector with an extension cable. (maximum cable length: 20 m ( 65.6 ft ))

- Operation by FRENIC Loader (COM ports 1 and 2)

FRENIC Loader (see "9.2 FRENIC Loader Overview") can also be used by connecting RS-485 communication port 1 or 2 to a computer using a USB converter.
(FRENIC Loader can also be operated by connecting the USB port on the keypad directly with the USB port on a PC.)

- Control via host equipment (COM ports 1 and 2)

Connecting the inverter to the host equipment (upper controller), such as a computer and programmable controller (PLC), enables to control the inverter as a subordinate device.

In addition to the COM port (RJ-45 connector) shared with the keypad, FRENIC-MEGA is also equipped with an RS-485 terminal as standard.

The protocols for controlling inverters support the Modbus RTU protocol (compliant to the protocol established by Modicon Inc.) that is widely used and the Fuji Electric's general-purpose inverter protocol that is common to Fuji Electric's inverters including conventional series.

[^38]- In the case of FRENIC Loader, Modbus RTU protocol is used. For details, refer to the "FRENIC Loader Instruction Manual".

For details of RS-485 communication, refer to the RS-485 Communication User's Manual.

### 9.1.1 RS-485 common specifications

Table 9.1-1

| Item | Specification |  |
| :---: | :---: | :---: |
| Protocol | FGI-BUS | Modbus RTU |
| Compliance | Fuji general-purpose inverter protocol | Modicon Modbus RTU-compliant (only in RTU mode) |
| Connection quantity | Host device: 1, Inverters: Up to 31 |  |
| Electrical specification | EIA RS-485 |  |
| Connection to RS-485 | RJ-45 connector or terminal block |  |
| Synchronization | Start-stop synchronization |  |
| Communication system | Half-duplex |  |
| Baud rate (bps) | 2400, 4800, 9600, 19200, 38400, 57600, 76800 and 115200 bps |  |
| Max. transmission cable length | 500 m (1640 ft) |  |
| Station No. | 1 to 31 | 1 to 247 |
| Message frame format | FGI-BUS | Modbus RTU |
| Frame synchronization | Header character detection (SOH) | Detection of no-data time (for 3 characters period) |
| Frame length | Standard transmission: 16 bytes (fixed) <br> High-speed transmission: 8 or 12 bytes | Variable length |
| Max. transfer data | Write: 1 words Read: 1 words | Write: 100 words Read: 100 words |
| Messaging system | Polling/selecting/broadcast |  |
| Transmission character format | ASCII | Binary |
| Character length | 8 or 7 bits <br> Selectable with function code | 8 bit (fixed) |
| Parity | Even, Odd, or None (selectable with function code) |  |
| Stop bit length | 1 or 2 bits <br> Selectable with function code | No parity: 2 bits/1 bit Parity: 1 bit Select by parity setting. |
| Error checking | Check sum | CRC-16 |

### 9.1.2 RS-485 communication terminal specifications

## [ 1 ] RS-485 COM port 1 (RJ-45 connector for keypad connection) specification

The keypad port is an RJ-45 connector, and the pin assignment is as follows.
Table 9.1-2

| Pin | Signal name | Content | Remarks |
| :---: | :---: | :--- | :--- |
| 1,8 | Vcc | Power supply for keypad | 5 V |
| 2,7 | GND | Reference potential | GND |
| 3,6 | NC | Vacant terminal | - |
| 4 | DX- | RS-485 communication data <br> $(-)$ | Built-in $110 \Omega$ terminating resistor <br> Open/close with SW3* |
| 5 | DX + | RS-485 communication data <br> $(+)$ |  |

* Refer to Chapter 2 "2.2.7 Operating various switches" for details on SW3.


Note
The power supply for the keypad (pins 1, 2, 7, and 8) is connected to the RJ-45 connector for RS-485 communication (standard). When connecting other devices to the RJ-45 connector, take care not to use those pins. Use pins 4 and 5 only.

## [ 2 ] RS-485 COM port 2 (terminal block) specifications

FRENIC-MEGA is equipped with an RS-485 communication terminal for the control terminals. Details of each terminal are given below.

Table 9.1-3

| Terminal symbol | Content | Remarks |
| :---: | :---: | :---: |
| [SD] | Shield terminal |  |
| [DX-] | RS-485 communication data (-) | Built-in $110 \Omega$ terminating resistor |
| [DX+] | RS-485 communication data (+) | Open/close with SW2* |

[^39]
### 9.1.3 Connection method

- Up to 31 inverters can be connected to one host equipment.
- The protocol is commonly used in the FRENIC series of general-purpose inverters, so programs for similar host equipment can run/stop the inverter.
(The parameters modes may differ depending on the equipment.)
- Fixed-length transmission frames facilitate developing communication control programs for hosts.

Dd For details on RS-485 communication, refer to the "RS-485 Communication User's Manual".

## Multi-drop connection using the RS-485 COM port 1 (for connecting the keypad)

For connecting inverters in multi-drop connection, use the branch adapters for multi-drop connection as shown below.


Fig. 9.1-1 Multi-drop connection diagram (RJ-45 connector connection)

- The power supply for keypad is available in the RJ-45 connector for RS-485 communication (COM port 1) (pins 1, 2, 7, and 8). When connecting other devices to the RJ-45 connector, take care not to use those pins. Use pins 4 and 5 only. (See 9.1.2 RS-485 communication terminal specifications.)
- When selecting additional devices to prevent the damage or malfunction of the control PCB caused by external noises or eliminate the influence of common mode noises, be sure to see "9.1.4 RS-485 connection devices."
- The maximum wiring length must be 500 m ( 1640 ft ).
- Use the cables and converters meeting the modes for connecting the RS-485 COM ports. (Refer to "[ 2 ] Requirements for the cable (COM port 1: for RJ-45 connector)" in "9.1.4 RS-485 connection devices".)

Multi-drop connection using the RS-485 COM port 2 (terminal block)


Fig. 9.1-2 Multi-drop connection diagram (terminal block connection)

Note Use the cables and converters meeting the modes for connecting the RS-485 COM ports. (Refer to "[3] Requirements for the cable (COM port 2: for RS-485 terminal block connection)" in "9.1.4 RS-485 connection devices".)

### 9.1.4 RS-485 connection devices

This section describes the devices required for connecting the inverter to a PC having no RS-485 interface or for connecting two or more inverters in multi-drop network.

## [1] Converter

PCs are generally not equipped with an RS-485 port. Therefore, an RS-232C - RS-485 converter or USB - RS-485 converter is required. To use the equipment properly, be sure to use the converter which meets the mode below. Be careful that a converter not recommended may not work properly.

## Requirements for recommended converters

| Send/receive switching system | : Auto-switching by monitoring the transmission data at PC (RS-232C) |
| :--- | :--- |
| Electric isolation | : Electrically isolated from the RS-485 port |
| Fail-safe | : Fail-safe facility* |
| Other requirements | : Superior noise immunity |

*: The fail-safe function refers to a feature that ensures the RS-485 receiver's output is at "logic high" even if the RS-485 receiver's input is opened or short-circuited or all the RS-485 drivers are inactive.

## Recommended converters

System Sacom Sales Corporation (Japan): KS-485PTI (RS-232C - RS-485 converter) : USB-485I RJ-45-T4P (USB - RS-485 converter)

## [ 2 ] Requirements for the cable (COM port 1: for RJ-45 connector)

Use a standard LAN cable (straight 10BASE-T/100BASE-TX cable which satisfies US ANSI/TIA/EIA-568A category 5 standard or higher).

Note The power supply for the keypad is available in the RJ-45 connector for RS-485 communication (COM port 1) (pins 1, 2, 7 and 8 ). When connecting other devices to the RJ-45 connector, take care not to use those pins. Use pins 4 and 5 only.

## [ 3 ] Requirements for the cable (COM port 2: for RS-485 terminal block connection)

Use a twisted-pair cable (AWG16 to 26) for long distance transmission for the connection cable to ensure a reliable connection.

Recommended cable manufacturer: FURUKAWA ELECTRIC CO., LTD., AWM2789 cable for long distance connection

## [ 4] Branch adapter for multi-drop

The RJ-45 connector is used as the communication connector. To use a standard LAN cable for multi-drop connection, use the branch adapter for the RJ- 45 connector.

Recommended branch adapter
SK Koki (Japan): MS8-BA-JJJ

### 9.1.5 RS-485 noise suppression

Depending on the operating environment, the malfunction may occur due to the noise generated by the inverter. Possible measures to prevent such malfunction are: separating the wiring, use of shielded cable, isolating the power supply, and adding an inductance component. The description shown below is an example of adding an inductance.

Refer to the RS-485 Communication User's Manual, Chapter 2, Section 2.2.4 "Precautions for long wiring (between inverter and motor)" for details.

## Adding inductance components

Keep the impedance of the signal circuit high against the high-frequency noises by inserting an inductance component, such as by inserting a choke coil in series or passing the signal line through a ferrite core.


Pass the wiring through the ferrite core or wind the ferrite core with the wiring a few times

Fig. 9.1-3 Adding an inductance component

### 9.2 FRENIC Loader Overview

By connecting the inverter with a PC, FRENIC Loader allows users to edit, set, and manage inverter function codes, monitor running data, carry out remote operations such as running and stopping, and monitor data such as the running status and alarm history. FRENIC Loader is also equipped with built-in functions which allow users to create logic circuits for the inverter customizable logic function, and to write data to the inverter.

This software can be downloaded and used free of charge from the Fuji Electric website.
(D) For details, refer to the FRENIC Loader Instruction Manual.

### 9.2.1 Specifications

Table 9.2-1

|  | Item | Specification | Remarks |
| :---: | :---: | :---: | :---: |
| Name |  | Inverter support loader (FRENIC Loader4) | Compatible with Version 1.1.0.0 or later |
| Compatible inverters |  | FRENIC-MEGA/HVAC/AQUA/Ace/eFIT/Multi/Eco/Mini |  |
| Number of connected inverters |  | USB connection: 1 unit RS-485 connection: Up to 31 units |  |
| Recommended cable |  | Cable (10BASE-T or higher) compliant with EIA-568A RJ-45 connector | In the case of RS-485 connection |
|  | OS | Microsoft Windows 8.1 (32-bit, 64-bit) *1 Microsoft Windows 10 (32-bit, 64-bit) | *1: The keypad USB port cannot be used. In the case of RS-485 connection. |
|  | Memory | 2 GB or more RAM | 4 GB or more recommended. |
|  | Hard disk | 800 MB or more of available capacity recommended. |  |
|  | COM port | RS-232C (conversion to RS-485 communication is required to connect inverters) or USB |  |
|  | Monitor | $1024 \times 768$ or higher resolution | FHD $(1920 \times 1080)$ or more monitor is recommended. |
| $\begin{gathered} \text { ᄃ } \\ \text { 을 } \\ \vdots \\ \hline \end{gathered}$ | Function code setting | - Reading function codes from inverter <br> - Function code editing, data management <br> - Writing function codes to inverter <br> - Auto tuning operation |  |
|  | Run monitor | - Inverter I/O signal status check <br> - Maintenance information, alarm information check <br> - Operating status monitor |  |
|  | Real-time trace function | - Inverter I/O signals, changes in the operating status time axis can be monitored. | Display scale: <br> $20 \mathrm{~ms} /$ div to $10 \mathrm{~min} /$ div |
|  | Historical trace function | - Inverter I/O signals, changes in the operating status time axis can be recorded inside the inverter, allowing the status to be checked with a signal (trigger) as the starting point. | Display scale: <br> $1 \mathrm{~ms} / \mathrm{div}$ to $60 \mathrm{~min} / \mathrm{div}$ |
|  | Test run function | - An inverter test run can be carried out from the PC Loader screen. |  |
|  | Scheduled operation | - Timer operating condition settings for models with built-in real-time clock | Not applicable to FRENIC-MEGA |
|  | Customizable logic | - Logic circuit creation <br> - Writing to inverter <br> - Debug function using on-line monitor |  |
|  | Traceback function | Data specified before or after the occurrence of triggers such as alarms is automatically stored in the keypad memory, allowing data to be acquired and waveforms to be displayed at FRENIC Loader. <br> - Data for a single event is stored with the standard keypad. <br> - Data for 100 events is stored with the multi-function keypad (when microSD memory card installed). | The output frequency, output current, intermediate DC voltage, and signals for terminals Y 1 to Y 5 from 2 seconds before to 0.5 seconds after the last alarm occurred are stored by factory default. <br> The multi-function keypad (TP-A2SW) is an option. The microSD memory card is sold separately. |

## SELECTING OPTIMAL MOTOR AND INVERTER CAPACITIES

This chapter provides you with information about the inverter output torque characteristics, capacity selection procedure, and equations for calculating capacities to help you select optimal motor and inverter models. It also helps to select the braking resistors, inverter specification (HHD/HND), and motor drive control.

## Contents

10.1 Motor Output Torque Characteristics ..... 10-1
10.2 Selection Procedure ..... 10-3
10.3 Equations for Selections ..... 10-6
10.3.1 Load torque during constant speed running ..... 10-6
[1] General equation ..... 10-6
[2] Obtaining the required force $F$ ..... 10-6
10.3.2 Acceleration and deceleration time calculation ..... 10-8
[ 1] Calculation of moment of inertia ..... 10-8
[2] Calculation of the acceleration time ..... 10-10
[3] Calculation of the deceleration time ..... 10-11
[4] Calculating non-linear acceleration/deceleration time ..... 10-11
[5] Calculating non-linear deceleration time ..... 10-12
10.3.3 Heat energy calculation of braking resistor ..... 10-13
[1] Calculation of regenerative energy ..... 10-13
10.3.4 Calculating the RMS rating of the motor ..... 10-14
10.4 Selecting the Inverter Rating Specification (HHD/HND) ..... 10-15
10.4.1 Precautions in making the selection ..... 10-15
10.4.2 Guideline for selecting inverter specification and capacity ..... 10-16

When selecting a general-purpose inverter, select the motor, followed by the inverter.
(1) Key point for selecting a motor: Determine what kind of load machine is to be used, calculate its moment of inertia, and then select the appropriate motor capacity.
(2) Key point for selecting an inverter: Taking into account the operation requirements (e.g., acceleration time, deceleration time, and frequency in operation) of the load machine to be driven by the motor selected in (1) above, calculate the acceleration/deceleration/braking torque.

This section describes the selection procedure for (1) and (2) above. First, it explains the output torque characteristics obtained by using the motor driven by the inverter (FRENIC-MEGA).

### 10.1 Motor Output Torque Characteristics

Fig. 10.1-1 and Fig. 10.1-2 graph the output torque characteristics of motors versus the output frequency for 50 Hz and 60 Hz base frequencies. The horizontal and vertical axes show the output frequency and output torque (\%), respectively. Curves (a) through (f) depend on the running conditions.


Fig. 10.1-1 Output torque characteristics (base frequency: 50 Hz )


Fig. 10.1-2 Output torque characteristics (base frequency: 60 Hz )

## (1) Continuous allowable driving torque

1) Standard motor (Curve (a1) in Fig. 10.1-1 and Figure Fig. 10.1-2)

Curve (a1) shows the torque characteristic that can be obtained in the range of the inverter continuous rated current, where the standard motor's cooling characteristic is taken into consideration. When the motor runs at the base frequency of $60 \mathrm{~Hz}, 100 \%$ output torque can be obtained; at 50 Hz , the output torque is somewhat lower than that in commercial power, and it further lowers at lower frequencies. The reduction of the output torque at 50 Hz is due to increased loss by inverter driving, and that at lower frequencies is mainly due to heat generation caused by the decreased ventilation performance of the motor cooling fan.
2) Motor exclusively designed for vector control (Curve (a2) in Fig. 10.1-1 and Fig. 10.1-2)

Curve (a2) shows the torque characteristic that can be obtained in the range of the inverter continuous rated current, where the motor exclusively designed for vector control is connected. In the motor exclusively designed for vector control, the attached forced-cooling fan reduces heat generation from the motor, so that the torque does not drop in the low-speed range, compared to the standard motor.
(2) Maximum driving torque in a short time (Curves (b) and (c) in Fig. 10.1-1 and Fig. 10.1-2)

Curve (b) shows the torque characteristic that can be obtained in the range of the inverter overload capability in a short time (HHD specification: $150 \%$ for 1 minute, $200 \%$ for 3 seconds, HND specification: $120 \%$ for 1 minute) when torque-vector control is enabled. At that time, the motor cooling characteristics have little effect on the output torque.
Curve (c) shows an example of the torque characteristic when one class higher capacity inverter is used to increase the short-time maximum torque. In this case, the short-time torque is 20 to $30 \%$ greater than that when the standard capacity inverter is used.
(3) Starting torque (around the output frequency 0 Hz in Fig. 10.1-1 and Fig. 10.1-2)

The maximum torque in a short time applies to the starting torque as it is.
(4) Braking torque (Curves (d), (e), and (f) in Fig. 10.1-1 and Fig. 10.1-2)

In braking the motor, kinetic energy is converted to electrical energy and regenerated to the DC link bus capacitor (reservoir capacitor) of the inverter. Discharging this electrical energy to the braking resistor produces a large braking torque as shown in curve (e). If no braking resistor is provided, however, only the motor and inverter losses consume the regenerated braking energy so that the torque becomes smaller as shown in curve (d).

When an optional braking resistor is used, the braking torque is allowable only for a short time. Its time ratings are mainly determined by the braking resistor ratings. This manual and associated catalogs list the allowable values (kW) obtained from the average discharging loss and allowable values (kWs) obtained from the discharging capability that can be discharged at one time.
Note that the torque \% value varies according to the inverter capacity.
Selecting an optimal brake unit enables a braking torque value to be selected comparatively freely in the range below the short-time maximum torque in the driving mode, as shown in curve (f).
[D] For braking-related values when the inverter and braking resistor are normally combined, refer to Chapter 11 "11.8 Braking Resistors (DBRs) and Braking Units".

### 10.2 Selection Procedure

Fig. 10.2-1 Selection procedure shows the general selection procedure for optimal inverters. Items numbered (1) through (5) are described on the following pages.

You may easily select inverter capacity if there are no restrictions on acceleration and deceleration times. If "there are any restrictions on acceleration or deceleration time" or "acceleration and deceleration are frequent," then the selection procedure is more complex.


Fig. 10.2-1 Selection procedure
(1) Calculating the load torque during constant speed running (For detailed calculation, refer to section 10.3.1)

It is essential to calculate the load torque during constant speed running for all loads.
First calculate the load torque of the motor during constant speed running and then select a tentative capacity so that the continuous rated torque of the motor during constant speed running becomes higher than the load torque. To perform capacity selection efficiently, it is necessary to match the rated speeds (base speeds) of the motor and load. To do this, select an appropriate reduction-gear (mechanical transmission) ratio and the number of motor poles.
If the acceleration or deceleration time is not restricted, the tentative capacity can apply as a defined capacity.
(2) Calculating the acceleration time (For detailed calculation, refer to section 10.3.2 [ 2 ] )

When there are some specified requirements for the acceleration time, calculate it according to the following procedure:

1) Calculate the moment of inertia for the load and motor.

Calculate the moment of inertia for the load, referring to "10.3.2 Acceleration and deceleration time calculation." For the moment of inertia for motors, refer to the related motor catalogs.
2) Calculate the minimum acceleration torque (See Fig. 10.2-2)

The acceleration torque is the difference between the motor short-time output torque (base frequency: 60 Hz ) explained in "10.1 (2) Maximum driving torque in a short time" and the load torque ( $\tau_{L} / \eta_{\mathrm{G}}$ ) during constant speed running calculated in the above (1). Calculate the minimum acceleration torque for the whole range of speed.
3) Calculate the acceleration time

Assign the value calculated above to the equation ((Equation 10.3-15) in "10.3.2 Acceleration and deceleration time calculation" to calculate the acceleration time. If the calculated acceleration time is longer than the expected time, select the inverter and motor having one class larger capacity and calculate it again.


Fig. 10.2-2 Example study of minimum acceleration torque
(3) Deceleration time (For detailed calculation, refer to section 10.3.2 [ 3 ] )

To calculate the deceleration time, check the motor deceleration torque characteristics for the whole range of speed in the same way as for the acceleration time.

1) Calculate the moment of inertia for the load and motor.

Same as for the acceleration time.
2) Calculate the minimum deceleration torque (See Fig. 10.2-3 and Fig. 10.2-4)

Same as for the deceleration time.
3) Calculate the deceleration time

Assign the value calculated above to the equation ((Equation 10.3-16) to calculate the deceleration time in the same way as for the acceleration time. If the calculated deceleration time is longer than the requested time, select the inverter and motor having one class larger capacity and calculate it again.


Fig. 10.2-3 Example study of minimum deceleration torque (1)


Fig. 10.2-4 Example study of minimum deceleration torque (2)
(4) Braking resistor rating (For detailed calculation, refer to section 10.3.3)

Braking resistor rating is classified into two types according to the braking periodic duty cycle.

1) When the cycle period is 100 seconds or less:

Calculate the average loss to determine rated values.
2) When the cycle period exceeds 100 s :

The allowable braking energy depends on the maximum regenerative braking capacity. The allowable values are listed in Chapter 11 "11.8 Braking Resistors (DBRs) and Braking Units".
(5) Motor RMS current (For detailed calculation, refer to section 10.3.4)

In metal processing machines and materials handling machines requiring positioning control, highly frequent running for a short time is repeated. In this case, calculate the maximum equivalent RMS current value (effective value of current) not to exceed the allowable value (rated current) for the motor.

### 10.3 Equations for Selections

### 10.3.1 Load torque during constant speed running

## [ 1] General equation

The frictional force acting on a horizontally moved load must be calculated. Calculation for driving a load along a straight line with the motor is shown below.
Where the force to move a load linearly at constant speed $v(\mathrm{~m} / \mathrm{s})$ is $F(N)$ and the motor speed for driving this is $\mathrm{N}_{\mathrm{M}}(\mathrm{r} / \mathrm{min})$, the required motor output torque $\tau_{\mathrm{M}}(\mathrm{N} \cdot \mathrm{m})$ is shown in the following equation (Equation 10.3-1):

$$
\begin{equation*}
\tau_{\mathrm{M}}=\frac{60 \cdot \mathrm{u}}{2 \pi \cdot \mathrm{~N}_{\mathrm{M}}} \cdot \frac{\mathrm{~F}}{\eta_{\mathrm{G}}} \quad(\mathrm{~N} \cdot \mathrm{~m}) \tag{Equation10.3-1}
\end{equation*}
$$

where, $\eta_{G}$ is reduction-gear efficiency.
When the inverter brakes the motor, efficiency works inversely, so the required motor torque should be calculated as follows:

$$
\tau_{\mathrm{M}}=\frac{60 \cdot \mathrm{u}}{2 \pi \cdot \mathrm{~N}_{\mathrm{m}}} \cdot \mathrm{~F} \cdot \eta_{\mathrm{G}} \quad(\mathrm{~N} \cdot \mathrm{~m})
$$

(Equation 10.3-2)
$(60 \cdot v) /\left(2 \pi \cdot N_{M}\right)$ in the above equation is an equivalent turning radius corresponding to speed $v(\mathrm{~m} / \mathrm{s})$ around the motor shaft.
The value $\mathrm{F}(\mathrm{N})$ in the above equations depends on the load type.

## [ 2 ] Obtaining the required force $F$

## - Moving a load horizontally

A simplified mechanical configuration is assumed as shown in Fig. 10.3-1. If the mass of the carrier table is $\mathrm{W}_{0}$ (kg), the load is $W(\mathrm{~kg})$, and the friction coefficient of the ball screw is $\mu$, then the friction force $\mathrm{F}(\mathrm{N})$ is expressed as follows (Equation (Equation 10.3-3), which is equal to a required force for driving the load:

$$
F=\quad(W o+W) \cdot g \cdot \mu \quad(N)
$$

(Equation 10.3-3)
where, g is the gravity acceleration $\left(\doteqdot 9.8\left(\mathrm{~m} / \mathrm{s}^{2}\right)\right.$ ).
Then, the driving torque around the motor shaft is expressed with the following equation ((Equation 10.3-4):

$$
\begin{equation*}
\tau_{\mathrm{M}}=\frac{60 \cdot \mathrm{u}}{2 \pi \cdot \mathrm{~N}_{\mathrm{M}}} \cdot \frac{(\mathrm{Wo}+\mathrm{W}) \cdot \mathrm{g} \cdot \mu}{\eta_{\mathrm{G}}} \quad(\mathrm{~N} \cdot \mathrm{~m}) \tag{Equation10.3-4}
\end{equation*}
$$



Fig. 10.3-1 Moving a load horizontally

## Vertical lift load

A simplified mechanical configuration is assumed as shown in Fig. 10.3-2. If the mass of the cage is $W_{0}(\mathrm{~kg})$, the load is $W(\mathrm{~kg})$, and the balance weight is $W_{B}(\mathrm{~kg})$, then the forces $F(\mathrm{~N})$ required for lifting the load up and down are expressed as follows (equation (Equation 10.3-5 and equation (Equation 10.3-6).

## For lifting

$$
F=\quad\left(W_{0}+W-W_{B}\right) \cdot g \quad(N)
$$

(Equation 10.3-5)

## For lowering

$\mathrm{F}=\quad\left(\mathrm{W}_{\mathrm{B}}-\mathrm{W}-\mathrm{W}_{\mathrm{O}}\right) \cdot \mathrm{g}$
(N)
(Equation 10.3-6)

Assuming the maximum load is $W_{\text {max }}$, the mass of the balance weight $W_{B}(\mathrm{~kg})$ is generally obtained with the expression $W_{B}=W_{0}+W_{\max } / 2$. Depending on the mass of load $W(k g)$, the values of $F(N)$ may be negative in both cases of lifting up and down, which means the lift is in braking mode. So, be careful in motor and inverter selection.

For calculation of the required output torque $\tau$ around the motor shaft, apply the expression ((Equation 10.3-1) or (Equation 10.3-2) depending on the driving or braking mode of the lift, that is, apply the expression (Equation $10.3-1)$ if the value of $F(N)$ is positive, and the ((Equation 10.3-2) if negative.


Fig. 10.3-2 Vertical lift load

## Inclined lift load

Although the mechanical configuration of an inclined lift load is similar to that of a vertical lift load, non negligible friction force in the inclined lift makes the difference; in an inclined lift load, there is a distinct difference between the expression to calculate the lift force $\mathrm{F}(\mathrm{N})$ for lifting and that for lowering. If the incline angle is $\theta$, and the friction coefficient is $\mu$, as shown in Fig. 10.3-3, the driving force $\mathrm{F}(\mathrm{N})$ is expressed as follows:

## For lifting

$$
\begin{equation*}
F=\quad\left(\left(W_{0}+W\right)(\sin \theta+\mu \cdot \cos \theta)-W_{B}\right) \cdot g \quad(N) \tag{N}
\end{equation*}
$$

(Equation 10.3-7)

## For lowering

$$
\begin{equation*}
F=\quad\left(W_{B}-\left(W_{0}+W\right)(\sin \theta+\mu \cdot \cos \theta)\right) \cdot g \tag{N}
\end{equation*}
$$

(Equation 10.3-8)
The braking mode applies to both lifting and lowering as in the vertical lift load. And the calculation of the required output torque $\tau$ around the motor shaft is the same as in the vertical lift load; apply the expression (Equation 10.3-1) if the value of $\mathrm{F}(\mathrm{N})$ is positive, and the (Equation 10.3-2) if negative.


Fig. 10.3-3 Inclined lift load

### 10.3.2 Acceleration and deceleration time calculation

When an object whose moment of inertia is $J\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ rotates at the speed $\mathrm{N}(\mathrm{r} / \mathrm{min})$, it has the following kinetic energy (Equation 10.3-9):

$$
E=\frac{J}{2} \cdot\left(\frac{2 \pi \cdot N}{60}\right)^{2}(J)
$$

(Equation 10.3-9)

To accelerate the above rotational object, the kinetic energy will be increased; to decelerate the object, the kinetic energy must be discharged. The torque required for acceleration and deceleration can be expressed as follows (Equation 10.3-10)):

$$
\tau=\quad J \cdot \frac{2 \pi}{60}\left(\frac{\mathrm{dN}}{\mathrm{dt}}\right) \quad(\mathrm{N} \cdot \mathrm{~m})
$$

(Equation 10.3-10)

This way, the mechanical moment of inertia is an important element in the acceleration and deceleration. First, calculation method of moment of inertia is described, after the calculation methods for the acceleration and deceleration times are explained.

## [ 1] Calculation of moment of inertia

For an object that rotates around the shaft, virtually divide the object into small segments and square the distance from the shaft to each segment. Then, sum the squares of the distances and the masses of the segments to calculate the moment of inertia.
$J=$
$\Sigma\left(W_{i} \cdot r_{i}{ }^{2}\right) \quad\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
(Equation 10.3-11)
The following describes equations to calculate moment of inertia having different shaped loads or load systems.

## (1) Hollow cylinder and solid cylinder

The common shape of a rotating body is hollow cylinder. The moment of inertia $\mathrm{J}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$ around the hollow cylinder center axis can be calculated as follows (Fig. 10.3-4), where the outer and inner diameters are $\mathrm{D}_{1}$ and $\mathrm{D}_{2}$ [ m ] and total mass is W [kg] in (Equation 10.3-12).

$$
\begin{equation*}
J=\frac{W \cdot\left(D_{1}{ }^{2}+D_{2}{ }^{2}\right)}{8}\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right) \tag{Equation10.3-12}
\end{equation*}
$$

For a similar shape, a solid cylinder, calculate the moment of inertia as $D_{2}$ is 0 .


Fig. 10.3-4 Hollow cylinder

## (2) For a general rotating body

Moment of inertia of various rotating bodies Table 10.3-1 lists the calculation equations of moment of inertia of various rotating bodies including the above cylindrical rotating body.

Table 10.3-1 Moment of inertia of various rotating bodies


## (3) For a load running horizontally

Assume a carrier table driven by a motor as shown in Fig. 10.3-1. If the table speed is $v(\mathrm{~m} / \mathrm{s})$ when the motor speed is $\mathrm{N}_{\mathrm{M}}(\mathrm{r} / \mathrm{min})$, then an equivalent distance from the shaft is equal to $60 \cdot v /\left(2 \pi \cdot \mathrm{~N}_{\mathrm{M}}\right)(\mathrm{m})$. The moment of inertia of the table and load to the shaft is calculated as follows ((Equation 10.3-13):

$$
\begin{equation*}
J=\left(\frac{60 u}{2 \pi \cdot N_{M}}\right)^{2} \cdot\left(W_{0}+W\right) \quad\left(\mathrm{kg} \cdot \mathrm{~m}^{2}\right) \tag{Equation10.3-13}
\end{equation*}
$$

## (4) For a vertical or inclined lift load

The moment of inertia $\mathrm{J}\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$ of the loads connected with a rope as shown in Fig. 10.3-2 and Fig. 10.3-3 is calculated with the following equation ((Equation 10.3-14) using the mass of all moving objects, although the motion directions of those loads are different.

$$
\begin{equation*}
J=\left(\frac{60 u}{2 \pi \cdot N_{M}}\right)^{2} \cdot\left(W_{O}+W+W_{B}\right) \quad\left(k g \cdot \mathrm{~m}^{2}\right) \tag{Equation10.3-14}
\end{equation*}
$$

## [2] Calculation of the acceleration time

Fig. 10.3-5 shows a general load model. Assume that a motor drives a load via a reduction-gear with efficiency $\eta_{\mathrm{G}}$. The time required to accelerate this load in stop state to a speed of $\mathrm{N}_{\mathrm{M}}(\mathrm{r} / \mathrm{min})$ is calculated with the following equation ((Equation 10.3-15):

$$
t_{A C C}=\frac{J_{1}+J_{2} / \eta_{G}}{\tau_{M}-\tau_{L} / \eta_{G}} \cdot \frac{2 \pi \cdot\left(N_{M}-0\right)}{60}
$$

(Equation 10.3-15)
where,
$J_{1}$ : Motor shaft moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
$J_{2}$ : Load shaft moment of inertia converted to motor shaft ( $\mathrm{kg} \cdot \mathrm{m}^{2}$ )
$\tau_{\mathrm{M}}$ : Minimum motor output torque in driving motor $(\mathrm{N} \cdot \mathrm{m})$
$\tau_{L}$ : Maximum load torque converted to motor shaft ( $\mathrm{N} \cdot \mathrm{m}$ )
$\eta_{\mathrm{G}}$ : Reduction-gear efficiency

As clarified in the above equation, the equivalent moment of inertia becomes $\left(\mathrm{J}_{1}+\mathrm{J}_{2} / \eta_{\mathrm{G}}\right)$ by considering the reduction-gear efficiency.


Fig. 10.3-5 Load model including reduction-gear

## [ 3] Calculation of the deceleration time

In a load system shown in Fig. 10.3-5, the time needed to stop the motor rotating at a speed of $\mathrm{N}_{\mathrm{M}}(\mathrm{r} / \mathrm{min})$ is calculated with the following equation (Equation 10.3-16):

$$
\mathrm{t}_{\mathrm{DEC}}=\frac{\mathrm{J}_{1}+\mathrm{J}_{2} \cdot \eta_{\mathrm{G}}}{\tau_{\mathrm{M}}-\tau_{\mathrm{L}} \cdot \eta_{\mathrm{G}}} \cdot \frac{2 \pi \cdot\left(0-\mathrm{N}_{\mathrm{M}}\right)}{60}(\mathrm{~s})
$$

(Equation 10.3-16)
where,
$\mathrm{J}_{1}$ : Motor shaft moment of inertia $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right.$ )
$\mathrm{J}_{2}$ : Load shaft moment of inertia converted to motor shaft $\left(\mathrm{kg} \cdot \mathrm{m}^{2}\right)$
$\tau_{\mathrm{M}}$ : Minimum motor output torque in braking (or decelerating) motor ( $\mathrm{N} \cdot \mathrm{m}$ )
$\tau_{L}:$ Maximum load torque converted to motor shaft ( $\mathrm{N} \cdot \mathrm{m}$ )
$\eta_{\mathrm{G}}$ : Reduction-gear efficiency

In the above equation, generally output torque $\tau_{\mathrm{M}}$ is negative and load torque $\tau_{\mathrm{L}}$ is positive. So, deceleration time becomes shorter.

Tip For lift applications, calculate the deceleration time using the negative value of $\tau_{\llcorner }$(maximum load torque converted to motor shaft).

## [ 4 ] Calculating non-linear acceleration/deceleration time

In applications requiring frequent acceleration/deceleration, the inverter can accelerate/decelerate the motor in the shortest time utilizing the maximum torque capability. The inverter in vector control mode can easily perform this type of operation.


In this case, the acceleration/deceleration vs. speed curve will form a non-linear figure, and the acceleration /
deceleration time cannot be calculated by a single expression. Generally, the acceleration/deceleration time is obtained by calculating the acceleration/deceleration time of $\Delta \mathrm{N}$ that is a difference of speed N broken into small parts, and then integrating it to obtain the total acceleration/deceleration time from start to end. Because the smaller $\Delta \mathrm{N}$ provides higher accuracy, this numerical calculation needs an aid of a computer program.

The following is a guide for the numerical calculation method using a computer program. Fig. 10.3-6 illustrates an example of driving characteristics with a constant output range. In the figure, the range under $\mathrm{N}_{0}$ is of constant torque characteristics, and the range between $N_{0}$ and $N_{1}$ is of a constant output with the non-linear acceleration/deceleration characteristics.

The expression (Equation 10.3-17) gives an acceleration time $\Delta \mathrm{t}_{\mathrm{Acc}}$ within a $\Delta \mathrm{N}$ speed increment.

$$
\begin{equation*}
\Delta t_{A C C}=\frac{J_{1}+J_{2} / \eta_{\mathrm{G}}}{\tau_{\mathrm{M}}-\tau_{\mathrm{L}} / \eta_{\mathrm{G}}} \cdot \frac{2 \pi \cdot \Delta \mathrm{~N}}{60}(\mathrm{~s}) \tag{Equation10.3-17}
\end{equation*}
$$

Before proceeding this calculation, obtain the motor shaft moment of inertia $J_{1}$, the load shaft moment of inertia converted to motor shaft $\mathrm{J}_{2}$, maximum load torque converted to motor shaft $\tau_{L}$, and the reduction-gear efficiency $\eta_{\mathrm{G}}$. Apply the maximum motor output torque $\tau_{\mathrm{M}}$ according to an actual speed thread $\Delta \mathrm{N}$ as follows.

## $\left[\tau_{\mathrm{M}}\right.$ in $\left.\mathrm{N} \leq \mathrm{N}_{0}\right] \quad$ Constant output torque range

$$
\tau_{M}=\frac{60 \cdot \mathrm{P}_{0}}{2 \pi \cdot \mathrm{~N}_{0}}(\mathrm{~N} \cdot \mathrm{~m})
$$

(Equation 10.3-18)
[ $\tau_{\mathrm{M}}$ in $\mathrm{N}_{0} \leq \mathrm{N} \leq \mathrm{N} 1$ ] Constant output power range
(The motor output torque is inversely proportional to the motor speed)

$$
\begin{equation*}
\tau_{M}=\frac{60 \cdot P_{0}}{2 \pi \cdot N} \quad(N \cdot m) \tag{Equation10.3-19}
\end{equation*}
$$

If the result obtained by the above calculation does not satisfy the target value, select an inverter with one rank higher capacity.

## [5] Calculating non-linear deceleration time

Use the following expression to obtain the non-linear deceleration time as well as for the acceleration time.

$$
\begin{equation*}
\Delta t_{D E C}=\frac{J_{1}+J_{2} \cdot \eta_{\mathrm{G}}}{\tau_{\mathrm{M}}-\tau_{\mathrm{L}} \cdot \eta_{\mathrm{G}}} \cdot \frac{2 \pi \cdot \Delta \mathrm{~N}}{60}(\mathrm{~s}) \tag{Equation10.3-20}
\end{equation*}
$$

In this expression, both $\tau_{\mathrm{M}}$, and $\Delta \mathrm{N}$ are generally negative values so that the load torque $\tau_{L}$ serves to assist the deceleration operation. For a lift load, however, the load torque $\tau_{L}$ is a negative value in some modes. In this case, the $\tau_{\mathrm{M}}$, and $\tau_{\llcorner }$will take polarity opposite to each other and the $\tau_{L}$ will actuate to prevent the deceleration operation of the lift.

### 10.3.3 Heat energy calculation of braking resistor

If the inverter brakes the motor, the kinetic energy of mechanical load is converted to electric energy to be regenerated into the inverter circuit. This regenerative energy is often consumed in so-called braking resistors as heat. The following explains the braking resistor rating.

## [ 1 ] Calculation of regenerative energy

In the inverter operation, one of the regenerative energy sources is the kinetic energy that is generated when an object with moment of inertia $J$ is rotating.

## (1) Kinetic energy of a moving object

When an object with moment of inertia $J\left(\mathrm{~kg} \cdot \mathrm{~m}^{2}\right)$ rotates at a speed $\mathrm{N}_{2}(\mathrm{r} / \mathrm{min})$, its kinetic energy is shown in (Equation 10.3-21).

$$
\begin{align*}
E & =\frac{\mathrm{J}}{2} \cdot\left(\frac{2 \pi \cdot N_{2}}{60}\right)^{2}\left(\mathrm{~J}=\mathrm{W}_{\mathrm{S}}\right)  \tag{Equation10.3-21}\\
& \fallingdotseq \frac{1}{182.4} \cdot \mathrm{~J} \cdot \mathrm{~N}_{2}{ }^{2}(\mathrm{~J})
\end{align*}
$$

(Equation 10.3-21')

When this object is decelerated to a speed $\mathrm{N}_{1}(\mathrm{r} / \mathrm{min})$, the output energy is as follows ((Equation 10.3-22):

$$
\begin{array}{rlrl}
E & =\frac{\mathrm{J}}{2} \cdot\left[\left(\frac{2 \pi \cdot N_{2}}{60}\right)^{2}-\left(\frac{2 \pi \cdot N_{1}}{60} \quad\right)^{2}\right] \quad(\mathrm{J}) & \text { (Equation 10.3-22) } \\
& \fallingdotseq \frac{1}{182.4} \cdot \mathrm{~J} \cdot\left(N_{2}{ }^{2}-\mathrm{N}_{1}{ }^{2}\right) & (\mathrm{J}) & \text { (Equation 10.3-22') }
\end{array}
$$

The energy regenerated to the inverter as shown in Fig. 10.3-5 is calculated from the reduction-gear efficiency $\eta_{\text {G }}$ and motor efficiency $\eta_{\mathrm{M}}$ as follows ((Equation 10.3-23):

$$
\mathrm{E} \fallingdotseq \frac{1}{182.4} \quad \cdot\left(\mathrm{~J}_{1}+\mathrm{J}_{2} \cdot \eta_{\mathrm{G}}\right) \cdot \eta_{\mathrm{M}} \cdot\left(\mathrm{~N}_{2}{ }^{2}-\mathrm{N}_{1}{ }^{2}\right)
$$

(Equation 10.3-23)

## (2) Potential energy of a lift

When an object whose mass is $W(\mathrm{~kg})$ falls from the height $\mathrm{h}_{2}(\mathrm{~m})$ to the height $\mathrm{h}_{1}(\mathrm{~m})$, the output energy is as follows ((Equation 10.3-24):

$$
\begin{array}{rll}
\mathrm{E}= & \mathrm{W} \cdot \mathrm{~g} \cdot\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right) & \left(\mathrm{J}=\mathrm{W}_{\mathrm{S}}\right) \\
\mathrm{g} \fallingdotseq & 9.8065\left(\mathrm{~m} / \mathrm{s}^{2}\right) &
\end{array}
$$

(Equation 10.3-24)

The energy regenerated to the inverter is calculated from the reduction-gear efficiency $\eta_{\mathrm{G}}$ and motor efficiency $\eta_{\mathrm{M}}$ as follows ((Equation 10.3-25):

$$
\begin{equation*}
\mathrm{E}=\mathrm{W} \cdot \mathrm{~g} \cdot\left(\mathrm{~h}_{2}-\mathrm{h}_{1}\right) \cdot \eta_{\mathrm{G}} \cdot \eta_{\mathrm{M}} \tag{J}
\end{equation*}
$$

(Equation 10.3-25)

### 10.3.4 Calculating the RMS rating of the motor

In case of the load which is repeatedly and very frequently driven by a motor, the motor current fluctuates largely and enters the short-time rating range of the motor repeatedly. Therefore, you have to review the allowable thermal rating of the motor. The heat value is assumed to be approximately proportional to the square of the motor current.

If an inverter drives a motor in duty cycles that are much shorter than the thermal time constant of the motor, calculate the "equivalent RMS current" as mentioned below, and select the motor so that this RMS current will not exceed the rated current of the motor.


Fig. 10.3-7 Sample of the repetitive operation

First, calculate the required torque of each part based on the speed pattern. Then using the torque-current curve of the motor, convert the torque to the motor current. The "equivalent RMS current, leq" can be finally calculated by the following equation:

$$
I \text { eq }=\sqrt{\frac{\mathrm{I}_{1}{ }^{2} \cdot \mathrm{t}_{1}+\mathrm{I}_{2}{ }^{2} \cdot \mathrm{t}_{2}+\mathrm{I}_{3}{ }^{2} \cdot \mathrm{t}_{3}+\mathrm{I}_{4}{ }^{2} \cdot \mathrm{t}_{4}+\mathrm{I}_{5}{ }^{2} \cdot \mathrm{t}_{5}}{\mathrm{t}_{1}+\mathrm{t}_{2}+\mathrm{t}_{3}+\mathrm{t}_{4}+\mathrm{t}_{5}+\mathrm{t}_{6}}}
$$

(Equation 10.3-26)

The torque-current curve for the dedicated motor is not available for actual calculation. Therefore, calculate the motor current I from the load torque $\tau_{1}$ using the following equation ((Equation 10.3-27)). Then, calculate the equivalent current leq:

$$
\begin{equation*}
I=\sqrt{\left(\frac{\tau_{1}}{100} \times I t_{100}\right)^{2}+\operatorname{Im}_{100}{ }^{2}} \text { (A) } \tag{Equation10.3-27}
\end{equation*}
$$

Where, $\tau_{1}$ is the load torque (\%), $I_{t 100}$ is the torque current, and $I_{m 100}$ is exciting current.

### 10.4 Selecting the Inverter Rating Specification (HHD/HND)

### 10.4.1 Precautions in making the selection

FRENIC-MEGA has a double rating specification, and so by making changes to setting values, it is possible to switch between the Heavy Duty application HHD specification and the Normal Duty application HND specification.

When selecting the inverter capacity, consider the capacity of the motor being used and the overload characteristics of the load, and refer to the information on HHD/HND specifications in "10.4.2 Guideline for selecting inverter specification and capacity".

Heavy Duty applications (HHD specification): This applies to equipment where the inverter load current during normal operation is less than the inverter rated current, and the load current during overload operation is less than $150 \%$ of the rated current for 1 minute, and 200\% for 3 seconds (applications requiring frequent acceleration and deceleration such as conveyors and cranes).

Normal Duty applications (HND specification): This applies to equipment where the inverter load current during normal operation is less than the inverter rated current, and the load current during overload operation is less than $120 \%$ of the rated current for 1 minute (fans, pumps, centrifuges, etc.).

The HND specification is for use at FRN0032G2S-2G/FRN0018G2■-4G or above.

### 10.4.2 Guideline for selecting inverter specification and capacity

Table 10.4-1 shows the functional differences between the HHD/HND specifications.
Provided that the application is satisfied with the HND specification in terms of both overload capability and functionality, an inverter capacity (HND specification) one to two ranks lower than the capacity of the motor being used can be selected.

Table 10.4-1 Functional differences between HHD/HND specifications

| Function | HHD specification | HND specification <br> (FRN0032G2S-2G/FRN0018 <br> G2■-4G or above) |  |
| :--- | :--- | :--- | :--- |
| Application | Heavy Duty applications | Normal Duty applications |  |
| Function code setting <br> value <br> (HHD/HND <br> specification <br> switching) | F80 data = 0 <br> (factory default) | F80 data =1 |  |

## SELECTING PERIPHERAL EQUIPMENT

This chapter describes how to use a range of peripheral equipment and options, FRENIC-MEGA's configuration with them, and requirements and precautions for selecting wires and crimp terminals.

## Contents

11.1 Configuring the FRENIC-MEGA ..... 11-1
11.2 Size of Current for Each Part of the Inverter ..... 11-2
11.3 Molded Case Circuit Breakers (MCCB), Earth Leakage Circuit Breakers (ELCB) and Magnetic Contactors (MC) ..... 11-5
11.3.1 Function Overview ..... 11-5
11.3.2 Connection Example and Criteria for Selection of Circuit Breakers ..... 11-6
11.4 Surge Killers ..... 11-12
11.5 Lightning Surge Protection Device SPD ..... 11-13
11.6 Surge Absorbers ..... 11-14
11.7 Filter Capacitors for Suppressing AM Radio Band Noise ..... 11-15
11.8 Braking Resistors (DB) and Braking Units ..... 11-16
11.8.1 Selecting a Braking Resistor ..... 11-16
[1] Selection procedure ..... 11-16
[2] Notes on selection ..... 11-16
11.8.2 Overview of Braking Resistors (DB) and Braking Units ..... 11-17
[1] Standard type ..... 11-17
[ 2 ] 10\%ED type ..... 11-17
[3] Overview of braking unit ..... 11-18
11.8.3 Specification ..... 11-19
11.8.4 External dimensions ..... 11-22
11.9 High Power Factor Power Supply Regeneration PWM Converters (RHC Series) ..... 11-24
11.9.1 Overview ..... 11-24
11.9.2 Specification ..... 11-25
[1] Standard specification ..... 11-25
[2] Common Specifications ..... 11-29
11.9.3 Function Specifications ..... 11-31
11.9.4 Device Configuration ..... 11-36
11.9.5 External Dimensions ..... 11-39
11.10 Compact Power Regeneration PWM Converter ..... 11-48
11.10.1 Specifications ..... 11-48
[1] Standard specification ..... 11-48
[2] Common specifications ..... 11-49
[3] Terminal functions ..... 11-50
11.10.2 Device Configuration ..... 11-52
[1] Device configuration table ..... 11-52
[2] Basic connection diagrams ..... 11-53
11.10.3 External Dimensions ..... 11-54
11.10.4 Peripheral Equipment ..... 11-56
11.11 DC Reactors (DCRs) ..... 11-61
11.12 AC Reactors (ACRs) ..... 11-67
11.13 Surge Suppression Units (SSU) ..... 11-72
11.14 Output Circuit Filters (OFL) ..... 11-74
11.15 Zero-phase Reactors for Suppressing Radio Noise (ACL) ..... 11-77
11.16 External Cooling Fan Attachments ..... 11-78
11.17 IP40 Compatibility Attachment (P40ST-Fם1) ..... 11-80
11.18 External Frequency Command Potentiometer (External) ..... 11-82
11.19 Extension Cable for Remote Operation ..... 11-83
11.20 Selecting Measurement Options ..... 11-84
11.20.1 Frequency meters ..... 11-84
11.21 Control Terminal Block (G1S Compatible) OPC-G1-TB1 ..... 11-85
11.22 Built-in Option Card Types and Ports in Which They Can be Installed ..... 11-86
11.22.1 T-Link Communication Card (OPC-TL) ..... 11-87
11.22.2 SX-bus Communication Card (OPC-SX) ..... 11-91
11.22.3 PROFIBUS-DP Communication Card (OPC-PDP2) ..... 11-94
11.22.4 CANopen Communication Card (OPC-COP2) ..... 11-97
11.22.5 DeviceNet Communication Card (OPC-DEV) ..... 11-100
11.22.6 CC-Link Communication Card (OPC-CCL) ..... 11-104
11.22.7 Multiprotocol Ethernet ${ }^{\circledR}$ Communication Card (OPC-ETM) ..... 11-106
11.22.8 Digital Input Interface Card (OPC-DI) ..... 11-109
11.22.9 Digital Output Interface Card (OPC-DO) ..... 11-112
11.22.10 Analog Interface Card (OPC-AIO) ..... 11-115
11.22.11 Relay Output Interface Card (OPC-RY) ..... 11-121
11.22.12 PG Interface Card (OPC-PG) ..... 11-123
11.22.13 PG Interface (5 V Line Driver) Card (OPC-PG2) ..... 11-126
11.22.14 PG Interface (5 V Line Driver x 2 Systems) Card (OPC-PG22) ..... 11-130
11.22.15PG Interface Card for Synchronous Motor with Sensor (OPC-PMPG2) ..... 11-133
11.23 Multi-function Keypad (TP-A2SW) ..... 11-135

### 11.1 Configuring the FRENIC-MEGA

This section lists the names and features of peripheral equipment and options for the FRENIC-MEGA as well as a configuration example.


Fig. 11.1-1 Connection configuration diagram

### 11.2 Size of Current for Each Part of the Inverter

Table 11.2-1 contains information for referencing current values for each part of the inverter based on the power system and applicable motor capacity necessary when selecting peripheral equipment and options.

Table 11.2-1 Size of current for each part of inverter

|  |  |  |  |  |  |  |  | HD speci ND specif | $\begin{aligned} & \text { ion: } \mathrm{He} \\ & \text { on: Nor } \end{aligned}$ | Duty applications Duty applications | |
|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | Inverter type | $50 \mathrm{~Hz}, 200 \mathrm{~V}$ |  |  | $60 \mathrm{~Hz}, 220 \mathrm{~V}$ |  |  | Braking resistor circuit current (A) |
|  |  |  |  | Input RMS current value <br> (A) <br> DC reactor (DCR) |  |  | Input RMS current value <br> (A) |  |  |  |
|  |  |  |  |  |  | DC r | (CR) |  |  |
|  |  |  |  | Yes | N/A |  | Yes | N/A |  |  |
|  | HHD | 0.4 [1/2] | FRN0003G2S-2G | 1.6 | 3.1 |  | 2.0 | 1.5 | 3.0 | 1,8 | 1.2 |
|  | HHD | 0.75 [1] | FRN0005G2S-2G | 3.2 | 5.3 | 4.0 | 3.0 | 4.9 | 3.7 | 1.6 |
|  | HHD | 1.5 [2] | FRN0008G2S-2G | 6.1 | 9.5 | 7.5 | 5.6 | 8.7 | 6.9 | 3, 6 |
|  | HHD | 2.2 [3] | FRN0011G2S-2G | 8.9 | 13.2 | 11.0 | 8.1 | 12.0 | 10.0 | 3.5 |
|  | HHD | 3.7 [5] | FRN0018G2S-2G | 15.0 | 22.2 | 18.4 | 13.6 | 20.0 | 16.7 | 4.1 |
|  | HHD | 5.5 [7.5] | FRN0032G2S-2G | 21.1 | 31.5 | 25.9 | 19.0 | 28.4 | 23.3 | 6.4 |
|  | HND | 7.5 [10] |  | 28.8 | 42.7 | 35.3 | 26.0 | 38.5 | 31.9 | 6.4 |
|  | HHD | 7.5 [10] | FRN0046G2S-2G | 28.8 | 42.7 | 35.3 | 26.0 | 38.5 | 31.9 | 6.1 |
|  | HND | 11 [15] |  | 42.2 | 60.7 | 51.7 | 38.0 | 54.7 | 46.6 | 6.1 |
|  | HHD | 11 [15] | FRN0059G2S-2G | 42.2 | 60.7 | 51.7 | 38.0 | 54.7 | 46.6 | 9.1 |
|  | HND | 15 [20] |  | 57.6 | 80.1 | 70.6 | 52.0 | 72.2 | 63.7 | 9.1 |
|  | HHD | 15 [20] | FRN0075G2S-2G | 57.6 | 80.1 | 70.6 | 52.0 | 72.2 | 63.7 | 11 |
|  | HND | 18.5 [25] |  | 71.0 | 97.0 | 87.0 | 64.0 | 87.4 | 78.4 | 11 |
|  | HHD | 18.5 [25] | FRN0088G2S-2G | 71.0 | 97.0 | 87.0 | 64.0 | 87.4 | 78.4 | 14 |
|  | HND | 22 [30] |  | 84.4 | 112 | 103 | 76.0 | 101 | 93.1 | 14 |
|  | HHD | 22 [30] | FRN0115G2S-2G | 84.4 | 112 | 103 | 76.0 | 101 | 93.1 | 15 |
|  | HND | 30 [40] |  | 114 | 151 | 140 | 103 | 136 | 126 | 15 |
|  | HHD | 30 [40] | FRN0146G2S-2G | 114 | 151 | 140 | 103 | 136 | 126 | 19 |
|  | HND | 37 [50] |  | 138 | 185 | 169 | 124 | 167 | 152 | 19 |
|  | HHD | 37 [50] | FRN0180G2S-2G | 138 | 185 | 169 | 124 | 167 | 152 | 25 |
|  | HND | 45 [60] |  | 167 | 225 | 205 | 150 | 203 | 184 | 25 |
|  | HHD | 45 [60] | FRN0215G2S-2G | 167 | 225 | 205 | 150 | 203 | 184 | 30 |
|  | HND | 55 [75] |  | 203 | 270 | 249 | 183 | 243 | 224 | 30 |
|  | HHD | 55 [75] | FRN0288G2S-2G | 203 | 270 | 249 | 183 | 243 | 224 | 37 |
|  | HND | 75 [100] |  | 282 | - | 345 | 254 | - | 311 | 37 |
|  | HHD | 75 [100] | FRN0346G2S-2G | 282 |  | 345 | 254 |  | 311 | 49 |
|  | HND | 90 [125] |  | 334 |  | 409 | 301 |  | 368 | 49 |
|  | HHD | 90 [125] | FRN0432G2S-2G | 334 |  | 409 | 301 |  | 368 | 62 |
|  | HND | 110 [150] |  | 410 |  | 502 | 369 |  | 452 | 62 |

(Note)

- Inverter efficiency is calculated using values suitable for each inverter model. Furthermore, input RMS current is calculated based on the following conditions.
[FRN0115G2S-2G or lower] Power supply capacity: 500 kVA, source impedance: $5 \%$
[FRN0146G2S-2G or higher] Values commensurate with the capacity recommended by Fuji Electric are used for calculating the power supply capacity and source impedance.
- The input RMS currents listed in the above table will vary in inverse proportion to the power supply voltage, such as 230 V .
- The braking circuit current is always constant, independent of braking resistor type (built-in, standard, 10\%ED).

Table 11．2－1 Size of current for each part of inverter（cont．）
HHD specification：Heavy Duty applications
HND specification：Normal Duty applications

| $\begin{aligned} & \varepsilon \\ & \stackrel{y}{\omega} \\ & \stackrel{N}{\omega} \\ & \omega \\ & \stackrel{\omega}{0} \\ & 0 \\ & 0 \end{aligned}$ |  |  | Inverter type | $50 \mathrm{~Hz}, 400 \mathrm{~V}$ |  |  | $60 \mathrm{~Hz}, 440 \mathrm{~V}$ |  |  | Braking resistor circuit current（A） |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  | Input RMS current（A） |  |  | Input RMS current（A） |  |  |  |
|  |  |  |  | DC reactor（DCR） |  |  | DC reactor（DCR） |  |  |  |
|  |  |  |  | Yes | N／A |  | Yes | N／A |  |  |
|  | HHD | 0.4 ［1／2］ | FRN0002G2ם－4G | 0.85 | 1.7 | 1 | 0.74 | 1.7 | 0.99 | 0.8 |
|  | HHD | 0.75 ［1］ | FRN0003G2ם－4G | 1.6 | 3.1 | 2.0 | 1.5 | 2.9 | 1.9 | 1.1 |
|  | HHD | 1.5 ［2］ | FRN0004G2ם－4G | 3.0 | 5.9 | 3.7 | 2.8 | 5.4 | 3.5 | 1， 8 |
|  | HHD | 2.2 ［3］ | FRN0006G2ם－4G | 4.5 | 8.2 | 5.6 | 4.1 | 7.5 | 5.1 | 1， 8 |
|  | HHD | 3.7 ［5］ | FRN0009G2ם－4G | 7.5 | 13 | 9.2 | 6.9 | 11.8 | 8.5 | 2.1 |
|  | HHD | 5.5 ［7．5］ | FRN0018G2a－4G | 10.6 | 17.3 | 13.0 | 9.6 | 15.7 | 11.8 | 3.2 |
|  | HND | 7.5 ［10］ |  | 14.4 | 23.2 | 17.7 | 13.0 | 21.0 | 16.0 | 3.2 |
|  | HHD | 7.5 ［10］ | FRN0023G2a－4G | 14.4 | 23.2 | 17.7 | 13.0 | 21.0 | 16.0 | 3.1 |
|  | HND | 11 ［15］ |  | 21.1 | 33.0 | 25.9 | 19.0 | 29.8 | 23.3 | 3.1 |
|  | HHD | 11 ［15］ | FRN0031G2a－4G | 21.1 | 33.0 | 25.9 | 19.0 | 29.8 | 23.3 | 4.5 |
|  | HND | 15 ［20］ |  | 28.8 | 43.8 | 35.3 | 26.0 | 39.5 | 31.9 | 4.5 |
|  | HHD | 15 ［20］ | FRN0038G2a－4G | 28.8 | 43.8 | 35.3 | 26.0 | 39.5 | 31.9 | 5.7 |
|  | HND | 18.5 ［25］ |  | 35.5 | 52.3 | 43.5 | 32.0 | 47.1 | 39.2 | 5.7 |
|  | HHD | 18.5 ［25］ | FRN0045G2a－4G | 35.5 | 52.3 | 43.5 | 32.0 | 47.1 | 39.2 | 7.2 |
|  | HND | 22 ［30］ |  | 42.2 | 60.6 | 51.7 | 38.0 | 54.6 | 46.6 | 7.2 |
|  | HHD | 22 ［30］ | FRN0060G2a－4G | 42.2 | 60.6 | 51.7 | 38.0 | 54.6 | 46.6 | 7.7 |
|  | HND | 30 ［40］ |  | 57.0 | 77.9 | 69.9 | 51.4 | 70.2 | 63.0 | 7.7 |
|  | HHD | 30 ［40］ | FRN0075G2a－4G | 57.0 | 77.9 | 69.9 | 51.4 | 70.2 | 63.0 | 10 |
|  | HND | 37 ［50］ |  | 68.5 | 94.3 | 83.9 | 61.8 | 85.0 | 75.7 | 10 |
|  | HHD | 37 ［50］ | FRN0091G2a－4G | 68.5 | 94.3 | 83.9 | 61.8 | 85.0 | 75.7 | 12 |
|  | HND | 45 ［60］ |  | 83.2 | 114 | 102 | 75.0 | 103 | 91.9 | 12 |
|  | HHD | 45 ［60］ | FRN0112G2■－4G | 83.2 | 114 | 102 | 75.0 | 103 | 91.9 | 15 |
|  | HND | 55 ［75］ |  | 102 | 140 | 125 | 91.9 | 126 | 113 | 15 |
|  | HHD | 55 ［75］ | FRN0150G2■－4G | 102 | 140 | 125 | 91.9 | 126 | 113 | 19 |
|  | HND | 75 ［100］ |  | 138 | － | 169 | 124 | － | 152 | 19 |
|  | HHD | 75 ［100］ | FRN0180G2a－4G | 138 |  | 169 | 124 |  | 152 | 24 |
|  | HND | 90 ［125］ |  | 164 |  | 201 | 148 |  | 181 | 24 |
|  | HHD | 90 ［125］ | FRN0216G2ם－4G | 164 |  | 201 | 148 |  | 181 | 31 |
|  | HND | 110 ［150］ |  | 201 |  | 246 | 181 |  | 222 | 31 |
|  | HHD | 110 ［150］ | FRN0260G2a－4G | 201 |  | 246 | 181 |  | 222 | 35 |
|  | HND | 132 ［200］ |  | 238 |  | 292 | 214 |  | 263 | 35 |
|  | HHD | 132 ［200］ | FRN0325G2■－4G | 238 |  | 292 | 214 |  | 263 | 42 |
|  | HND | 160 ［250］ |  | 286 |  | 350 | 258 |  | 315 | 42 |
|  | HHD | 160 ［250］ | FRN0377G2a－4G | 286 |  | 350 | 258 |  | 315 | 50 |
|  | HND | 200 ［300］ |  | 357 |  | 437 | 321 |  | 394 | 50 |
|  | HHD | 200 ［300］ | FRN0432G2a－4G | 357 |  | 437 | 321 |  | 394 | 62 |
|  | HND | 220 ［350］ |  | 390 |  | 478 | 351 |  | 430 | 62 |

（Note）$\square$ in the inverter type is replaced by a letter of the alphabet．
ㄴ S（basic type），E（type with built－in EMC filter）
－Inverter efficiency is calculated using values suitable for each inverter model．Furthermore，input RMS current is calculated based on the following conditions．
［FRN0060G2ם－4G or lower］Power supply capacity： 500 kVA ，source impedance：5\％
［FRN0075G2ם－4G or higher］Values commensurate with the capacity recommended by Fuji Electric are used for calculating the power supply capacity and source impedance．
－The input RMS currents listed in the above table will vary in inverse proportion to the power supply voltage， such as 380 V ．
－The braking circuit current is always constant，independent of braking resistor type（built－in，standard， $10 \% E D)$ ．

Table 11.2-1 Size of current for each part of inverter (cont.)

|  |  |  |  |  |  |  |  | D specif <br> specifi | : Heav <br> : Norma | applications applications |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Inverter type | $50 \mathrm{~Hz}, 400 \mathrm{~V}$ |  |  | $60 \mathrm{~Hz}, 440 \mathrm{~V}$ |  |  | Braking resistor circuit current (A) |
|  |  |  |  | Input RMS current (A) |  |  | Input RMS current (A) |  |  |  |
|  |  |  |  | DC reactor (DCR) |  |  | DC reactor (DCR) |  |  |  |
|  |  |  |  | Yes | N/A |  | Yes | N/A |  |  |
|  | HHD | 220 [350] | FRN0520G2a-4G | 390 | - | 478 | 351 | - | 430 | 71 |
|  | HND | 250 [350] |  | 443 |  | 543 | 399 |  | 489 | 100 |
|  | HND | 280 [400] |  | 500 |  | 613 | 450 |  | 552 | 71 |
|  | HHD | 280 [400] | FRN0650G2■-4G | 500 |  | 613 | 450 |  | 552 | 100 |
|  | HND | 315 [450] |  | 559 |  | 685 | 503 |  | 617 | 100 |
|  | HND | 355 [500] |  | 628 |  | 770 | 565 |  | 693 | 100 |
|  | HHD | 315 [450] | FRN0740G2■-4G | 559 |  | 685 | 503 |  | 617 | 100 |
|  | HND | 355 [500] |  | 628 |  | 770 | 565 |  | 693 | 124 |
|  | HND | 400 [600] |  | 705 |  | 864 | 635 |  | 778 | 124 |
|  | HHD | 355 [500] | FRN0960G2a-4G | 628 |  | 770 | 565 |  | 693 | 124 |
|  | HND | 400 [600] |  | 705 |  | 864 | 635 |  | 778 | 124 |
|  | HND | 450 [700] |  | 789 |  | 967 | 710 |  | 870 | 124 |
|  | HND | 500 [800] |  | 881 |  | 1080 | 793 |  | 972 | 124 |
|  | HHD | 400 [600] | FRN1040G2a-4G | 705 |  | 864 | 635 |  | 778 | 124 |
|  | HND | 450 [700] |  | 789 |  | 967 | 710 |  | 870 | 124 |
|  | HND | 500 [800] |  | 881 |  | 1080 | 793 |  | 972 | 124 |
|  | HND | 560 [900] |  | 990 |  | 1213 | 891 |  | 1092 | 140 |
|  | HHD | 500 [800] | FRN1170G2ם-4G | 881 |  | 1080 | 793 |  | 972 | 186 |
|  | HND | 630 [900] |  | 1115 |  | 1367 | 1004 |  | 1230 | 186 |
|  | HHD | 630 [900] | FRN1386G2a-4G | 1115 |  | 1367 | 1004 |  | 1230 | 212 |
|  | HND | 710 [1000] |  | 1256 |  | 1539 | 1130 |  | 1385 | 212 |

(Note) $\square$ in the inverter type is replaced by a letter of the alphabet.
ㄴ S (basic type), E (type with built-in EMC filter)

- Inverter efficiency is calculated using values suitable for each inverter model. Furthermore, input RMS current is calculated based on the following conditions.
[FRN0060G2a-4G or lower] Power supply capacity: 500 kVA, source impedance: $5 \%$
[FRN0075G2ם-4G or higher] Values commensurate with the capacity recommended by Fuji Electric are used for calculating the power supply capacity and source impedance.
- The input RMS currents listed in the above table will vary in inverse proportion to the power supply voltage, such as 380 V .
- The braking circuit current is always constant, independent of braking resistor type (built-in, standard, $10 \% E D$ ).


### 11.3 Molded Case Circuit Breakers (MCCB), Earth Leakage Circuit Breakers (ELCB) and Magnetic Contactors (MC)

### 11.3.1 Function Overview

## - MCCBs and ELCBs*

* With overcurrent protection

Molded Case Circuit Breakers (MCCBs) are designed to provide protection up to the inverter main circuit terminals (three-phase input: L1/R, L2/S, L3/T) from overload or short-circuit, which in turn prevents secondary accidents caused by inverter damage trouble.
Earth Leakage Circuit Breakers (ELCBs) function in the same way as MCCBs, and are connected to protect main circuit wiring to the inverter, and for power supply switching.
Built-in overcurrent/overload protective functions protect the inverter.

## - Magnetic contactor

MCs can be used at both the power input and output sides of the inverter. MCs are used as described below. Use them as necessary. When inserted in the output circuit of the inverter, MCs can also be used for switching the commercial power supply for inverter drive motors.

## At the power supply side

MCs at the inverter input side are used in the following cases.
(1) To forcibly cut off the inverter from the power supply with the protective function built into the inverter, or with the external signal input.
(2) To stop the inverter operation in an emergency when unable to input the stop command due to circuit trouble.
(3) To cut off the inverter from the power supply when the MCCB inserted in the power supply side cannot cut it off for maintenance or inspection purpose If using for this purpose only, it is recommended that you use an MC capable of turning the MC ON/OFF manually.

Avoid frequent ON/OFF operation of the magnetic contactor (MC) at the input side (primary side); otherwise, the inverter failure may result.
The frequency of the MC's ON/OFF should not be more than once per 30 minutes. To assure 10year or longer service life of the inverter, it should not be more than once per hour.
If frequent start/stop of the motor is required, use [FWD]/[REV] terminal signals or the Run)/(soo) keys on the inverter keypad.

## At the output side

MCs at the inverter output side are used in the following cases.
Prevent externally turned-around current from being applied to the inverter power output terminals ([U], [V], and [W]) unexpectedly. An MC should be used, for example, when a circuit that switches the motor driving power supply between the inverter output and commercial power lines is connected to the inverter.
Tip If a magnetic contactor (MC) is installed at the inverter output side (secondary side) for switching the motor to a commercial power or for any other purposes, it should be switched on and off when both the inverter and motor are completely stopped. This prevents the contact point from getting damaged due to a switching arc of the MC. Do not equip magnetic contactors with main circuit surge suppression units (Fuji Electric SZ-ZMa, etc.)
Applying a commercial power to the inverter's output (secondary) circuit breaks the inverter. To avoid this, employ an interlock to ensure that the magnetic contactors at the commercial power supply side and inverter output side do not turn ON at the same time.
(2)Drive more than one motor selectively by a single inverter.
(3)Selectively cut off the motor whose thermal overload relay or equivalent devices have been activated.

## Driving the motor using commercial power lines

MCs can also be used to switch the power supply of the motor driven by the inverter to a commercial power supply.
Select the MC so as to satisfy the rated currents listed in Table 11.2-1, which are the most critical RMS currents for using the inverter (see Table 11.3-1). For switching the motor drive source between the inverter output and commercial power lines, use the MC of class AC3 specified by JIS C8325 in the commercial line side.

### 11.3.2 Connection Example and Criteria for Selection of Circuit Breakers

When selecting molded case circuit breaker (MCCB), earth leakage circuit breaker (ELCB) (with overcurrent protection function), and magnetic contactor (MC) connection examples based on Fig. 11.3-1, the required rated current and magnetic contactor types are shown in Table 11.3-1. Table 11.3-2 lists the applicable grades of ELCB sensitivity current.

## $\triangle$ WARNING

If connecting to the inverter to the power supply, insert an MCCB or ELCB (with overcurrent protection) recommended for each inverter. Do not use an MCCB or ELCB of a higher rating than that recommended.

## Failure to observe this could result in fire.



Molded case circuit breaker or earth leakage circuit breaker


Magnetic contactor


Fig. 11.3-1 External views and connection example for MCCB, ELCB and MC

Table 11.3-1 Molded case circuit breaker (MCCB), earth leakage circuit breaker (ELCB), magnetic contactor (MC)

|  |  | Inverter type |  | MCCB, ELCB rated current (A) |  | Magnetic contactor (MC) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | $\begin{gathered} \hline \text { Input circuit } \\ \hline \text { DC reactors (DCRs) } \end{gathered}$ |  | Output circuit |  |
|  |  |  |  | DC reactors (DCRs) |  |  |  | HHD <br> specification | HND specification |
|  |  |  |  | Yes | N/A | Yes | N/A |  |  |
| $\begin{aligned} & > \\ & \hline \text { O} \\ & \text { N } \\ & \ddot{0} \\ & \stackrel{0}{\circ} \\ & \stackrel{\circ}{\dot{~}} \\ & \stackrel{\omega}{E} \end{aligned}$ | 0.4 [1/2] | FRN0003G2S-2G | HHD | 5 | 5 | SC-05 | SC-05 | SC-05 | - |
|  | 0.75 [1] | FRN0005G2S-2G |  |  | 10 |  |  |  |  |
|  | 1.5 [2] | FRN0008G2S-2G |  | 10 | 15 |  |  |  |  |
|  | 2.2 [3] | FRN0011G2S-2G |  |  | 20 |  |  |  |  |
|  | 3.7 [5] | FRN0018G2S-2G |  | 20 | 30 |  | SC-5-1 |  |  |
|  | 5.5 [7.5] | FRN0032G2S-2G | HHD | 30 | 50 |  | SC-N1 | SC-4-0 |  |
|  | $75[10]$ | FRN0032G2S-2G | HND | 40 | 75 | SC-5-1 | SC-N2 | - | SC-5-1 |
|  | 7.5 [10] | FRN | HHD |  |  |  |  | SC-N1 | - |
|  | 11 [15] | FRN0046G2S-2G | HND | 50 | 100 | SC-N1 | SC-N2S | - | SC-N1 |
|  | 115] | FRN0059G2S-2G | HHD |  |  |  |  | SC-N1 | - |
|  | 15 [20] |  | HND | 75 | 125 | SC-N2 | SC-N3 | - | SC-N2 |
|  | 15 [20] | FRN0075G2S-2G | HHD |  |  |  |  | SC-N2 | - |
|  | 18.5 [25] |  | HND | 100 | 150 | $\begin{aligned} & \text { SC- } \\ & \text { N2S } \end{aligned}$ | SC-N4 | - | SC-N2S |
|  | 18.5 [25] | FRN0088G2S-2G | HHD |  |  |  |  | SC-N2S | - |
|  | 22 [30] |  | HND |  | 175 |  | SC-N5 | - | SC-N2S |
|  |  | FRN0115G2S-2G | HHD |  |  |  |  | SC-N3 | - |
|  | 30 [40] |  | HND | 150 | 200 | SC-N4 | SC-N7 | - | SC-N4 |
|  |  | FRN0146G2S-2G | HHD |  |  |  |  | SC-N4 | - |
|  |  |  | HND | 175 | 250 | SC-N5 | SC-N8 | - | SC-N5 |
|  | 37 [50] | FRN0180G2S-2G | HHD |  |  |  |  | SC-N5 | - |
|  | 45 [60] |  | HND | 200 | 300 | SC-N7 |  | - | SC-N7 |
|  | 45 [60] | FRN0215G2S-2G | HHD |  |  |  |  | SC-N7 | - |
|  | 55 [75] |  | HND | 250 | 350 | SC-N8 | SC-N11 | - | SC-N8 |
|  | 55 [75] | FRN0288G2S-2G | HHD |  |  |  |  | SC-N8 | - |
|  |  |  | HND | 350 | - | $\begin{aligned} & \text { SC- } \\ & \text { N11 } \end{aligned}$ | - | - | SC-N10 |
|  | 75 [100] | FRN0346G2S-2G | HHD |  |  |  |  | SC-N11 | - |
|  | 90 [125] |  | HND | 400 |  |  |  | - | SC-N11 |
|  |  | FRN0432G2S-2G | HHD |  |  |  |  | SC-N11 | - |
|  | 110 [150] |  | HND | 500 |  | $\begin{aligned} & \text { SC- } \\ & \text { N12 } \end{aligned}$ |  | - | SC-N12 |

(Note)

- Install the MCCB or ELCB at the input side of the inverter. They cannot be installed at the output side of the inverter.
- The recommended rated current (MCCB and ELCB grounding environment conditions are selected taking the correction factor ( 0.85 ) based on ambient temperature conditions into consideration) under panel internal temperature of $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ or less is shown for MCCBs and ELCBs. Select an MCCB or ELCB suitable for the actual short-circuit breaking capacity needed for your power systems.
- HIV wire (tolerant up to $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ ) is assumed for the connected wire type when selecting MCs. If selecting MCs with other wire, it will be necessary to select again taking the terminal block size and wire size into consideration.
- Use ELCBs with overcurrent protection.
- To protect your power systems from secondary accidents caused by the broken inverter, use an MCCB or ELCB with the rated current listed in the above table. Do not use a higher rated current than necessary.

Table 11.3-1 Molded case circuit breaker (MCCB), earth leakage circuit breaker (ELCB), magnetic contactor (MC) (cont.)

*1: SC-N12+SZ-SP9 (3 sets)
*2: SC-N14+SZ-SP10 (3 sets)
(Note) $\square$ in the inverter type is replaced by a letter of the alphabet.
$\qquad$ S (basic type), E (type with built-in EMC filter)
Install the MCCB or ELCB at the input side of the inverter. They cannot be installed at the output side of the inverter.

- The recommended rated current (MCCB and ELCB grounding environment conditions are selected taking the correction factor ( 0.85 ) based on ambient temperature conditions into consideration) under panel internal temperature of $50^{\circ} \mathrm{C}\left(122^{\circ} \mathrm{F}\right)$ or less is shown for MCCBs and ELCBs. Select an MCCB or ELCB suitable for the actual short-circuit breaking capacity needed for your power systems.
- HIV wire (tolerant up to $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ ) is assumed for the connected wire type when selecting MCs. If selecting MCs with other wire, it will be necessary to select again taking the terminal block size and wire size into consideration.
- Use ELCBs with overcurrent protection.
- To protect your power systems from secondary accidents caused by the broken inverter, use an MCCB or ELCB with the rated current listed in the above table. Do not use a higher rated current higher than necessary.

Table 11.3-2 shows the relationship between the ELCB (with overcurrent protection) sensitivity current and wiring length at the output side. Note that the sensitivity levels listed in the table are estimated values based on the results obtained by the test setup in the Fuji laboratory where each inverter drives a single motor.

Table 11.3-2 Application classification for earth leakage breaker (ELCB) sensitivity current

| Power system | Standard applicable motor (kW) [HP] | Wire length and sensitivity current |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | 10 m | 30 m | 50 m | 100 m | 200 m | 300 m |
| Three-phase200 V 200 V | 0.4 [1/2]0.75 [1] |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |
|  | 1.5 [2] |  |  |  |  |  |  |
|  | 2.2 [3] |  | 30 mA |  |  |  |  |
|  | 3.7 [5] |  |  |  |  |  |  |
|  | 5.5 [7.5] |  |  |  |  |  |  |
|  | 7.5 [10] |  |  |  | 100 mA |  |  |
|  | 11 [15] |  |  |  |  |  |  |
|  | 15 [20] |  |  |  |  |  |  |
|  | 18.5 [25] |  |  |  |  | 200 mA |  |
|  | 22 [30] |  |  |  |  |  |  |
|  | 30 [40] |  |  |  |  |  |  |
|  | 37 [50] |  |  |  |  |  |  |
|  | 45 [60] |  |  |  |  |  |  |
|  | 55 [75] |  |  |  |  |  |  |
|  | 75 [100] |  |  |  |  |  | 500 mA |
|  | 90 [125] |  |  |  |  |  |  |
|  | 110 [150] |  |  |  |  |  |  |
| $\begin{aligned} & \text { Three-phase } \\ & 400 \mathrm{~V} \end{aligned}$ | 0.4 [1/2] |  |  |  |  |  |  |
|  | 0.75 [1] |  |  |  |  |  |  |
|  | 1.5 [2] |  |  |  |  |  |  |
|  | 2.2 [3] |  |  |  |  |  |  |
|  | 3.7 [5] | 30 mA |  |  |  |  |  |
|  | 5.5 [7.5] |  |  |  |  |  |  |
|  | 7.5 [10] |  |  |  |  |  |  |
|  | 11 [15] |  |  | 100 mA |  |  |  |
|  | 15 [20] |  |  |  |  |  |  |
|  | 18.5 [25] |  |  |  |  |  |  |
|  | 22 [30] |  |  |  | 200 mA |  |  |
|  | 30 [40] |  |  |  |  |  |  |
|  | 37 [50] |  |  |  |  |  |  |
|  | 45 [60] |  |  |  |  | 500 mA |  |
|  | 55 [75] |  |  |  |  |  |  |
|  | 75 [100] |  |  |  |  |  |  |
|  | 90 [125] |  |  |  |  |  |  |
|  | 110 [150] |  |  |  |  |  |  |
|  | 132 [200] |  |  |  |  |  | 1000 mA |
|  | 160 [250] |  |  |  |  |  | (Special) |
|  | 200 [300] |  |  |  |  |  |  |
|  | 220 [350] |  |  |  |  |  |  |
|  | 250 [350] |  |  |  |  |  |  |
|  | 280 [400] |  |  |  |  |  |  |
|  | 315 [450] |  |  |  |  |  |  |
|  | 355 [500] |  |  |  |  |  | 3000 mA |
|  | 400 [600] |  |  |  |  |  | (Special) |
|  | 450 [700] |  |  |  |  |  |  |
|  | 560 [900] |  |  |  |  |  |  |
|  | 630 [900] |  |  |  |  |  |  |
|  | 710 [1000] |  |  |  |  |  |  |

- Values listed above were obtained using Fuji ELCB EG or SG series applied to the test setup.
- The calculation for the power supply grounding is based on single wire grounding with $\Delta$-connection for the 200 V series, and neutral grounding with $Y$-connection for the 400 V series.
- Values listed above are calculated based on the earth capacity when 600 V class of vinyl-insulated IV wires are used in a wiring through metal conduit pipes (in contact with ground).
- Wiring length is the total length of wiring between the inverter and motor. When multiple motors are connected to one inverter, the wiring length is the total of all wire lengths.
- If actually measuring leakage current, use a leakage meter with filter.


### 11.4 Surge Killers

A surge killer absorbs surge voltage induced by L-load of an electromagnetic switch or solenoid valve. Use of a surge killer is effective in preventing the electronic equipment, including inverters, from damage or malfunctioning caused by such surges.
Install a surge killer near the power coil of the surge source. By connecting to the inverter's power source side as shown in Fig. 11.4-1, a surge killer absorbs the surge voltage, preventing the electronic equipment, from damage or malfunctioning. (Available rated capacity of nominal applied motors is 3.7 kW or less.)
Refer to the "Fuji SD (HS189)" catalog for details. These products are available from Fuji Electric Technica Co., Ltd.

* Do not use the surge killer in the inverter secondary (output) line.


Fig. 11.4-1 Dimensions of surge killer and connection example

### 11.5 Lightning Surge Protection Device SPD

SPDs absorb surge intrusion from wiring, and have the effect of preventing electrical and electronic device damage. When installing an SPD, it is crucial that the devices being protected and the SPD share the same ground wire.

Fuji Electric boasts a lineup including the CN6 series, which is effective for induced lightning surge intrusion from three-phase 200 V and 400 V power lines, and a CN7 series, which is effective for backflow lightning intrusion from ground wires.

Fig. 11.5-1 shows the external dimensions and a connection example.
Refer to the catalog "Fuji Lightning Surge Protection Device CN6/CN7 Series (HS193)" for details.
These products are available from Fuji Electric Technica Co., Ltd.


## - Three-phase (240/440 VAC) <br> -CN6112 CN6132 CN6134 <br> -CN6212 CN6232 CN6234



Fig. 11.5-1 Lightning Surge Protection Device (SPD) external dimensions and connection example

### 11.6 Surge Absorbers

A surge absorber absorbs surges or noises generated by a magnetic contactor (MC) or solenoid valve in the power system to effectively protect electronic equipment in the panel from malfunctions or breakdown. Installed parallel to a coil of an MC, solenoid valve, or $L$ load, a surge absorber absorbs the surge voltage.
Applicable surge absorber models are the S2-A-O and S1-B-O. Fig. 11.6-1 shows their external dimensions.
These products are available from Fuji Electric Technica Co., Ltd.


- Type: S2-A-O (for magnetic contactors (MC))

- Type: S1-B-O (for miniature control relays, timers)


Parts available from Fuji Electric Technica Co., Ltd.

Fig. 11.6-1 Surge absorber dimensions

### 11.7 Filter Capacitors for Suppressing AM Radio Band Noise

These capacitors are effective to suppress AM radio band (less than 1 MHz ) noise. They are even more effective when used in combination with zero-phase reactors for radio noise suppression.

Applicable models are NFM25M315KPD1 for 200V series inverters and NFM60M315KPD for 400V series inverters. Use one of them regardless of the inverter capacity. Fig. 11.7-1 shows their external dimensions.

These products are available from Fuji Electric Technica Co., Ltd.

* Do not use the surge killer in the inverter secondary (output) line.

■ NFM25M315KPD1 (for 200 V)


Unit: mm (inch)

- NFM60M315KPD (for 400 V)


Fig. 11.7-1 External dimensions of filter capacitors for suppressing AM band radio noise

### 11.8 Braking Resistors (DB) and Braking Units

### 11.8.1 Selecting a Braking Resistor

## [1] Selection procedure

Depending on the cycle period, the following requirements must be satisfied.
(1)If the cycle period is 100 s or less: [Requirement 1] and [Requirement 3]
(2)If the cycle period exceeds 100 s : [Requirement 1] and [Requirement 2]
[Requirement 1]: The maximum braking torque should not exceed the values listed in the tables in "11.8.3 Specification".
[Requirement 2]: The discharge energy for a single braking action should not exceed the discharge withstand current rating (kWs) listed in the tables. For calculation details, refer to Chapter 10 "10.3.3 Heat energy calculation of braking resistor".
[Requirement 3]: The average loss that is calculated by dividing the discharge energy by the cyclic period must not exceed the average allowable loss (kW) listed in the tables in "11.8.3 Specification".

## [ 2 ] Notes on selection

The braking time $T_{1}$, cycle period $T_{0}$, and duty cycle \%ED are converted under deceleration braking conditions based on the rated torque as shown in Fig. 11.8-1. However, it is not necessary to consider these values in the selection of braking resistor capacity.


Fig. 11.8-1 Duty cycle
Duty cycle $(\% E D)=\frac{T_{1}}{T_{0}} \times 100(\%)$

### 11.8.2 Overview of Braking Resistors (DB) and Braking Units

A braking resistor converts regenerative energy generated from the deceleration of the motor to heat. Use of a braking resistor results in improved deceleration performance of the inverter. FRENIC-MEGA (GS2) 200V series FRN0288G2S-2G or lower models and 400V series FRN0180G2ם-4G or lower models are equipped with built-in braking resistor drive transistors, allowing braking resistors to be connected directly to the inverter.

## [1] Standard type

The standard type is equipped with a function for outputting temperature detection signals. To detect temperature detection signals with FRENIC-MEGA, assign external alarm "THR" to terminal [X1] to [X9], and connect to braking resistor terminal 2 and terminal 1. Upon detection of the warning signal (preset detection level: $150^{\circ} \mathrm{C}$ ), the inverter displays alarm ${ }^{[1 / 41 / 2}$ on the LED monitor and stops the alarm.


Fig. 11.8-2 Braking resistor (standard type) and connection example

## [ 2 ] 10\%ED type

The $10 \%$ ED type is not equipped with a function for outputting temperature detection signals, and therefore it is necessary to specify electronic thermal overload relay function (function code F50, F51, F52) settings for braking resistor protection.


Fig. 11.8-3 Braking resistor (10\%ED type) and connection example

## [ 3] Overview of braking unit

To improve the braking ability of inverters with the following capacity, use in combination with a braking resistor.

Inverter capacity
200V series: FRN0346G2S-2G or higher
400V series: FRN0216G2■-4G or higher

200V series FRN0288G2S-2G or lower/400V series FRN0180G2a-4G or lower inverters are equipped with a builtin brake transistor, and therefore do not need a braking unit.


Fig. 11.8-4 Braking unit

For the specifications and external dimensions of the braking units, refer to "11.8.3 Specification" and "11.8.4 External dimensions".

### 11.8.3 Specification

Table 11.8-1 Braking unit generated loss

| Type | Generated loss [W] <br> (for 10\%ED type) |
| :---: | :---: |
| BU90-2E | 50 |
| BU90-4E | 30 |
| BU132-4E | 40 |
| BU220-4E | 60 |

Table 11.8-2 Braking units, braking resistors (standard type) for HHD specification

| $\begin{aligned} & \overline{0} \begin{array}{l} E \\ 0 \\ 0 \\ 0.0 \\ 0 \\ \omega \end{array} \end{aligned}$ |  | Inverter type | Option |  |  |  |  | Maximum braking torque (\%) |  |  | Continuous braking (100\% braking torque) |  | Repetitive braking (each cycle is 100 s or less) |  | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  | Braking unit |  | Breaking resistor |  |  |  |  |  |  |  |  |  |
|  |  | HHD specification | Type |  | Type |  |  |  | 50 Hz | 60 Hz | Discharge |  | Average |  |
|  |  |  |  | Qty |  | Qty | $(\Omega)$ |  | ( $\mathrm{N} \cdot \mathrm{m}$ ) | ( $\mathrm{N} \cdot \mathrm{m}$ ) | current rating (kWs) | time (s) | allowable loss (kW) | (\%ED) |
|  | 0.4 [1/2] | FRN0003G2S-2G | - |  | DB0.75-2 | 1 | 100 | 150 | 4.02 | 3.32 | 9 | 45 | 0.044 | 22 |
|  | 0.75 [1] | FRN0005G2S-2G |  |  | 7.57 |  |  |  | 6.25 | 17 | 45 | 0.068 | 18 |
|  | 1.5 [2] | FRN0008G2S-2G |  |  | DB2.2-2 | 1 | 40 |  | 15 | 12.4 | 34 | 45 | 0.075 | 10 |
|  | 2.2 [3] | FRN0011G2S-2G |  |  | 22 |  |  |  | 18.2 | 33 | 30 | 0.077 | 7 |
|  | 3.7 [5] | FRN0018G2S-2G |  |  | DB3.7-2 | 1 | 33 |  | 37.1 | 30.5 | 37 | 20 | 0.093 | 5 |
|  | 5.5 [7.5] | FRN0032G2S-2G |  |  | DB5.5-2 | 1 | 20 |  | 54.3 | 45 | 55 | 20 | 0.138 | 5 |
|  | 7.5 [10] | FRN0046G2S-2G |  |  | DB7.5-2 | 1 | 15 |  | 73.6 | 61.6 | 37 | 10 | 0.188 | 5 |
|  | 11 [15] | FRN0059G2S-2G |  |  | DB11-2 | 1 | 10 |  | 108 | 89.5 | 55 | 10 | 0.275 | 5 |
|  | 15 [20] | FRN0075G2S-2G |  |  | DB15-2 | 1 | 8.6 |  | 147 | 122 | 75 | 10 | 0.375 | 5 |
|  | 18.5 [25] | FRN0088G2S-2G |  |  | DB18.5-2 | 1 | 6.8 |  | 182 | 151 | 92 | 10 | 0.463 | 5 |
|  | 22 [30] | FRN0115G2S-2G |  |  | DB22-2 | 1 | 5.8 |  | 216 | 179 | 88 | 8 | 0.55 | 5 |
|  | 30 [40] | FRN0146G2S-2G |  |  | DB30-2C | 1 | 4 | 100 | 195 | 162 | 150 | 10 | 1.50 | 10 |
|  | 37 [50] | FRN0180G2S-2G |  |  | DB37-2C | 1 | 3 |  | 240 | 200 | 185 | 10 | 1.85 | 10 |
|  | 45 [60] | FRN0215G2S-2G |  |  | DB45-2C | 1 | 2.5 |  | 292 | 243 | 225 | 10 | 2.25 | 10 |
|  | 55 [75] | FRN0288G2S-2G |  |  | DB55-2C | 1 | 2 |  | 359 | 298 | 275 | 10 | 2.75 | 10 |
|  | 75 [100] | FRN0346G2S-2G | BU90-2E | 1 |  | DB75-2C | 1 |  | 1.6 | 487 | 405 | 375 | 10 | 3.75 | 10 |
|  | 90 [125] | FRN0432G2S-2G |  |  | DB110-2C | 1 | 1.2 |  | 585 | 486 | 450 | 10 | 4.50 | 10 |
|  | 0.4 [1/2] | FRN0002G2ם-4G | - |  | DB0.75-4 | 1 |  | 150 | 4.02 | 3.32 | 9 | 45 | 0.044 | 22 |
|  | 0.75 [1] | FRN0003G2ם-4G |  |  |  |  |  |  | 7.57 | 6.25 | 17 | 45 | 0.068 | 18 |
|  | 1.5 [2] | FRN0004G2ם-4G |  |  | DB2.2-4 | 1 | 6 |  | 15 | 12.4 | 34 | 45 | 0.075 | 10 |
|  | 2.2 [3] | FRN0006G2ם-4G |  |  | DB2.2-4 |  |  |  | 22 | 18.2 | 33 | 30 | 0.077 | 7 |
|  | 3.7 [5] | FRN0009G2ם-4G |  |  | DB3.7-4 | 1 | 130 |  | 37.1 | 30.5 | 37 | 20 | 0.093 | 5 |
|  | 5.5 [7.5] | FRN0018G2ם-4G |  |  | DB5.5-4 | 1 | 80 |  | 54.3 | 45 | 55 | 20 | 0.138 | 5 |
|  | 7.5 [10] | FRN0023G2ם-4G |  |  | DB7.5-4 | 1 | 60 |  | 73.6 | 61.6 | 38 | 10 | 0.188 | 5 |
|  | 11 [15] | FRN0031G2ם-4G |  |  | DB11-4 | 1 | 40 |  | 108 | 89.5 | 55 | 10 | 0.275 | 5 |
|  | 15 [20] | FRN0038G2ם-4G |  |  | DB15-4 | 1 | 34.4 |  | 147 | 122 | 75 | 10 | 0.375 | 5 |
|  | 18.5 [25] | FRN0045G2ם-4G |  |  | DB18.5-4 | 1 | 27 |  | 182 | 151 | 93 | 10 | 0.463 | 5 |
|  | 22 [30] | FRN0060G2ם-4G |  |  | DB22-4 | 1 | 22 |  | 216 | 179 | 88 | 8 | 0.55 | 5 |
|  | 30 [40] | FRN0075G2ם-4G |  |  | DB30-4C | 1 | 15 | 100 | 195 | 162 | 150 | 10 | 1.50 | 10 |
|  | 37 [50] | FRN0091G2ם-4G |  |  | DB37-4C | 1 | 12 |  | 240 | 200 | 185 | 10 | 1.85 | 10 |
|  | 45 [60] | FRN0112G2ם-4G |  |  | DB45-4C | 1 | 10 |  | 292 | 243 | 225 | 10 | 2.25 | 10 |
|  | 55 [75] | FRN0150G2ם-4G |  |  | DB55-4C | 1 | 7.5 |  | 359 | 298 | 275 | 10 | 2.75 | 10 |
|  | 75 [100] | FRN0180G2ם-4G |  |  | DB75-4C | 1 | 6.5 |  | 487 | 405 | 375 | 10 | 3.75 | 10 |
|  | 90 [125] | FRN0216G2ם-4G | BU90-4E | 1 | 110 | 1 | 4.7 |  | 585 | 486 | 450 | 10 | 4.50 | 10 |
|  | 110 [150] | FRN0260G2ם-4G | BU132-4E |  | DB110-4C |  |  |  | 712 | 592 | 550 | 10 | 5.50 | 10 |
|  | 132 [200] | FRN0325G2ם-4G |  |  | DB132-4C | 1 | 3.9 |  | 855 | 710 | 660 | 10 | 6.60 | 10 |
|  | 160 [250] | FRN0377G2ם-4G | BU220-4E | 1 | DB160-4C | 1 | 3.2 |  | 1036 | 861 | 800 | 10 | 8.00 | 10 |
|  | 200 [300] | FRN0432G2ם-4G |  |  | DB200-4C | 1 | 2.6 |  | 1295 | 1076 | 1000 | 10 | 10.0 | 10 |
|  | 220 [350] | FRN0520G2ם-4G |  |  | DB220-4C | 1 | 2.2 |  | 1424 | 1184 | 1100 | 10 | 11.0 | 10 |
|  | 280 [400] | FRN0650G2ם-4G |  |  | 160-4 |  | 16 |  | 1813 | 1506 | 1400 | 10 | 14.0 | 10 |
|  | 315 [450] | FRN0740G2ם-4G |  | 2 | DB160-4C | 2 |  |  | 2039 | 1695 | 1575 | 10 | 15.8 | 10 |
|  | 355 [500] | FRN0960G2ם-4G |  |  |  |  | 13 |  | 2298 | 1910 | 1775 | 10 | 17.8 | 10 |
|  | 400 [600] | FRN1040G2ם-4G |  |  | DB200-4C |  | 1.3 |  | 2590 | 2152 | 2000 | 10 | 20.0 | 10 |
|  | 500 [800] | FRN1170G2ם-4G |  |  |  |  | 0.867 |  | 3237 | 2691 | 2500 | 10 | 25.0 | 10 |
|  | 630 [900] | FRN1386G2ם-4G |  |  | DB220-4C |  | 0.733 |  | 4090 | 3408 | 3150 | 10 | 31.5 | 10 |

(Note) $\square$ in the inverter type is replaced by a letter of the alphabet.

[^40]Table 11.8-3 Braking units, braking resistors (standard type) for HND specification

|  |  | Inverter type | Option |  |  |  |  | Maximum braking torque (\%) |  |  | Continuous braking (100\% braking torque) |  | Repetitive braking (each cycle is 100 s or less) |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Braking unit |  | Breaking resistor |  |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  |  |  |  | 50 Hz | 60 Hz | Discharge |  |  |  |
|  |  | HND specification | Type | Qty | Type | Qty | Resistance ( $\Omega$ ) |  | ( $\mathrm{N} \cdot \mathrm{m}$ ) | ( $\mathrm{N} \cdot \mathrm{m}$ ) | withstand <br> current <br> rating <br> (kWs) | Braking time (s) | allowable loss <br> (kW) | $\begin{gathered} \text { Duty } \\ \text { cycle } \\ \text { (\%ED) } \end{gathered}$ |
|  | 7.5 [10] | FRN0032G2S-2G | - |  | DB5.5-2 | 1 | 20 | 100 | 49.1 | 41 | 55 | 15 | 0.138 | 3.5 |
|  | 11 [15] | FRN0046G2S-2G |  |  | DB7.5-2 | 1 | 15 |  | 72 | 59.7 | 37 | 7 | 0.188 | 3.5 |
|  | 15 [20] | FRN0059G2S-2G |  |  | DB11-2 | 1 | 10 |  | 98.1 | 81.4 | 55 | 7 | 0.275 | 3.5 |
|  | 18.5 [25] | FRN0075G2S-2G |  |  | DB15-2 | 1 | 8.6 |  | 121 | 100 | 75 | 8 | 0.375 | 4 |
|  | 22 [30] | FRN0088G2S-2G |  |  | DB18.5-2 | 1 | 6.8 |  | 144 | 119 | 92 | 8 | 0.463 | 4 |
|  | 30 [40] | FRN0115G2S-2G |  |  | DB22-2 | 1 | 5.8 |  | 216 | 179 | 88 | 6 | 0.55 | 3.5 |
|  | 37 [50] | FRN0146G2S-2G |  |  | DB30-2C | 1 | 4 | 75 | 180 | 150 | 150 | 10 | 1.50 | 10 |
|  | 45 [60] | FRN0180G2S-2G |  |  | DB37-2C | 1 | 3 |  | 219 | 182 | 185 | 10 | 1.85 | 10 |
|  | 55 [75] | FRN0215G2S-2G |  |  | DB45-2C | 1 | 2.5 |  | 269 | 223 | 225 | 10 | 2.25 | 10 |
|  | 75 [100] | FRN0288G2S-2G |  |  | DB55-2C | 1 | 2 |  | 365 | 303 | 275 | 10 | 2.75 | 10 |
|  | 90 [125] | FRN0346G2S-2G | BU90-2E | 1 | DB75-2C | 1 | 1.6 |  | 439 | 364 | 375 | 10 | 3.75 | 10 |
|  | 110 [150] | FRN0432G2S-2G |  |  | DB110-2C | 1 | 1.2 |  | 534 | 444 | 450 | 10 | 4.50 | 10 |
|  | 7.5 [10] | FRN0018G2ם-4G | ${ }^{-}$ |  | DB5.5-4 | 1 | 80 | 100 | 49.6 | 41 | 55 | 15 | 0.138 | 3.5 |
|  | 11 [15] | FRN0023G2ם-4G |  |  | DB7.5-4 | 1 | 60 |  | 72 | 59.7 | 38 | 7 | 0.188 | 3.5 |
|  | 15 [20] | FRN0031G2ם-4G |  |  | DB11-4 | 1 | 40 |  | 98.1 | 81.4 | 55 | 7 | 0.275 | 3.5 |
|  | 18.5 [25] | FRN0038G2ם-4G |  |  | DB15-4 | 1 | 34.4 |  | 121 | 100 | 75 | 8 | 0.375 | 4 |
|  | 22 [30] | FRN0045G2ם-4G |  |  | DB18.5-4 | 1 | 27 |  | 144 | 119 | 93 | 8 | 0.463 | 4 |
|  | 30 [40] | FRN0060G2ם-4G |  |  | DB22-4 | 1 | 22 |  | 195 | 162 | 88 | 6 | 0.55 | 3.5 |
|  | 37 [50] | FRN0075G2ם-4G |  |  | DB30-4C | 1 | 15 | 75 | 180 | 150 | 150 | 10 | 1.50 | 10 |
|  | 45 [60] | FRN0091G2ם-4G |  |  | DB37-4C | 1 | 12 |  | 219 | 182 | 185 | 10 | 1.85 | 10 |
|  | 55 [75] | FRN0112G2ם-4G |  |  | DB45-4C | 1 | 10 |  | 269 | 223 | 225 | 10 | 2.25 | 10 |
|  | 75 [100] | FRN0150G2ם-4G |  |  | DB55-4C | 1 | 7.5 |  | 365 | 303 | 275 | 10 | 2.75 | 10 |
|  | 90 [125] | FRN0180G2ם-4G |  |  | DB75-4C | 1 | 6.5 |  | 439 | 364 | 375 | 10 | 3.75 | 10 |
|  | 110 [150] | FRN0216G2ם-4G | BU90-4E | 1 | DB110-4C | 1 | 4.7 |  | 534 | 444 | 450 | 10 | 4.50 | 10 |
|  | 132 [200] | FRN0260G2ם-4G | BU132-4E | 1 | DB110-4C |  |  |  | 641 | 533 | 550 | 10 | 5.50 | 10 |
|  | 160 [250] | FRN0325G2ם-4G |  |  | DB132-4C | 1 | 3.9 |  | 777 | 646 | 660 | 10 | 6.60 | 10 |
|  | 200 [300] | FRN0377G2ם-4G | BU220-4E | 1 | DB160-4C | 1 | 3.2 |  | 971 | 807 | 800 | 10 | 8.00 | 10 |
|  | 220 [350] | FRN0432G2ם-4G |  |  | DB200-4C | 1 | 2.6 |  | 1068 | 888 | 1000 | 10 | 10.0 | 10 |
|  | 280 [400] | FRN0520G2ם-4G |  |  | DB220-4C | 1 | 2.2 |  | 1360 | 1130 | 1100 | 10 | 11.0 | 10 |
|  | 355 [500] | FRN0650G2ם-4G |  | 2 | DB160-4C | 2 | 1.6 |  | 1724 | 1433 | 1400 | 10 | 14.0 | 10 |
|  | 400 [600] | FRN0740G2ם-4G |  |  | DB160-4C |  |  |  | 1942 | 1614 | 1775 | 10 | 1.75 | 10 |
|  | 450 [700] | FRN0960G2ם-4G |  |  | DB200-4C |  | 1.3 |  | 2185 | 1816 | 2000 | 10 | 20.0 | 10 |
|  | 500 [800] | FRN1040G2ם-4G |  |  |  |  | 1.3 |  | 2428 | 2018 | 2000 | 10 | 20.0 | 10 |
|  | 630 [900] | FRN1170G2ם-4G |  | 3 |  | 3 | 0.867 |  | 3067 | 2556 | 2500 | 10 | 25.0 | 10 |
|  | 710 [1000] | FRN1386G2ם-4G |  |  | DB220-4C |  | 0.733 |  | 3457 | 2881 | 3150 | 10 | 31.5 | 10 |

(Note) $\square$ in the inverter type is replaced by a letter of the alphabet.
$\qquad$ S (basic type), E (type with built-in EMC filter)

Table 11．8－4 Braking resistors（10\％ED type）for HHD specification

| $\begin{aligned} & \overline{0} \\ & \sum_{0} \\ & 0 \\ & 0 \\ & 0 \\ & \omega \\ & \omega \end{aligned}$ |  | Inverter type | Option |  |  | Maximum braking torque（\％） |  | Continuous braking （100\％braking torque） |  | Repetitive braking （each cycle is 100 s or less） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | Breaking resistors |  |  |  |  |  |  |  |  |
|  |  |  |  |  |  | 50 Hz | 60 Hz | Discharge |  | Average |  |
|  |  | HHD specification | Type | Qty | Resistance <br> （ $\Omega$ ） | （ $\mathrm{N} \cdot \mathrm{m}$ ） | （ $\mathrm{N} \cdot \mathrm{m}$ ） | withstand current rating （kWs） | Braking time <br> （s） | allowable loss <br> （kW） | Duty cycle <br> （\％ED） |
|  | 0.4 ［1／2］ | FRN0003G2S－2G | DB0．75－2C | 1 | 100 | 4.02 | 3.32 | 50 | 250 | 0.075 | 37 |
|  | 0.75 ［1］ | FRN0005G2S－2G |  |  |  | 7.57 | 6.25 | 50 | 133 | 0.075 | 20 |
|  | 1.5 ［2］ | FRN0008G2S－2G | DB2．2－2C | 1 | 40 | 15 | 12.4 | 55 | 73 | 0.110 | 14 |
|  | 2.2 ［3］ | FRN0011G2S－2G |  |  |  | 22 | 18.2 | 55 | 50 | 0.110 | 10 |
|  | 3.7 ［5］ | FRN0018G2S－2G | DB3．7－2C | 1 | 33 | 37.1 | 30.5 | 140 | 75 | 0.185 |  |
|  | 5.5 ［7．5］ | FRN0032G2S－2G | DB5．5－2C | 1 | 20 | 54.3 | 45 | 55 | 20 | 0.275 |  |
|  | 7.5 ［10］ | FRN0046G2S－2G | DB7．5－2C | 1 | 15 | 73.6 | 61.6 | 37 | 10 | 0.375 |  |
|  | 11 ［15］ | FRN0059G2S－2G | DB11－2C | 1 | 10 | 108 | 89.5 | 55 | 10 | 0.55 |  |
|  | 15 ［20］ | FRN0075G2S－2G | DB15－2C | 1 | 8.6 | 147 | 122 | 75 | 10 | 0.75 |  |
|  | 18.5 ［25］ | FRN0088G2S－2G | DB22－2C | 1 | 5.8 | 182 | 151 | 92 | 10 | 0.925 |  |
|  | 22 ［30］ | FRN0115G2S－2G |  |  |  | 216 | 179 | 110 | 10 | 1.1 |  |
|  | 0.4 ［1／2］ | FRN0002G2ם－4G | DB0．75－4C | 1 | 200 | 4.02 | 3.32 | 50 | 250 | 0.075 | 37 |
|  | 0.75 ［1］ | FRN0003G2ם－4G |  |  |  | 7.57 | 6.25 | 50 | 133 | 0.075 | 20 |
|  | 1.5 ［2］ | FRN0004G2ם－4G | DB2．2－4C | 1 | 160 | 15 | 12.4 | 55 | 73 | 0.110 | 14 |
|  | 2.2 ［3］ | FRN0006G2ם－4G |  |  |  | 22 | 18.2 | 55 | 50 | 0.110 | 10 |
|  | 3.7 ［5］ | FRN0009G2ם－4G | DB3．7－4C | 1 | 130 | 37.1 | 30.5 | 140 | 75 | 0.185 |  |
|  | 5.5 ［7．5］ | FRN0018G2ם－4G | DB5．5－4C | 1 | 80 | 54.3 | 45 | 55 | 20 | 0.275 |  |
|  | 7.5 ［10］ | FRN0023G2ם－4G | DB7．5－4C | 1 | 60 | 73.6 | 61.6 | 37 | 10 | 0.375 |  |
|  | 11 ［15］ | FRN0031G2ם－4G | DB11－4C | 1 | 40 | 108 | 89.5 | 55 | 10 | 0.55 |  |
|  | 15 ［20］ | FRN0038G2ם－4G | DB15－4C | 1 | 34.4 | 147 | 122 | 75 | 10 | 0.75 |  |
|  | 18.5 ［25］ | FRN0045G2ם－4G | DB22－4C | 1 | 22 | 182 | 151 | 92 | 10 | 0.925 |  |
|  | 22 ［30］ | FRN0060G2ם－4G |  |  |  | 216 | 179 | 110 | 10 | 1.1 |  |

Note
The $10 \%$ ED type is not equipped with a function for outputting temperature detection signals，and therefore it is necessary to specify electronic thermal overload relay function（function code F50，F51， F52）settings for braking resistor protection．
（Note）$\square$ in the inverter type is replaced by a letter of the alphabet．
므 S（basic type），E（type with built－in EMC filter）

Table 11．8－5 Braking resistors（10\％ED type）for HND specification

| $\begin{aligned} & \overline{0} \\ & \sum_{0}^{E} \\ & 0 \\ & 0 \\ & 0 \\ & \omega \\ & \omega \end{aligned}$ |  | Inverter type | Option |  |  | Maximum braking torque（\％） |  | Continuous braking （100\％braking torque） |  | Repetitive braking （each cycle is 100 s or less） |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | 50 Hz | 60 Hz | Discharge |  | Average |  |
|  |  | HND specification | Type | Qty | （ $\Omega)$ | （ $\mathrm{N} \cdot \mathrm{m}$ ） | （ $\mathrm{N} \cdot \mathrm{m}$ ） | current rating <br> （kWs） | time (s) | allowable loss （kW） | （\％ED） |
|  | 7.5 ［10］ | FRN0032G2S－2G | DB5．5－2C | 1 | 20 | 49.6 | 41 | 55 | 15 | 0.275 | 10 |
|  | 11 ［15］ | FRN0046G2S－2G | DB7．5－2C | 1 | 15 | 72 | 59.7 | 37 | 7 | 0.375 | 10 |
|  | 15 ［20］ | FRN0059G2S－2G | DB11－2C | 1 | 10 | 98.1 | 81.4 | 55 | 7 | 0.55 | 10 |
|  | 18.5 ［25］ | FRN0075G2S－2G | DB15－2C | 1 | 8.6 | 121 | 100 | 75 | 7 | 0.75 | 7 |
|  | 22 ［30］ | FRN0088G2S－2G | DB22－2C | 1 | 5.8 | 144 | 119 | 93 | 7 | 0.925 | 7 |
|  | 30 ［40］ | FRN0115G2S－2G |  |  |  | 195 | 162 | 110 | 7 | 1.1 | 7 |
|  | 7.5 ［10］ | FRN0018G2ם－4G | DB5．5－4C | 1 | 80 | 49.6 | 41 | 55 | 15 | 0.275 | 10 |
|  | 11 ［15］ | FRN0023G2ם－4G | DB7．5－4C | 1 | 60 | 72 | 59.7 | 38 | 7 | 0.375 | 10 |
|  | 15 ［20］ | FRN0031G2ם－4G | DB11－4C | 1 | 40 | 98.1 | 81.4 | 55 | 7 | 0.55 | 10 |
|  | 18.5 ［25］ | FRN0038G2ם－4G | DB15－4C | 1 | 34.4 | 121 | 100 | 75 | 7 | 0.75 | 7 |
|  | 22 ［30］ | FRN0045G2ם－4G | DB22－4C | 1 | 22 | 144 | 119 | 93 | 7 | 0.925 | 7 |
|  | 30 ［40］ | FRN0060G2ם－4G |  |  |  | 195 | 162 | 110 | 7 | 1.1 | 7 |

Note The $10 \%$ ED type is not equipped with a function for outputting temperature detection signals，and therefore it is necessary to specify electronic thermal overload relay function（function code F50，F51， F52）settings for braking resistor protection．
（Note）$\square$ in the inverter type is replaced by a letter of the alphabet．

### 11.8.4 External dimensions

Breaking resistors (standard type)

Figure A
Figure $\mathrm{B} \quad$ Figure C

紫




Figure D


Figure E


| Voltage | Type | $\frac{00}{\stackrel{0}{\square}}$ | Dimensions [mm] |  |  |  |  | Approx. weight [kg] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | W | W1 | H | H1 | D |  |
| $\begin{aligned} & 200 \mathrm{~V} \\ & \text { series } \end{aligned}$ | DB0.75-2 | A | 68 | - | 310 | 295 | 67 | 1.3 |
|  | DB2.2-2 | A | 80 |  | 345 | 332 | 94 | 2.0 |
|  | DB3.7-2 | A | 80 |  | 345 | 332 | 94 | 2.0 |
|  | DB5.5-2 | B | 146 | 90 | 450 | 430 | 67.5 | 4.5 |
|  | DB7.5-2 | B | 160 | 90 | 390 | 370 | 90 | 5.0 |
|  | DB11-2 | C | 142 | 74 | 430 | 415 | 160 | 6.9 |
|  | DB15-2 | C | 142 | 74 | 430 | 415 | 160 | 6.9 |
|  | DB18.5-2 | C | 142 | 74 | 510 | 495 | 160 | 8.7 |
|  | DB22-2 | C | 142 | 74 | 510 | 495 | 160 | 8.7 |
|  | DB30-2C | D | 400 | 368 | 660 | 628 | 140 | 10 |
|  | DB37-2C | D |  |  |  |  | 240 | 13 |
|  | DB45-2C | D |  |  |  |  |  | 18 |
|  | DB55-2C | D | 405 |  | 750 | 718 |  | 22 |
|  | DB75-2C | E | 450 | 420 | 283 | 240 | 440 | 35 |
|  | DB110-2C |  | 550 | 520 |  |  |  | 32 |
| 400 V series | DB0.75-4 | A | 68 | - | 310 | 295 | 67 | 1.3 |
|  | DB2.2-4 |  | 68 |  | 470 | 455 | 67 | 2.0 |
|  | DB3.7-4 |  | 68 |  | 470 | 455 | 67 | 1.7 |
|  | DB5.5-4 | B | 146 | 74 | 470 | 455 | 67 | 4.5 |
|  | DB7.5-4 |  | 146 | 74 | 510 | 495 | 67 | 5.0 |
|  | DB11-4 | C | 142 | 74 | 430 | 415 | 160 | 6.9 |
|  | DB15-4 | C | 142 | 74 | 430 | 415 | 160 | 6.9 |
|  | DB18.5-4 | C | 142 | 74 | 510 | 495 | 160 | 8.7 |
|  | DB22-4 | C | 142 | 74 | 510 | 495 | 160 | 8.7 |
|  | DB30-4C | D | 420 | 388 | 660 | 628 | 140 | 11 |
|  | DB37-4C | D |  |  |  |  | 240 | 14 |
|  | DB45-4C | D |  |  |  |  |  | 19 |
|  | DB55-4C | D | 425 |  | 750 | 718 |  | 21 |
|  | DB75-4C | E | 550 | 520 | 283 | 240 | 440 | 26 |
|  | DB110-4C |  | 550 | 520 |  |  |  | 30 |
|  | DB132-4C |  | 650 | 620 |  |  |  | 41 |
|  | DB160-4C |  | 750 | 720 |  |  |  | 57 |
|  | DB200-4C |  |  |  |  |  |  | 43 |
|  | DB220-4C* |  | 600 | 570 |  |  |  | 74 |

* DB220-4C should be in pairs. The dimensions above are for one unit.

Fig. 11.8-5

## Braking resistors (10\%ED type)



Fig. 11.8-6

## Braking unit



| Voltage | Type | Dimensions [mm] |  |  |  |  |  | Approx. weight [kg] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | W | W1 | H | H1 | H2 | D |  |
| $\begin{aligned} & 200 \mathrm{~V} \\ & \text { series } \end{aligned}$ | BU90-2E | 250 | 150 | 370 | 355 | 340 | 160 | 9 |
| 400 V series | BU90-4E | 230 | 130 | 280 | 265 | 250 | 160 | 5.5 |
|  | BU132-4E | 250 | 150 | 370 | 355 | 340 |  | 9 |
|  | BU220-4E |  |  | 450 | 435 | 420 |  | 13 |

Fig. 11.8-7

## Braking unit fan unit

By using this option, the duty cycle [\%ED] can be improved from 10\%ED to 30\%ED.

- Fan unit
-BU-F



## - Braking unit + Fan unit

- BU90 to 220-2EF/4EF


| Voltage | Type | Dimensions |  |  |  |  | Unit: [mm] |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | W2 | W3 | W4 | H2 | H3 | H4 | D2 | D3 | D4 |
| $\begin{aligned} & 200 \mathrm{~V} \\ & \text { series } \end{aligned}$ | BU90-2EF | 250 | 135 | 57.5 | 370 | 30 | 400 | 160 | 1.2 | 64 |
| 400V series | BU90-4EF | 230 | 135 | 47.5 | 280 | 30 | 310 | 160 | 1.2 | 64 |
|  | BU132-4EF | 250 |  | 57.5 | 370 |  | 400 |  |  |  |
|  | BU220-4EF |  |  |  | 450 |  | 480 |  |  |  |

Fig. 11.8-8

### 11.9 High Power Factor Power Supply Regeneration PWM Converters (RHC Series)

### 11.9.1 Overview

## - Compliance with harmonic suppression guidelines

To convert power supply side current to a sine wave with PWM control in order to significantly reduce harmonic current, conversion factor Ki in the "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage" issued by the Agency for Natural Resources and Energy in the Ministry of Economy, Trade and Industry can be handled as " 0 " (in other words, zero harmonics are produced.)

- Reducing the power supply equipment capacity


Input current waveform comparison
(Without PWM converter)

(With PWM converter)


## Permissible characteristics

 early warning signals when overloads or fin overheating occurs, or when the high power factor power supply regeneration PWM converter service life is reached.

- Extensive network support

The FRENIC-RHC series can be connected to MICREX-SX and CC-Link master devices. (Option)

## - FRENIC-RHC, FRENIC-eRHC two series lineup

The FRENIC-RHC series lineup comprises large-capacity models compatible with large-scale systems, (capacity range 200 V: FRN0146G2S-2G to FRN0432G2S-2G 400 V: FRN0112G2ם-4G to FRN1386G2ם-4G) and the FRENIC-eRHC series lineup comprises more compact models than the conventional models.

Fuji Electric also offers a lineup of small-capacity models.
(Capacity range 200 V: FRN0032G2S-2G to FRN0115G2S-2G 400 V: FRN0018G2ם-4G to FRN0180G2ם-4G)

If an old inverter (FRENIC5000VG7S, FRENIC5000G11S) combined with RHC series is replaced by FRENIC-MEGA, it might be necessary to make changes to the wiring. Refer to "APPENDIX H" for details.

## 11．9．2 Specification

## ［1］Standard specification

MD（CT）specification（for medium overloads）
Three－phase 200 V input series（unit type）

| Item | Specification |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type：RHCם－2EJ | 30 | 37 | 45 | 55 | 75 | 90 |
| Applicable inverter capacity ［kW］ | 30 | 37 | 45 | 55 | 75 | 90 |
| $\begin{array}{l\|l} \hline & \text { Continuous capacity } \\ \stackrel{\rightharpoonup}{2} & {[\mathrm{~kW}]} \end{array}$ | 36 | 44 | 53 | 65 | 88 | 103 |
| $\bigcirc$ Overload rating | Continuous rating of 150\％－1 min |  |  |  |  |  |
| Voltage | 320 to 355 VDC（varies based on input voltage）（＊2） |  |  |  |  |  |
| Main power supply Number of phases， voltage，frequency | Three－phase three－wire system， 200 to $220 \mathrm{~V} / 50 \mathrm{~Hz}$ ， 200 to $230 \mathrm{~V} / 60 \mathrm{~Hz}$（＊1） |  |  |  |  |  |
| Control power auxiliary input Number of phases， voltage，frequency | Single－phase 200 to 230 V，50／60 Hz |  |  |  |  |  |
|  | － | Single－phase 200 to $220 \mathrm{~V} / 50 \mathrm{~Hz}$ ， 200 to $230 \mathrm{~V} / 60 \mathrm{~Hz}$（＊1） |  |  |  |  |
| Permissible fluctuations | Voltage：-15 to $+10 \%$ ，frequency：+5 to $-5 \%$ ， voltage interphase unbalance ratio：within $2 \%$（＊3） |  |  |  |  |  |
| Required power supply capacity［kVA］（＊6） | 38 | 47 | 57 | 70 | 93 | 111 |
| Carrier frequency［kHz］ | $7.5 \text { to } 15$ <br> （＊4） |  |  |  | 5 to 10 （＊5） |  |
| Approximate weight［kg］ | 24 | 29 | 39 | 39 | 55 | 95 |
| Protective construction | IP00 open type |  |  |  |  |  |

（Note 1）The specifications are as shown above for function code F03 $=0$（MD（CT））．
（＊1）Customer orders for 220 to $230 \mathrm{~V} / 50 \mathrm{~Hz}$ models are accepted．
（＊2）When the power supply voltage is 200 V ，the output voltage is approximately $320 \mathrm{VDC}, 343 \mathrm{VDC}$ when 220 V ，and 355 VDC when 230 V．
（＊3）Interphase unbalance ratio（\％）$=\frac{\text { Max．voltage }[\mathrm{V}]-\text { Min．voltage }[\mathrm{V}]}{\text { Three－phase average voltage }} \times 67$
（＊4）When equipped with OPC－RHCE－TBSI－2，the carrier frequency with no transformer automatically becomes 7.5 kHz ．
（＊5）When equipped with OPC－RHCE－TBSI－2，the carrier frequency with no transformer automatically becomes 5 kHz ．
（＊6）Be sure to connect to a power supply with the above required power supply capacity or higher．
（If the power supply capacity is insufficient，the converter or inverter may suffer damage due to waveform distortion at the power supply side．）
If a power supply boosted with a low－capacity transformer is used for the main circuit power supply，etc．for performing a control panel sequence check in particular，there is a possibility that problems may occur．In cases such as this，open the converter＂RUN－CM＂，and perform a sequence check of other parts without running the converter．

Three－phase 400 V input series（unit type）

| Item | Specification |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type：RHCם－4EJ | 45 | 55 | 75 | 90 | 110 | 132 | 160 | 200 | 220 | 280 | 315 | 355 | 400 | 500 | 630 |
| Applicable inverter capacity［kW］ | 45 | 55 | 75 | 90 | 110 | 132 | 160 | 200 | 220 | 280 | 315 | 355 | 400 | 500 | 630 |
| $$ | 53 | 65 | 88 | 103 | 126 | 150 | 182 | 227 | 247 | 314 | 353 | 400 | 448 | 560 | 705 |
| $\bigcirc$ Overload rating | Continuous rating of 150\％－1 min |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Voltage | 640 to 710 VDC（varies based on input voltage）（＊2） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Main power supply Number of phases， voltage，frequency | Three－phase three－wire system， 380 to $440 \mathrm{~V} / 50 \mathrm{~Hz}, 380$ to $460 \mathrm{~V} / 60 \mathrm{~Hz}$（＊1） |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| $\begin{array}{l\|l}  & \text { Control power } \\ \text { auxiliary input } \\ \stackrel{⿳ 亠 二 口}{2} & \text { Number of phases, } \\ \stackrel{\circ}{亏} & \text { voltage, frequency } \end{array}$ | Single－phase 380 to 480 V，50／60 Hz |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | － |  | Single－phase 380 to $440 \mathrm{~V} / 50 \mathrm{~Hz}, 380$ to $480 \mathrm{~V} / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |
| Permissible fluctuations | Voltage：－15 to＋10\％（interphase unbalance ratio：within $2 \%$（＊3）），frequency：＋5 to－5\％ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Required power supply capacity［kVA］ (*7) | 57 | 70 | 93 | 111 | 136 | 161 | 196 | 244 | 267 | 341 | 383 | 433 | 488 | 610 | 762 |
| Carrier frequency［kHz］ | $\begin{gathered} 7.5 \text { to } 15 \\ (* 4) \\ \hline \end{gathered}$ |  | 5 to 10 （＊5） |  |  |  |  |  |  |  |  |  |  |  | $\begin{array}{\|l\|} \hline 3 \text { to } 6 \\ (* 6) \\ \hline \end{array}$ |
| Approximate weight［kg］ | 30 | 32 | 38 | 58 | 60 | 85 | 87 | 116 | 119 | 215 | 215 | 290 | 290 | 485 | 485 |
| Protective construction | IP00 open type |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

（Note 1）The specifications are as shown above for function code F03 $=0$（MD（CT））．
（＊1）The tap inside the converter must be switched when the power supply voltage is 380 to $398 \mathrm{~V} / 50 \mathrm{~Hz}$ or 380 to $430 \mathrm{~V} / 60 \mathrm{~Hz}$ ． The capacity must be reduced when the power supply voltage is less than 400 V ．
（＊2）When the power supply voltage is 400 V ，the output voltage is approximately $640 \mathrm{VDC}, 686 \mathrm{VDC}$ when 440 V ，and 710 VDC when 460 V．
（＊3）Interphase unbalance ratio（\％）$=\frac{\text { Max．voltage }[\mathrm{V}]-\text { Min．voltage }[\mathrm{V}]}{\text { Three－phase average voltage }} \times 67$
（＊4）When equipped with OPC－RHCE－TBSI－4，the carrier frequency with no transformer automatically becomes 7.5 kHz ．
（＊5）When equipped with OPC－RHCE－TBSI－4，the carrier frequency with no transformer automatically becomes 5 kHz ．
（＊6）When equipped with OPC－RHCE－TBSI－4，the carrier frequency with no transformer automatically becomes 2.5 kHz ．
（＊7）Be sure to connect to a power supply with the above required power supply capacity or higher．
（If the power supply capacity is insufficient，the converter or inverter may suffer damage due to waveform distortion at the power supply side．）
If a power supply boosted with a low－capacity transformer is used for the main circuit power supply，etc．for performing a control panel sequence check in particular，there is a possibility that problems may occur．In cases such as this，open the converter＂RUN－CM＂，and perform a sequence check of other parts without running the converter．

## LD (VT) specification (for low overload)

Three-phase $\mathbf{2 0 0}$ V input series (unit type)

|  | Item | Specification |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type: RHCa-2EJ |  | 30 | 37 | 45 | 55 | 75 | 90 |
| Applicable inverter capacity [kW] |  | 37 | 45 | 55 | 75 | 90 | 110 |
| $\begin{aligned} & \text { 금 } \\ & \frac{0}{7} \\ & 0 \end{aligned}$ | Continuous capacity [kW] | 44 | 53 | 65 | 88 | 103 | 126 |
|  | Overload rating | Continuous rating of 120\%-1 min |  |  |  |  |  |
|  | Voltage | 320 to 355 VDC (varies based on input voltage) (*2) |  |  |  |  |  |
|  | Main power supply Number of phases, voltage, frequency | Three-phase three-wire system, 200 to $220 \mathrm{~V} / 50 \mathrm{~Hz}$, 200 to $230 \mathrm{~V} / 60 \mathrm{~Hz}\left({ }^{*} 1\right)$ |  |  |  |  |  |
|  | Control power auxiliary input <br> Number of phases, voltage, frequency | Single-phase 200 to 230 V, 50/60 Hz |  |  |  |  |  |
|  | Fan power auxiliary input Number of phases, voltage, frequency | - | Single-phase 200 to $220 \mathrm{~V} / 50 \mathrm{~Hz}$, 200 to $230 \mathrm{~V} / 60 \mathrm{~Hz}(* 1)$ |  |  |  |  |
|  | Permissible fluctuations | Voltage: -15 to $+10 \%$, frequency: +5 to $-5 \%$, voltage interphase unbalance ratio: within $2 \%$ (*3) |  |  |  |  |  |
|  | Required power supply capacity [kVA] (*4) | 47 | 57 | 70 | 93 | 111 | 136 |
|  | ier frequency [kHz] | 7.5 to 10 |  |  |  | 5 to 6 |  |
|  | oximate weight [kg] | 24 | 29 | 39 | 39 | 55 | 95 |
| Protective construction |  | IP00 open type |  |  |  |  |  |

(Note 1) The specifications are as shown above for function code F03 = 1 (LD (VT)).
(*1) Customer orders for 220 to $230 \mathrm{~V} / 50 \mathrm{~Hz}$ models are accepted.
(*2) When the power supply voltage is 200 V , the output voltage is approximately $320 \mathrm{VDC}, 343 \mathrm{VDC}$ when 220 V , and 355 VDC when 230 V .
(*3) Interphase unbalance ratio (\%) $=\frac{\text { Max. voltage }[\mathrm{V}]-\text { Min. voltage }[\mathrm{V}]}{\text { Three-phase average voltage }} \times 67$
(*4) Be sure to connect to a power supply with the above required power supply capacity or higher.
(If the power supply capacity is insufficient, the converter or inverter may suffer damage due to waveform distortion at the power supply side.)
If a power supply boosted with a low-capacity transformer is used for the main circuit power supply, etc. for performing a control panel sequence check in particular, there is a possibility that problems may occur. In cases such as this, open the converter "RUN-CM", and perform a sequence check of other parts without running the converter.

Three-phase 400 V input series (unit type)

|  | Item | Specification |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type: RHCם-4EJ |  | 45 | 55 | 75 | 90 | 110 | 132 | 160 | 200 | 220 | 280 | 315 | 355 | 400 |
| Applicable inverter capacity [kW] |  | 55 | 75 | 90 | 110 | 132 | 160 | 200 | 220 | 280 | 315 | 355 | 400 | 500 |
| $\begin{aligned} & \text { 글 } \\ & \frac{0}{7} \\ & 0 \end{aligned}$ | Continuous capacity [kVA] | 65 | 88 | 103 | 126 | 150 | 182 | 227 | 247 | 314 | 353 | 400 | 448 | 560 |
|  | Overload rating | Continuous rating of $120 \%-1 \mathrm{~min}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Voltage | 640 to 710 VDC (varies based on input voltage) (*2) |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Main power supply Number of phases, voltage, frequency | Three-phase three-wire system, 380 to $440 \mathrm{~V} / 50 \mathrm{~Hz}, 380$ to $460 \mathrm{~V} / 60 \mathrm{~Hz}$ (*1) |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Control power auxiliary input Number of phases, voltage, frequency | Single-phase 380 to 480 V, $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Fan power auxiliary input Number of phases, voltage, frequency | - |  | Single-phase 380 to $440 \mathrm{~V} / 50 \mathrm{~Hz}, 380$ to $480 \mathrm{~V} / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |
|  | Permissible fluctuations | Voltage: +10 to -15\% (interphase unbalance ratio: within $2 \%$ (*3)), frequency: +5 to $-5 \%$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Required power supply capacity [kVA] (*4) | 70 | 93 | 111 | 136 | 161 | 196 | 244 | 267 | 341 | 383 | 433 | 488 | 610 |
| Carrier frequency [kHz] |  | 7.5 to 10 |  | 5 to 6 |  |  |  |  |  |  |  |  |  |  |
| Approximate weight [kg] |  | 30 | 32 | 38 | 58 | 60 | 85 | 87 | 116 | 119 | 215 | 215 | 290 | 290 |
| Protective construction |  | IP00 open type |  |  |  |  |  |  |  |  |  |  |  |  |

(Note 1) The specifications are as shown above for function code F03 = 1 (LD (VT) specification).
(*1) The tap inside the converter must be switched when the power supply voltage is 380 to $398 \mathrm{~V} / 50 \mathrm{~Hz}$ or 380 to $430 \mathrm{~V} / 60 \mathrm{~Hz}$. The capacity must be reduced when the power supply voltage is less than 400 V .
(*2) When the power supply voltage is 400 V , the output voltage is approximately $640 \mathrm{VDC}, 686 \mathrm{VDC}$ when 440 V , and 710 VDC when 460 V .
(*3) Interphase unbalance ratio (\%) $=\frac{\text { Max. voltage }[\mathrm{V}]-\text { Min. voltage }[\mathrm{V}]}{\text { Three-phase average voltage }} \times 67$
(*4) Be sure to connect to a power supply with the above required power supply capacity or higher.
(If the power supply capacity is insufficient, the converter or inverter may suffer damage due to waveform distortion at the power supply side.)
If a power supply boosted with a low-capacity transformer is used for the main circuit power supply, etc. for performing a control panel sequence check in particular, there is a possibility that problems may occur. In cases such as this, open the converter "RUN-CM", and perform a sequence check of other parts without running the converter.

## [ 2 ] Common Specifications

| Item |  |  | Specification |
| :---: | :---: | :---: | :---: |
|  |  |  | Unit type |
| Control | Control method |  | AVR, and ACR control |
|  | Operation method |  | By tuming the power ON following connection, rectification is performed, boosting operation is performed with a run command (short circuit across RUN-CM, or run command via communication), and the unit is ready for operation. |
|  | Running status signal |  | Running, powering, regenerating, ready for operation, batch fault, etc. |
|  | MD (CT)/LD (VT) switching |  | MD (CT): Overload rating of $150 \%$ for 1 min, LD (VT): overload rating of $120 \%$ for 1 min selection |
|  | Carrier frequency |  | 2.5 to 15 Hz (see individual specifications for details.) |
|  | Input power factor |  | 0.99 or higher (with $100 \%$ load, excl. when equipped with OPC-RHCE-TBSI-ם) (*1) |
|  | Input harmonic current |  | A conversion coefficient of $\mathrm{Ki}=0$ can be used in accordance with the harmonic suppression countermeasure guidelines issued by the Ministry of Economy, Trade and Industry. |
|  | Restart after momentary power failure |  | When a momentary power failure occurs, the gate is shut off at the insufficient voltage level, and the converter resumes operation automatically following recovery. |
|  | Power limiting control |  | Control is possible at the previously set limit value or less. |
| Display | Keypad | Alarm display (protective functions) | AC fuse blown, $A C$ overvoltage, $A C$ undervoltage, $A C$ overcurrent, AC input current error, input phase loss, synchronous power supply frequency error, DC fuse blown (*2), DC overvoltage, DC undervoltage, charging circuit error, fin overheating, external fault, converter overheating, overload, memory error, touch panel communication error, CPU error, network equipment error, operating procedure mistake, A/D converter error, optical network error, DC fan lock, hardware error, simulation failure |
|  |  | Alarm history | The latest and older alarm codes (up to 10 times), and the latest and older alarm detailed information (up to 10 times) are saved and displayed, and the date and time at which alarms occurred are saved and displayed with the calendar/clock display function (accuracy: $\pm 27 \mathrm{sec} /$ month ( $\mathrm{Ta}=25^{\circ} \mathrm{C}$ ). <br> Storage period: 5 years or longer (ambient temperature: $25^{\circ} \mathrm{C}$ ) <br> * Battery: Built into models of all capacities as standard) |
|  |  | Monitor | Displays input power, input RMS current value, input RMS voltage value, intermediate DC current, and power supply frequency (alarm code). |
|  |  | Load factor | The load factor can be measured from the keypad. |
|  |  | Display language | Function codes can be set and referenced in Japanese, English, Chinese, and Korean (4 languages). |
|  |  | Historical trace | Sampling data stored in the converter is read and displayed in a graph. Sampling time: 62.5 us to 1 s |
|  |  | Real-time trace | Data is read from the converter in real time and displayed in a graph. Sampling time: 1 ms to 1 s |
|  | Loader (*3) | Traceback | Sampling data stored in the converter is read when an alarm occurs and displayed in a graph. <br> Sampling time: 62.5 us to 1 s (However, for other than current, the traceback function can be used with sampling time of 400 us or longer.) <br> Sampling data is retained in the memory using battery power. <br> Retention time: 5 years or longer (ambient temperature: $25^{\circ} \mathrm{C}$ ) |
|  |  | Operation monitor | I/O monitoring, system monitoring, and alarm history monitoring, etc. can be performed. |
|  |  | Function code settings | The function code setting status can be checked. Function code settings can be edited, transferred, compared, and initialized. |
|  | Charge lamp |  | Lights up while power is being supplied to the converter unit. Lights up when there is control power. |


| Item |  | Specification |
| :--- | :--- | :--- |
| Maintainability | Common Unit type |  |

*1: When the power supply voltage is $420 \mathrm{~V}(210 \mathrm{~V})$ or higher, and the operating load is $50 \%$ or higher, the power factor for the power supply drops to approx. 0.95 (only during regenerative operation).
*2: An AC fuse blown detection card option (OPC RHCE ACF) is necessary.
*3: The FRENIC-RHC Loader software can be downloaded from FeLibrary, Fuji Electric's dedicated material resource site.

### 11.9.3 Function Specifications

- Terminal functions (unit type)

|  | Terminal symbol | Terminal name | Specification |
| :---: | :---: | :---: | :---: |
|  | L1/R, L2/S, L3/T | Main power supply input | Connect to a three-phase power supply via a dedicated reactor. |
|  | $\mathrm{P}(+), \mathrm{N}(-)$ | Converter output | Connect to inverter power supply input terminals $\mathrm{P}(+)$ and $\mathrm{N}(-)$. |
|  | E (G) | Grounding terminal | Grounding terminal for converter chassis (case) |
|  | R0, T0 | Control power auxiliary input | Connect to the control power supply backup terminal, same power supply system as the main circuit power supply. |
|  | R1, T1 | Fan power supply | This is the connection terminal for the fan power supply. Connected with $\mathrm{R} 1-\mathrm{Ri}$ and $\mathrm{T} 1-\mathrm{Ti}$ shorted when shipped. If using the fan power supply independently, consult your Fuji Electric representative. |
|  | Ri, Si, Ti (unit type) | Synchronous power supply input for voltage detection | This is a detection terminal used for the control inside the converter, and is connected to the dedicated reactor and dedicated filter power supply side. |
|  | R, T, R2, T2 *1 (when equipped with option card) | Input for control monitoring | This is a connection terminal for detecting blown AC fuses. |
|  | RUN | Run command | Converter runs when ON across RUN and CM, and stops when OFF. |
|  | RST | Alarm reset command | By eliminating the cause of the alarm when an alarm stoppage occurs, and turning ON between RST and CM, the protective function that was activated is canceled, and operation resumes. |
|  | $\begin{aligned} & \text { X1 to X3 } \\ & \text { (unit type) } \end{aligned}$ | Digital input | 0: External alarm [THR], 1: Current limiting cancel [LMT_CCL], <br> 2: 73 answerback [73ANS], 3: Current limiting switch [I-LIM], <br> 4-13: Custom Di1-10 [C-DI1 to C-DI10], <br> 14: Universal DI [U-DI], 15: AC fuse blown [ACF], <br> 16: RHF overheating alarm [RHF-OH], <br> 17: Parallel system cancel [MT-CCL] <br> 18: Generator/commercial power supply switching [SW-GEN] |
|  | CM | Digital input common | This is a common terminal for digital input signals. |
|  | PLC | PLC signal power supply | Connect the power supply for PLC output signals. (Rated voltage: 24 V (22 to 27) DC) |
|  | 30A, 30B, 30C | Batch output alarm | A signal is output when the converter protective function activates and an alarm stoppage occurs. <br> (Contact: 1C, when error occurs, across 30A-30C: ON) <br> (Contact capacity: 250 VAC, 50 mA max.) |
|  | Y1, Y2, Y3, Y11 to Y18 | General-purpose transistor output | 0: Running [RUN], 1: Ready for operation [RDY], 2: Power supply |
|  | CMY | General-purpose transistor output common | current limiting [IL], 3: Lifetime alarm [LIFE], 4: Cooling fin overheating warning [PRE-OH], 5: Overload warning [PRE-OL], 6: Power running |
|  | Y5A, Y5C | Relay output | Restart after momentary power failure [U-RES], <br> 10: Source frequency synchronization [SY-HZ], 11: Alarm information 1 <br> [AL1], 12: Alarm information 2 [AL2], 13: Alarm information 4 [AL4], <br> 14: DC fan lock [DCFL], <br> 15-24: Custom Do1-10 [C-DO1 to C-DO10], <br> 25: Universal DO [U-DO], 26: Light alarm [L-ALM], <br> 27: Cooling fan running [FAN], 28: Parallel system communication established [MTS], <br> 29: Parallel system cancel response [MEC-AB], <br> 30: Parallel system master selection [MSS], <br> 31: Parallel system local station fault [AL-SF], <br> 32: Alarm output (for any alarm) [ALM], 33: Y-terminal test output ON [Y-ON], <br> 34: Y-terminal test output OFF [Y-OFF]. 35: Clock battery life [BATT], <br> 36: Retry function running [TRY] <br> * 8 point DO extension function (Di function cannot be used) with OPC- <br> VG1-DIO option |
|  | A01, A04, A05 | General-purpose analog output | 0 : Input power [PWR], 1: Input RMS current value [I-AC], <br> 2: Input RMS voltage value [V-AC], 3: Intermediate DC voltage [V-DC], <br> 4: Power supply frequency [FREQ], 5: +10 V test [P10], <br> 6: -10 V test [N10], 12-18: Custom-AO1-7 [C-AO1 to C-AO7], <br> 19: Universal AO [U-AO] <br> * 2 point AO extension function (Ai function cannot be used) with OPC-VG1-AIO |
|  | M | Analog output common | This is a common terminal for analog output signals. |
|  | 73A, 73C | Charging resistance ON relay output | This is the control output for the external charging resistance ON relay (73). |

*1: To use the AC blown fuse detection function, the OPC-RHCE-ACF card for AC blown fuse detection is required. Refer to the RHC-E Unit Type Instruction Manual for details.

## Communication specifications

|  | Item | Specification |
| :---: | :---: | :---: |
|  | General communication specifications | Operating information，running status，function code monitor function（polling），and RUN，RST，and X1 control（selecting）is possible． <br> ＊Function code writing is not possible． |
|  | 【DX＋】， <br> ［DX－】 RS－485（built in as <br> standard） | Communication is possible with the PC or PLC（Fuji standard and RTU protocols are supported）． |
|  | T－Link（option） | T－Link communication with MICREX－F or an SX T－Link module is possible with the OPC－VG1－TL option． |
|  | CC－Link（option） | Connection to CC－Link master devices is possible with the OPC－VG1－CCL option． |
|  | SX bus（option） | MICREX－SX and SX bus connection is possible with the OPC－VG1－SX option． |
|  | E－SX bus（option） | MICREX－SX and E－SX bus connection is possible with the OPC－VG1－ESX option． |
|  | Optical communication（option） | Parallel multiplex system load sharing can be controlled with the OPC－RHCE－TBSI－ם option． |

## －Function settings

| Function code |  |
| :--- | :--- |
| F00 | Data protection |
| F01 | High－frequency filter selection |
| F02 | Restart mode after momentary power failure（Operation selection） |
| F03 | Current rating switching |
| F04 | LED monitor display selection |
| F05 | LCD monitor display selection |
| F06 | LCD monitor language selection |
| F07 | CD monitor contrast adjustment |
| F08 | Display coefficient for＂Input watt－hour data＂ |
| F09 | X1 function selection |
| E01 | Y1，Y2，Y3，Y5，Y11 to 18 function selection |
| E02 to 13 | I／O function normally open／closed |
| E14 | RHC overload early warning level |
| E15 | Cooling fan ON－OFF control |
| E16 | Current limiting output（hysteresis width） |
| E17 | A01，A04，A05 function selection |
| E18 to 20 | A01，A04，A05 gain setting |
| E21 to 23 | A01，A04，A05 bias setting |
| E24 to 26 | A01 to 5 filter setting |
| E27 | X2 to X3 function selection |
| E28，29 | Station address |
| H01 | Operation selection when error occurs |
| H02 | Time operating time |
| H03 | Baud rate |
| H04 | Data length selection |
| H05 | Parity selection |
| H06 | Stop bit selection |
| H07 | Communication disconnection time |
| H08 | Response interval time |
| H09 | ACor manufacturer： 1 to 2 |
| H10 | AVR－P（gain） |
| H11 | AVrotocol selection |
| H12 | TL transmission format |
| H13 | Paralleling system |
| H14 | Number of paralleling system slave stations |
| H15，16 | Alarm data deletion |
| H17，18 | Power supply current limiting（for driving 1／2） |
| H19，20 | Power supply current limiting（for braking 1／2） |
| H21 | Current limiting early warning（level／timer） |
| H22 | Multiplex system station number setting |
| H23 | Cooling fan ON－OFF control continuation timer |
| H24 to 26 | Cumulative cooling fan run time default setting |
| H27 | Clock time setting（set time：month／year，day／hour，minute／second） |
| H28 to 33 | Clock time setting（clock time writing） |
| H34 | Applicable light alarm definition 1 to 6 |
| H35 | Simulation failure |
| H36 | Retry（count） |
| H37 | A38 |
| H39，40 | H41 |
| H42 | H43 |


| Function code |  |
| :--- | :--- |
| H44 | ACR-I (integration constant) |
| H45 | ACR-ADJ (ACR adjustment) |
| o01 to 49 | Bus setting parameter 0 to 48 |
| U01 | SX, E-SX bus communication format selection |
| U02 | SX, E-SX bus station number monitor |
| U03 | Protective function operation selection |
| U04 | AVR control response |
| U05 | DC voltage command value selection |
| U06 to 48 | Reserved for particular manufacturers |
| U49 | System voltage adjustment |
| U101 to 139 | Reserved for particular manufacturers |

－Protective functions

| Item | Display | Protection specification |
| :---: | :---: | :---: |
| AC blown fuse | BEF | This is activated when the external AC fuse blows due to shorting or damage to the internal circuit． <br> If using this function，an option or AC fuse with microswitch is required． |
| AC overvoltage | 97iu | This is activated if the AC power supply voltage exceeds the AC overvoltage detection level． AC overvoltage detection level（ 200 V series： $276 \mathrm{Vrms}, 400 \mathrm{~V}$ series： 552 Vrms ） |
| AC undervoltage | Bitil | This is activated if the AC power supply voltage drops to the undervoltage detection level or below during operation． <br> However，no alarm is output when＂F02：Restart mode after momentary power failure（mode selection）＂data is set to 1 （Operation）．AC undervoltage detection level（ 200 V series： 88 Vrms ， 400V series： 176 Vrms ） |
| AC overcurrent | 910 | This is activated if the AC current instantaneous value exceeds the overcurrent detection level such as when a power supply circuit short circuit or ground fault occurs． |
| AC input current error | BLE | This alarm is issued when the difference between the converter current command value and input AC current detection value exceeds the input current error detection level． <br> However，no alarm is output when＂F02：Restart mode after momentary power failure（mode selection）＂data is set to 1 （Operation）． |
| Input phase loss | LPU | This is activated when the power is turned ON，and if there is a phase interruption at the three－ phase power supply connected to main circuit main power supply input terminals L1／R，L2／S，and L3／T，or if the three－phase power supply voltage is unbalanced，an alarm stop will occur at the converter．It is necessary to turn the power OFF and ON again to reset the alarm． |
| Synchronous power frequency error | FrE | This is activated when the power supply frequency detection value lies outside the 46 to 54 Hz or 56 to 64 Hz range（only when power ON），or a frequency of $\pm 15 \%$ or more of the reference frequency $(50 / 60 \mathrm{~Hz})$ is detected（when run command input）． <br> However，no alarm is output when＂F02：Restart mode after momentary power failure（mode selection）＂data is set to 1 （Operation）． |
| DC blown fuse | dit | This is activated if the converter output is equipped with a DC fuse，and the DC fuse blows due to shorting or damage to the internal circuit． <br> （ 200 V 75 kW or higher， 400 V 90 kW or higher） |
| DC overvoltage | dibi | This is activated at such times as when regenerative current from the inverter increases （regenerative energy exceeds braking capability），and the main circuit intermediate voltage exceeds the DC overvoltage detection level． <br> DC overvoltage detection level（200V series： 405 VDC， 400 V series： 820 VDC） |
| DC undervoltage | ditil | This is activated if the intermediate DC voltage drops to the insufficient voltage detection level or below due to such reasons as a drop in the power supply voltage during converter operation． However，no alarm is output when＂F02：Restart mode after momentary power failure（mode selection）＂data is set to 1 （Operation）． <br> DC undervoltage detection level（200V series： 186 VDC， 400 V series： 371 VDC） |
| Charger circuit fault | PロF | This is activated if 73 answerback［73ANS］is selected with the X－terminal function selection．This is activated if there is no X－terminal input（electromagnetic contactor for bypassing charging circuit is closed）within 0.5 sec after the converter charging circuit control output［73A］signal is issued． <br> To reset the alarm，change the X－terminal function selection，or turn the power OFF and back ON again． |
| Fin overheating | 时保 | This is activated when the temperature around the cooling fins used to cool main circuit semiconductor devices rises due to such reasons as cooling fan stoppage． |
| External alarm |  | A converter alarm stoppage occurs when an external signal is input（THR）． |
| Converter internal overheat | ロッコ | This is activated when the temperature around the control PCB rises due to reasons such as poor ventilation inside the converter． |
| Overload | Cil $i 1$ | This is activated if the AC power supply current exceeds the converter overload level for the anti－ time limit characteristic． $\text { MD (CT): } 150 \% / 60 \mathrm{~s}, \mathrm{LD} \text { (VT): } 120 \% / 60 \mathrm{~s}$ |
| DC fan lock | dFO | This alarm is issued when the DC fan stops．（ 200 V 45 kW or higher， 400 V 75 kW or higher） |
| Memory error | Eri | This is activated if a memory error such as a data write error occurs． |
| Keypad communication error | Erc | This is activated if a keypad transfer error occurs． <br> If this alarm is displayed on the touch panel，the converter unit does not output a batch alarm． |
| CPU error | ErJ | This function is activated if a CPU error occurs． |
| Network equipment error | Er\％ | This is activated when a transmission error occurs due to noise，etc．while the converter is running with RS－485 communication，CC－Link，T－Link，SX－bus，or E－SX bus． <br> It is activated by a PLC device error，communication line disconnection，or option alarm． |
| Operating procedure mistake | ErG | This is activated when multiple network options（T－Link，SX－bus，CC－Link）are installed． |
| A／D converter error | Erg | Operation stops when an error occurs in the A／D converter circuit． |
| Link communication error | Erb | This function is activated when a transmission error occurs during communication between RHC units using a high－speed serial communication terminal block（option）． |
| Hardware error | ErH | Triggered when an error occurs at the LSI on the power supply PCB． |
| Simulation failure | Err | A simulated alarm state can be produced by keypad operation． |

- Construction and environment

| Item |  | Construction, environment, standards |
| :---: | :---: | :---: |
| Construction specification | Construction | Type installed inside panel, external cooling type |
|  | Protective construction | IP00 |
|  | Cooling system | Forced air cooling |
|  | Mounting method | Vertical mounting |
| Environment | Usage location | The inverter must not be exposed to dust, direct sunlight, corrosive gases (Note 1), flammable gases, oil mist, vapor or water droplets. <br> (Pollution degree 2 (IEC60664-1)) (Note 2) <br> The atmosphere can contain a small amount of salt. ( $0.01 \mathrm{mg} / \mathrm{cm}^{2}$ per year or less) <br> There should be no condensation due to sudden temperature changes. |
|  | Ambient temperature | -10 to $50^{\circ} \mathrm{C}$ |
|  | Humidity | 5 to 95\% RH, there should no condensation |
|  | Altitude | 3000 m or less (However, output is reduced at 1001 to 3000 m ) |
|  | Vibration | Max. amplitude: 55 kW or lower (200V series) 75 kW or higher (200V series)   <br> 75 kW or lower (400V series) 90 kW or higher ( 400 V series)   <br> 3 mm less than 2 to 9 Hz 3 mm less than 2 to 9 Hz <br> $9.8 \mathrm{~m} / \mathrm{s}^{2}$ less than 9 to 20 Hz $2 \mathrm{~m} / \mathrm{s}^{2}$ less than 9 to 55 Hz <br> $2 \mathrm{~m} / \mathrm{s}^{2}$ less than 20 to 55 Hz $1 \mathrm{~m} / \mathrm{s}^{2}$ less than 55 to 200 Hz <br> $1 \mathrm{~m} / \mathrm{s}^{2}$ less than 55 to 200 Hz   |
|  | Storage temperature | -25 to $+70^{\circ} \mathrm{C}$ (during long-term storage: -10 to $+30^{\circ} \mathrm{C}$ ) |
|  | Storage humidity | 5 to $95 \% \mathrm{RH}$ |

(Note 1) Please contact Fuji Electric if sulfurized gas is produced in the location where the product is installed.
(Note 2) Do not install the inverter in an environment where it may be exposed to lint, cotton waste or moist dust or dirt which will clog the heat sink of the inverter. If the inverter is to be used in such an environment, install it in a cabinet to prevent lint, etc. getting in.

### 11.9.4 Device Configuration

## - Device configuration list

 MD specification
(*1) There is a fuse (F) and charging resistor (R0) built into the charging circuit box.
(*2) Individual support will be required for charging circuit boxes with capacity of 280 kW or higher. Please contact Fuji Electric.
(*3) CF4-500C to CF4-800C are comprised of two capacitors. For an order quantity of "1" for CF4-500C to CF4800C, two capacitors will be shipped.
(*4) If a blown fuse is detected, install the OPC-RHCE-ACF card for AC blown fuse detection. If not using a charging circuit box, a fuse with microswitch for blow fuse detection may be prepared. In such a case, there is no need for the OPC-RHCE-ACF. Contact Fuji Electric separately for further information.
(*5) If a blown fuse is detected, install the OPC-RHCE-ACF card for AC blown fuse detection.
(*6) Refer to the PWM Converter Instruction Manual for details on MCCB/ELCB selection.

## LD specification

|  |  | PWM converter Type | Charging circuit contactor |  | Power supply contactor |  | Charging circuit box（＊1，2） |  |  |  |  |  | Boosting reactor |  | Filter resistor |  | Filter reactor |  | Filter capacitor |  | Filter circuit contactor |  | | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  |  |  |  |  |  | Charging resistor |  | AC fuse |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | （73） | Qty |  |  | （52） | Qty | （CU） | Qty | （R0） | Qty | （Fac） | Qty | （Lr） | Qty | （Rf） | Qty | （Lf） | Qty | （Cf） | Qty | （6F） | Qty |
|  | 37 | RHC30－2EJ | SC－N5 | 1 | － | － | CU30－2E | 1 | （GRZG120 $2 \Omega$ ） | （3） | （CR2L－200／UL） | （2） | LR2－37C | 1 | GRZG400 $0.12 \Omega$ | 3 | LFC2－37C | 1 | CF2－37C | 1 | － |  |
|  | 45 | RHC37－2EJ | SC－N7 | 1 |  |  | CU45－2E | 1 |  |  | （CR2L－260／UL） | （2） | LR2－55C | 1 |  |  | LFC2－55C | 1 | CF2－55C | 1 |  |  |
|  | 55 | RHC45－2EJ | SC－N8 | 1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 75 | RHC55－2EJ | SC－N11 | 1 |  |  | CU55－2E | 1 |  |  | （CR2L－400／UL） |  | LR2－75C | 1 |  |  | LFC2－75C | 1 | CF2－75C | 1 |  |  |
|  | 90 | RHC75－2EJ |  |  |  |  | CU75－2E | 1 |  |  | ＊ 4 | （2） |  |  |  |  |  |  |  |  |  |  |
|  | 110 | RHC90－2EJ | SC－N12 | 1 |  |  | CU90－2E | 1 | （GRZG400 1 ת） | （3） | $\begin{aligned} & \text { (A50P600-4) } \\ & * 5 \\ & \hline \end{aligned}$ | （2） | LR2－110C | 1 | ［2 in parallel］ | 6 | LFC2－110C | 1 | CF2－110C | 1 |  |  |
|  | 55 | RHC45－4EJ | SC－N4 | 1 | － |  | CU45－4C | 1 | ${ }_{(\text {（HF5C5504）}}^{(80 \mathrm{~W}, 7.5 \Omega)}$ | （3） | $\begin{aligned} & \text { (CR6L-150/UL) } \\ & { }_{4} \end{aligned}$ | （2） | LR4－55C | 1 | GRZG400 $0.26 \Omega$ | 3 | LFC4－55C | 1 | CF4－55C | 1 | － |  |
|  | 75 | RHC55－4EJ | SC－N5 | 1 |  |  | CU55－4C | 1 |  |  | （CR6L－200／UL） |  | LR4－75C | 1 | GRZG400 $0.38 \Omega$ | 3 | LFC4－75C | 1 | CF4－75C | 1 |  |  |
|  | 90 | RHC75－4EJ | SC－N7 | 1 |  |  | CU75－4C | 1 |  |  |  | （2） | 4－110 | 1 | GRZG400 $0.53 \Omega$ |  |  |  |  |  |  |  |
|  | 110 | RHC90－4EJ | SC－N8 | 1 |  |  | CU90－4C | 1 |  |  | （CR6L－300／UL） |  | R4－110C | 1 | ［2 in parallel］ | 6 | LFC4－110C | 1 | CF4－110C | 1 |  |  |
|  | 132 | RHC110－4EJ |  |  |  |  | CU110－4C | 1 | （GRZG120 $2 \Omega$ ） | （3） |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 160 | RHC132－4EJ | SC－N11 | 1 |  |  | CU132－4C | 1 |  |  |  | （2） | LR4－160C | 1 | RF4－160C | 1 | LFC4－160C | 1 | CF4－160C | 1 |  |  |
|  | 200 | RHC160－4EJ | SC－N12 | 1 |  |  | CU160－4C 1   <br> CU200－4C 1   <br> CU220－4C 1   <br> （GRZG400 1 $\Omega$ ） （3） （A50P600－4） <br> $* 5$  <br> $($ A70QS800－4） <br> $* 5$    |  |  |  | （A50P600－4） <br> ${ }^{5}$ <br> （A70QS800－4） <br> ${ }^{5}$ |  | LR4－220C | 1 | RF4－220C | 1 | LFC4－220C | 1 | CF4－220C | 1 |  |  |
|  | 220 | RHC200－4EJ |  |  |  |  |  |  | （GRZG400 1 ת） | （3） |  |  | LR4－2200 |  |  |  |  |  |  |  |  |  |
|  | 280 | RHC220－4EJ | SC－N14 | 1 |  |  |  |  | （2） |  |  | LR4－280C | 1 | RF4－280C | 1 | LFC4－280C | 1 | CF4－280C | 1 |  |  |  |
|  | 315 | RHC280－4EJ | SC－N3 | 1 | SC－N14 | 1 | － |  |  | GRZG400 $1 \Omega$ <br> ［2 in parallel］ | 6 | $\begin{aligned} & \text { A70QS800-4 } \\ & * 5 \end{aligned}$ | 2 | LR4－315C | 1 | RF4－315C | 1 | LFC4－315C | 1 | CF4－315C | 1 | SC－N4 | 1 |
|  | 355 | RHC315－4EJ |  |  |  |  |  |  | $\left\lvert\, \begin{aligned} & \text { A70P 1600-4TA } \\ & * 5 \end{aligned}\right.$ |  |  |  | LR4－355C | 1 | RF4－355C | 1 | LFC4－355C | 1 | CF4－355C | 1 |  |  |  |
|  | 400 | RHC355－4EJ |  |  | SC－N16 | 1 |  |  |  |  |  | 2 | LR4－400C | 1 | RF4－400C | 1 | LFC4－400C | 1 | CF4－400C | 1 |  |  |  |
|  | 500 | RHC400－4EJ |  |  | SC－N11 | 3 |  |  |  |  |  |  | LR4－500C | 1 | RF4－500C | 1 | LFC4－500C | 1 | CF4－500C | 1 （＊3） |  |  |  |

（＊1）There is a fuse（F）and charging resistor（R0）built into the charging circuit box．
（＊2）Individual support will be required for charging circuit boxes with capacity of 280 kW or higher．Please contact Fuji Electric．
（＊3）CF4－500C is comprised of two capacitors．For an order quantity of＂1＂for CF4－500C，two capacitors will be shipped．
（＊4）If a blown fuse is detected，install the OPC－RHCE－ACF card for AC blown fuse detection． If not using a charging circuit box，a fuse with microswitch for blow fuse detection may be prepared． In such a case，there is no need for the OPC－RHCE－ACF．Contact Fuji Electric separately for further information．
（＊5）If a blown fuse is detected，install the OPC－RHCE－ACF card for AC blown fuse detection．
（＊6）Refer to the PWM Converter Instruction Manual for details on MCCB／ELCB selection．

(*1) If using a 400 V series inverter for the main power supply, connect a step-down transformer to ensure that the sequence circuit voltage is 220 V or less.
(*2) Be sure to connect the PWM converter and inverter auxiliary power input terminals (R0, T0) to the main power via contact $b$ of the charging circuit electromagnetic contactors (73 or MC). When using for a non-grounded power supply, it is necessary to add an insulated transformer.
(*3) Design the sequence so that the RUN signal is not input to the inverter until the PWM converter is ready.
(*4) Set any of the inverter unit $X$ terminals for external alarm (THR).
(*5) Be sure to connect wires to the L1/R, L2/S, L3/T, Ri, Si, and Ti terminals to match the phase sequence.
(*6) If a blown fuse is detected, install the OPC-RHCE-ACF card for AC fuse blown detection, and connect as shown in the diagram.
(*7) With converters with R1 and T1 connectors, power is supplied to the AC fan with the R1 and T1 terminal, and Ri , Ti terminal internal connection, and therefore the wiring must not be disconnected.
(*8) If using a fuse with microswitch for detecting a blown fuse, set one of the PWM converter $X$ terminals to AC fuse blown alarm (ACF), and connect all microswitches in series with the $X$ terminal. Set contact $b$ input with function code E14 for input with contact b.
-RHC280-4EJ to RHC630-4EJ MD Specification
-RHC280-4EJ to RHC400-4EJ LD Specification

(*1) Connect a step-down transformer to ensure that the sequence circuit voltage is 220 V or less.
(*2) Be sure to connect the PWM converter and inverter auxiliary power input terminals (RO, TO) to the main power via contact b of the power supply circuit magnetic contactor (52). When using for a non-grounded power supply, it is necessary to add an insulated transformer.
(*3) Design the sequence so that the RUN signal is not input to the inverter until the PWM converter is ready.
(*4) Set the 52T timer set time to 1 s .
(*5) Set any of the inverter unit X terminals for external alarm (THR).
(*6) Be sure to connect wires to the L1/R, L2/S, L3/T, $\mathrm{Ri}, \mathrm{Si}$, and Ti terminals to match the phase sequence.
(*7) If a blown fuse is detected, install the OPC-RHCEACF card for AC fuse blown detection, and connect as shown in the diagram. With converters with R1 and T1 connectors, power is supplied to the AC fan with the R1 and T1 terminal, and Ri , Ti terminal internal connection, and therefore the wiring must not be disconnected.

### 11.9.5 External Dimensions

PWM converter unit


| PWM converter type |  | Figure | Dimensions (mm) |  |  |  |  |  |  |  |  | Capacity | Approx weight (kg) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | W | W1 | H | H1 | D | D1 | n | B | C |  |  |
| 200V series | RHC30-2EJ |  | A | 320 | 240 | 550 | 530 | 255 | 115 | 2 | 10 | 10 | 30 | 24 |
|  | RHC37-2EJ | A | 355 | 275 | 615 | 595 | 270 | 115 | 2 | 10 | 10 | 37 | 29 |
|  | RHC45-2EJ | A | 355 | 275 | 740 | 720 | 270 | 115 | 2 | 10 | 10 | 45 | 39 |
|  | RHC55-2EJ | A | 355 | 275 | 740 | 720 | 270 | 115 | 2 | 10 | 10 | 55 | 39 |
|  | RHC75-2EJ | B | 530 | 430 | 750 | 720 | 285 | 145 | 2 | 15 | 15 | 75 | 55 |
|  | RHC90-2EJ | B | 680 | 580 | 880 | 850 | 360 | 180 | 3 | 10 | 10 | 90 | 95 |
| 400V series | RHC45-4EJ | A | 355 | 275 | 615 | 595 | 270 | 115 | 2 | 10 | 10 | 45 | 30 |
|  | RHC55-4EJ | A | 355 | 275 | 675 | 655 | 270 | 115 | 2 | 10 | 10 | 55 | 32 |
|  | RHC75-4EJ | A | 355 | 275 | 740 | 720 | 270 | 115 | 2 | 10 | 10 | 75 | 38 |
|  | RHC90-4EJ | B | 530 | 430 | 740 | 710 | 315 | 135 | 2 | 15 | 15 | 90 | 58 |
|  | RHC110-4EJ |  |  |  |  |  |  |  |  |  |  | 110 | 60 |
|  | RHC132-4EJ | B | 530 | 430 | 1000 | 970 | 360 | 180 | 2 | 15 | 15 | 132 | 85 |
|  | RHC160-4EJ |  |  |  |  |  |  |  |  |  |  | 160 | 87 |
|  | RHC200-4EJ | B | 680 | 580 | 1000 | 970 | 360 | 180 | 3 | 15 | 15 | 200 | 116 |
|  | RHC220-4EJ |  |  |  |  |  |  |  |  |  |  | 220 | 119 |
|  | RHC280-4EJ | B | 680 | 580 | 1400 | 1370 | 440 | 260 | 3 | 15 | 15 | 280 | 215 |
|  | RHC315-4EJ |  |  |  |  |  |  |  |  |  |  | 315 |  |
|  | RHC355-4EJ | B | 880 | 780 | 1400 | 1370 | 440 | 260 | 4 | 15 | 15 | 355 | 290 |
|  | RHC400-4EJ |  |  |  |  |  |  |  |  |  |  | 400 |  |
|  | RHC500-4EJ | C | 1000 | 900 | 1550 | 1520 | 500 | 313.2 | 4 | 15 | 15 | 500 | 485 |
|  | RHC630-4EJ |  |  |  |  |  |  |  |  |  |  | 630 |  |

<Boosting reactor>


Figure $B$


| Boosting reactor type |  | Figure | Dimensions (mm) |  |  |  |  |  |  |  | Approx. weight (kg) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | W | W1 | H | D | D1 | D2 | K | M |  |
| 200V series | LR2-37C |  | A | 265 | 95 | 385 | 234 | 205 | 150 | 12 | M10 | $48 \pm 2$ |
|  | LR2-55C | A | 285 | 95 | 420 | 250 | 215 | 160 | 12 | M12 | 58 |
|  | LR2-75C | A | 330 | 110 | 440 | 255 | 220 | 165 | 12 | M12 | 70 |
|  | LR2-110C | A | 345 | 115 | 500 | 280 | 245 | 185 | 12 | M12 | 100 |
| 400 V series | LR4-55C | A | 270 | 95 | 370 | 244 | 215 | 145 | 12 | M10 | $47 \pm 2$ |
|  | LR4-75C | A | 330 | 110 | 410 | 250 | 220 | 150 | 12 | M10 | $61 \pm 2$ |
|  | LR4-110C | A | 330 | 115 | 455 | 275 | 245 | 170 | 12 | M12 | $90 \pm 3$ |
|  | LR4-160C | A | 380 | 125 | 515 | 300 | 260 | 180 | 15 | M12 | $121 \pm 4$ |
|  | LR4-220C | A | 450 | 150 | 580 | 330 | 290 | 220 | 15 | M12 | $192 \pm 5$ |
|  | LR4-280C | A | 480 | 160 | 730 | 325 | 290 | 220 | 15 | M16 | $220 \pm 5$ |
|  | LR4-315C | A | 480 | 160 | 745 | 335 | 300 | 225 | 15 | M16 | $242 \pm 5$ |
|  | LR4-355C | A | 480 | 160 | 800 | 350 | 315 | 230 | 15 | M16 | $282 \pm 5$ |
|  | LR4-400C | A | 480 | 160 | 825 | 375 | 330 | 260 | 19 | M16 | $309 \pm 5$ |
|  | LR4-500C | A | 525 | 175 | 960 | 410 | 360 | 290 | 19 | M16 | 420 |
|  | LR4-630C | B | 600 | 200 | 640 | 440 | 390 | 285 | 19 | $4 \times \mathrm{M} 12$ | 450 |

<Filter reactor>

Figure A


Figure C


Figure $B$


Figure D


Detailed view of terminal

| Filter reactor type |  | Figure | Dimensions (mm) |  |  |  |  |  |  |  | Approx. weight (kg) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | W | W1 | H | D | D1 | D2 | K | M |  |
| 200V series | LFC2-37C |  | A | 130* | 60 | 115 | 101 | 85 | 115 | 6 | M10 | $4.2 \pm 0.2$ |
|  | LFC2-55C | A | 175 | 60 | 145 | 110 | 90 | 140 | 6 | M12 | 8.0 |
|  | LFC2-75C | A | 195 | 80 | 200 | 120 | 100 | 150 | 7 | M12 | 13 |
|  | LFC2-110C | B | 255 | 85 | 230 | 118 | 95 | 165 | 7 | M12 | 20 |
| 400V series | LFC4-55C | A | 160* | 60 | 130 | 108 | 90 | 115 | 6 | M10 | $6.6 \pm 0.3$ |
|  | LFC4-75C | A | 180* | 80 | 170 | 111 | 93 | 130 | 7 | M10 | $11.5 \pm 0.6$ |
|  | LFC4-110C | B | 215 | 85 | 190 | 111 | 90 | 135 | 7 | M12 | $14.7 \pm 0.7$ |
|  | LFC4-160C | B | 240* | 85 | 205 | 126 | 110 | 140 | 7 | M12 | $21.2 \pm 0.7$ |
|  | LFC4-220C | C | 275 | 100 | 315 | 208 | 180 | 165 | 10 | M12 | $37 \pm 2$ |
|  | LFC4-280C | C | 275 | 110 | 325 | 223 | 195 | 195 | 12 | M16 | $45 \pm 2$ |
|  | LFC4-315C | C | 290 | 105 | 350 | 223 | 195 | 200 | 12 | M16 | $48 \pm 2$ |
|  | LFC4-355C | C | 290 | 105 | 350 | 228 | 200 | 205 | 12 | M16 | $51 \pm 2$ |
|  | LFC4-400C | C | 330 | 115 | 400 | 230 | 200 | 185 | 12 | M16 | $54 \pm 2$ |
|  | LFC4-500C | C | 345 | 115 | 480 | 240 | 205 | 240 | 12 | M16 | 72 |
|  | LFC4-630C | D | 435 | 145 | 550 | 295 | 255 | 200 | 15 | $4 \times \mathrm{M} 12$ | 175 |

* Central values are indicated (These are not maximum values).
<Filter capacitor>


| Filter capacitor type |  | Figure | Dimensions (mm) |  |  |  |  |  |  |  |  | Approx. weight (kg) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | W | W1 | H | H1 | D | D1 | E | F | J |  |
| 200V series | CF2-37C |  | A | 280 | 265 | 235 | - | 90 | 55 | 80 | 7 | M5 | 7.0 |
|  | CF2-55C | A | 280 | 265 | 340 | - | 90 | 55 | 80 | 7 | M8 | 8.5 |
|  | CF2-75C | A | 280 | 265 | 235 | - | 90 | 55 | 80 | 7 | M6 | 7.0 |
|  | CF2-110C | A | 280 | 265 | 340 | - | 90 | 55 | 80 | 7 | M8 | 8.5 |
| 400 V series | CF4-55C | A | 205 | 190 | 245 | - | 70 | 40 | 30 | 7 | M5 | 3.5 |
|  | CF4-75C | A | 205 | 190 | 205 | - | 70 | 40 | 30 | 7 | M5 | 2.9 |
|  | CF4-110C | A | 205 | 190 | 245 | - | 70 | 40 | 30 | 7 | M5 | 3.5 |
|  | CF4-160C | A | 280 | 265 | 260 | - | 90 | 55 | 80 | 7 | M6 | 6.0 |
|  | CF4-220C | B | 435 | 400 | 310 | 125 | 100 | - | 80 | $15 \times 20$ <br> elongated hole | M12 | 13.0 |
|  | CF4-280C | B | 435 | 400 | 350 | 165 | 100 | - | 80 | $15 \times 20$ <br> elongated hole | M12 | 15.0 |
|  | CF4-315C | B | 435 | 400 | 460 | 275 | 100 | - | 80 | $15 \times 20$ <br> elongated hole | M12 | 20.0 |
|  | CF4-355C | B | 435 | 400 | 520 | 335 | 100 | - | 80 | $15 \times 20$ <br> elongated hole | M12 | 23.0 |
|  | CF4-400C | B | 435 | 400 | 610 | 425 | 100 | - | 80 | $15 \times 20$ <br> elongated hole | M12 | 27.0 |
|  | CF4-500C | B | 435 | 400 | 310 | 125 | 100 | - | 80 | $15 \times 20$ <br> elongated hole | M12 | 13.0 |
|  | CF4-630C | B | 435 | 400 | 460 | 275 | 100 | - | 80 | $15 \times 20$ <br> elongated hole | M12 | 20.0 |

- Mount vertically. Do not lower onto its side and mount.
- All mounting feet must be secured to the cabinet floor, etc. Figure A: 2 mounting feet locations, Figure B: 4 mounting feet locations

Failure to observe this could result in damage due to vibration or impact.
<Filter resistor>


Figure C


| Filter resistor type |  | Figure | Dimensions (mm) |  |  |  |  |  |  |  |  | Approx. Weight (kg) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | W | W1 | W2 | H1 | H2 | D | D1 | D2 | C |  |
| 200 V series | GRZG400 $0.1 \Omega$ |  | A | 411 | 385 | 330 | 40 | 46 | 47 | 40 | 9.5 | 8.2 | 0.85 |
| 200 V series | GRZG400 $0.12 \Omega$ | A | 411 | 385 | 330 | 40 | 46 | 47 | 40 | 9.5 | 8.2 | 0.85 |
|  | GRZG400 $0.38 \Omega$ | A | 411 | 385 | 330 | 40 | 46 | 47 | 40 | 9.5 | 8.2 | 0.85 |
|  | GRZG400 $0.26 \Omega$ | A | 411 | 385 | 330 | 40 | 46 | 47 | 40 | 9.5 | 8.2 | 0.85 |
|  | GRZG400 $0.53 \Omega$ | A | 411 | 385 | 330 | 40 | 46 | 47 | 40 | 9.5 | 8.2 | 0.85 |
|  | RF4-160C |  |  |  |  |  |  |  |  |  |  | 22 |
|  | RF4-220C | B |  | 370 | - | 240 |  |  | 460 | 320 | - | 25 |
| 400 V series | RF4-280C |  |  |  |  |  |  |  |  |  |  | 31 |
|  | RF4-315C |  |  |  |  |  |  |  |  |  |  | 35 |
|  | RF4-355C | C | 655 | 625 | - | 240 | 55 | 470 | 460 | 320 | - | 36 |
|  | RF4-400C |  |  |  |  |  |  |  |  |  |  | 38 |
|  | RF4-500C |  |  |  |  |  |  |  |  |  |  | 41 |
|  | RF4-630C | C | 655 | 625 | - | 440 | 55 | 530 | 520 | 320 | - | 70 |

## <Charging box>

The charging box contains a combination of a charging resistor and a fuse, which is essential in the configuration of the RHC-E series of PWM converters. Using this charging box eases mounting and wiring jobs.

## - Capacity range

200V series: 30 to 90 kW ( 40 to 150 HP ), 5 types
400V series: 45 to 220 kW ( 60 to 450 HP), 9 types, 14 types in total
As for 400 V series with a capacity of 280 to 400 kW ( 500 to 800 HP ), the charging resistor and the fuse are separately provided as before.


| Fuse type |  | Dimensions (mm) |  |  |  |  |  |  |  |  |  | Mounting bolt | Approx. Weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | W | W1 | H | H1 | H2 | H3 | 4 | D | D1 | C |  |  |
| 200V series | CU30-2C | 300 | 200 | 310 | 295 | 280 | 7.5 | 15 | 110 | 2.4 | 6 | M5 | 7 |
|  | CU45-2C | 330 | 230 | 310 | 295 | 280 | 7.5 | 15 | 130 | 2.4 | 6 | M5 | 8 |
|  | CU55-2C |  |  |  |  |  |  |  |  |  |  |  |  |
|  | CU75-2C | 430 | 330 | 560 | 536 | 510 | 12 | 25 | 150 | 3.2 | 10 | M8 | 17 |
|  | CU90-2C |  |  |  |  |  |  |  |  |  |  |  | 20 |
| 400V series | CU45-4C | 300 | 200 | 310 | 295 | 280 | 7.5 | 15 | 110 | 2.4 | 6 | M5 | 7 |
|  | CU55-4C |  |  |  |  |  |  |  |  |  |  |  |  |
|  | CU75-4C | 330 | 230 | 310 | 295 | 280 | 7.5 | 15 | 130 | 2.4 | 6 | M5 | 8 |
|  | CU90-4C |  |  |  |  |  |  |  |  |  |  |  |  |
|  | CU110-4C |  |  |  |  |  |  |  |  |  |  |  |  |
|  | CU132-4C | 430 | 330 | 560 | 536 | 510 | 12 | 25 | 150 | 3.2 | 10 | M8 | 18 |
|  | CU160-4C |  |  |  |  |  |  |  |  |  |  |  |  |
|  | CU200-4C |  |  |  |  |  |  |  |  |  |  |  | 20 |
|  | CU220-4C |  |  |  |  |  |  |  |  |  |  |  |  |

<Charging resistors>


| Charging resistor type | Figure | Dimensions (mm) |  |  |  |  |  |  |  |  | Approx Weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | W | W1 | W2 | H1 | H2 | D | D1 | D2 | C |  |
| GRZG120 $2 \Omega$ | A | 217 | 198 | 165 | 22 | 32 | 33 | 22 | 6 | 5.5 | 0.25 |
| GRZG400 $1 \Omega$ | A | 411 | 385 | 330 | 40 | 39 | 47 | 40 | 9.5 | 5.5 | 0.85 |
| $80 \mathrm{~W} 7.5 \Omega$ (HF5C5504) | B | - | - | - | - | - | - | - | - | - | 0.19 |

<Fuses>

Figure A


Figure B


Figure C


Side view of A70P1600-4TA


Side view of A70P2000-4

| Fuse type |  | Figure | Dimensions (mm) |  |  |  |  |  |  |  | Approx. Weight (kg) | |
|---|---|---|---|---|---|---|---|---|---|---|---|---|
|  |  | W | W1 | W2 | H | D | D1 | G | E |  |
|  | CR2L-200/UL |  |  |  |  |  |  |  |  |  |  |  |
| 200V serie | CR2L-260/UL | A | 85 | 60 | 30 | 33.5 | 30 | 25 | 3.2 | $11 \times 13$ | 0.13 |
| 200 V series | CR2L-400/UL | A | 95 | 70 | 31 | 42 | 37 | 30 | 4 | $11 \times 13$ | 0.22 |
|  | A50P600-4 | B | 113.5 | 81.75 | 56.4 | - | 50.8 | 38.1 | 6.4 | $10.3 \times 18.2$ | 0.60 |
|  | CR6L-150/UL | A | 95 | 70 | 40 | 34 | 30 | 25 | 3.2 | 11x13 | 0.15 |
|  | CR6L-200/UL | A | 107 | 82 | 43 | 42 | 37 | 30 | 4 | $11 \times 13$ | 0.25 |
|  | CR6L-300/UL | A | 107 |  |  | 42 |  | 30 | 4 | $11 \times 13$ |  |
| 400V series | A50P400-4 | B | 110 | 78.6 | 53.1 | - | 38.1 | 25.4 | 6.4 | $10.3 \times 18.4$ | 0.30 |
| 400 V series | A50P600-4 | B | 113.5 | 81.75 | 56.4 | - | 50.8 | 38.1 | 6.4 | $10.3 \times 18.2$ | 0.60 |
|  | A70QS800-4 | B | 180.2 | 129.4 | 72.2 | - | 63.5 | 50.8 | 9.5 | $13.5 \times 18.3$ | 1.1 |
|  | A70P1600-4T | C | - | - | - | - | - | - | - | - | 8.0 |
|  | A70P2000-4 | C | - | - | - | - | - | - | - | - | 8.0 |

## Generated loss

In MD mode

| Unit |  | Boosting reactor |  | Filter reactor |  | Filter resistor |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | $\begin{gathered} \hline \text { Generated } \\ \text { loss [W] } \\ \hline \end{gathered}$ | Type | $\begin{gathered} \hline \text { Generated } \\ \text { loss [W] } \\ \hline \end{gathered}$ | Type | $\begin{gathered} \hline \text { Generated } \\ \text { loss [W] } \\ \hline \end{gathered}$ | Type | Qty | $\begin{gathered} \hline \text { Generated } \\ \text { loss [W] } \\ \hline \end{gathered}$ |
| RHC30－2EJ | 950 | LR2－37C | 330 | LFC2－37C | 32 | GRZG400 0.1 ת | 3 | 107 |
| RHC37－2EJ | 1200 | LR2－37C | 330 | LFC2－37C |  |  |  |  |
| RHC45－2EJ | 1200 | LR2－55C | 450 | LFC2－55C | 43 |  |  | 240 |
| RHC55－2EJ | 1450 |  |  |  |  |  |  |  |
| RHC75－2EJ | 1900 | LR2－75C | 520 | LFC2－75C | 74 |  |  | 137 |
| RHC90－2EJ | 2250 | LR2－110C | 720 | LR2－110C | 115 | $\begin{gathered} \hline \text { GRZG400 } 0.12 \Omega \\ (2 \text { in parallel) } \\ \hline \end{gathered}$ | 6 | 374 |
| RHC45－4EJ | 1250 | LR4－55C | 490 | LFC4－55C | 43 | GRZG400 $0.26 \Omega$ | 3 | 130 |
| RHC55－4EJ | 1550 |  |  |  |  |  |  |  |
| RHC75－4EJ | 1800 | LR4－75C | 520 | LFC4－75C | 78 | GRZG400 $0.38 \Omega$ | 3 | 112 |
| RHC90－4EJ | 2200 | LR4－110C | 710 | LFC4－110C | 90 | $\begin{gathered} \text { GRZG400 } 0.53 \Omega \\ (2 \text { in parallel) } \\ \hline \end{gathered}$ | 6 | 405 |
| RHC110－4EJ | 2550 |  |  |  |  |  |  |  |
| RHC132－4EJ | 2800 | LR4－160C | 1000 | LFC4－160C | 160 | RF4－160C | 1 | 568 |
| RHC160－4EJ | 3350 |  |  |  |  |  |  |  |
| RHC200－4EJ | 4100 | LR4－220C | 1240 | LFC4－220C | 200 | RF4－220C | 1 | 751 |
| RHC220－4EJ | 4600 |  |  |  |  |  |  |  |
| RHC280－4EJ | 5700 | LR4－280C | 1430 | LFC4－280C | 220 | RF4－280C | 1 | 1027 |
| RHC315－4EJ | 6400 | LR4－315C | 1660 | LFC4－315C | 260 | RF4－315C | 1 | 1154 |
| RHC355－4EJ | 6950 | LR4－355C | 1910 | LFC4－355C | 300 | RF4－355C | 1 | 1286 |
| RHC400－4EJ | 7900 | LR4－400C | 2160 | LFC4－400C | 350 | RF4－400C | 1 | 1454 |
| RHC500－4EJ | 10400 | LR4－500C | 2470 | LFC4－500C | 450 | RF4－500C | 1 | 5463 |
| RHC630－4EJ | 10550 | LR4－630C | 2300 | LFC4－630C | 510 | RF4－630C | 1 | 4722 |

In LD mode

| Unit |  | Boosting reactor |  | Filter reactor |  | Filter resistor |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | Generated loss［W］ | Type | Generated loss［W］ | Type | Generated loss［W］ | Type | Qty | Generated loss［W］ |
| RHC30－2EJ | 1150 | LR2－37C | 330 | LFC2－37C | 32 | GRZG400 $0.1 \Omega$ | 3 | 107 |
| RHC37－2EJ | 1400 | LR2－55C | 450 | LFC2－55C | 43 |  |  | 240 |
| RHC45－2EJ | 1400 |  |  |  |  |  |  | 240 |
| RHC55－2EJ | 1800 | LR2－75C | 520 | LFC2－75C | 74 |  |  | 137 |
| RHC75－2EJ | 2050 | LR2－110C | 720 | LFC2－110C | 115 | GRZG400 $0.12 \Omega$ <br> （2 in parallel） | 6 | 374 |
| RHC90－2EJ | 2400 |  |  |  |  |  |  |  |
| RHC45－4EJ | 1250 | LR4－55C | 490 | LFC4－55C | 43 | GRZG400 $0.26 \Omega$ | 3 | 130 |
| RHC55－4EJ | 1700 | LR4－75C | 520 | LFC4－75C | 78 | GRZG400 0.38 ת | 3 | 112 |
| RHC75－4EJ | 1800 | LR4－110C | 710 | LFC4－110C | 90 | GRZG400 $0.53 \Omega$ （2 in parallel） | 6 | 405 |
| RHC90－4EJ | 2050 |  |  |  |  |  |  |  |
| RHC110－4EJ | 2450 | LR4－160C | 1000 | LFC4－160C | 160 | RF4－160C | 1 | 568 |
| RHC132－4EJ | 2750 |  |  |  |  |  |  |  |
| RHC160－4EJ | 3500 | LR4－220C | 1240 | LFC4－220C | 200 | RF4－220C | 1 | 751 |
| RHC200－4EJ | 3700 |  |  |  |  |  |  |  |
| RHC220－4EJ | 4850 | LR4－280C | 1430 | LFC4－280C | 220 | RF4－280C | 1 | 1027 |
| RHC280－4EJ | 5700 | LR4－315C | 1660 | LFC4－315C | 260 | RF4－315C | 1 | 1154 |
| RHC315－4EJ | 6550 | LR4－355C | 1910 | LFC4－355C | 300 | RF4－355C | 1 | 1286 |
| RHC355－4EJ | 7150 | LR4－400C | 2160 | LFC4－400C | 350 | RF4－400C | 1 | 1454 |
| RHC400－4EJ | 8100 | LR4－500C | 2470 | LFC4－500C | 450 | RF4－500C | 1 | 1821 |

Note：Generated losses listed in the above tables are approximate values that are calculated according to the following conditions：
－The power supply is 200 V or 400 V 50 Hz with $0 \%$ interphase voltage unbalance ratio．
－The capacity of the power supply used is the larger of either 500 kVA or 10 times the rated capacity of the inverter．
－The motor is a 4－pole standard model at full load（100\％）．

### 11.10 Compact Power Regeneration PWM Converter

This is a more compact, lightweight product than the RHC series in section 11.9, and similarly, to convert power supply side current to a sine wave with PWM control in order to significantly reduce harmonic current, conversion factor Ki in the "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage" issued by the Agency for Natural Resources and Energy in the Ministry of Economy, Trade and Industry can be handled as " 0 " (in other words, zero harmonics are produced.)

### 11.10.1 Specifications

## [1] Standard specification

- 200V series

|  | Item | Specifications |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type: R | C■C-2EJ | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
| Applica | e inverter capacity [kW] | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
| Output | Continuous capacity [kW] | 6.5 | 8.8 | 13 | 18 | 22 | 26 |
|  | Overload rating | 150\% of regenerative rated capacity for 1 min |  |  |  |  |  |
|  | DC voltage | $320 \text { to } 355 \mathrm{VDC}$ <br> Varies based on power supply voltage. |  |  |  |  |  |
|  | Rated DC current (DC) [A] | 21 | 28 | 41 | 55 | 68 | 81 |
| Carrier frequency |  | 10 kHz |  |  |  |  |  |
| Input | Phase, voltage and frequency | Three-phase 200 to 240 VAC, $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |
|  | Permissible fluctuations |  |  |  | $\begin{aligned} & -15 \% \\ & \text { ratio } \\ & 0-5 \% \end{aligned}$ | \%) |  |
|  | Rated power supply side current (AC) [A] | 20 | 27 | 40 | 55 | 67 | 80 |
|  | Power factor | 0.99 or higher (based on 100\% load) *1 |  |  |  |  |  |
| Weight [kg] [lbs] |  | 3.5 | 3.5 | 4.6 | 4.6 | 8.9 | 8.9 |

400 V series

|  | Item | Specifications |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type: RHCםC-4EJ |  | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 |
| Applicable inverter capacity [kW] |  | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 | 30 | 37 | 45 | 55 | 75 |
| Output | Continuous capacity [kW] | 6.5 | 8.8 | 13 | 18 | 22 | 26 | 36 | 44 | 53 | 65 | 88 |
|  | Overload rating | 150\% of regenerative rated capacity for 1 min |  |  |  |  |  |  |  |  |  |  |
|  | DC voltage | $640 \text { to } 710 \mathrm{VDC}$ <br> Varies based on power supply voltage. |  |  |  |  |  |  |  |  |  |  |
|  | Rated DC current (DC) [A] | 11 | 14 | 21 | 28 | 34 | 41 | 55 | 68 | 83 | 101 | 138 |
| Carrier frequency |  | 10 kHz |  |  |  |  |  |  |  |  |  |  |
| Input | Phase, voltage and frequency | Three-phase 380 to 480 VAC, $50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |
|  | Permissible fluctuation | Voltage: +10 to $-15 \%$ (interphase unbalance ratio: $2 \%$ or less) Frequency: 5 to $-5 \%$ |  |  |  |  |  |  |  |  |  |  |
|  | Rated power supply side current (AC) [A] | 10 | 14 | 20 | 27 | 34 | 40 | 55 | 67 | 82 | 100 | 134 |
|  | Power factor | 0.99 or higher (based on 100\% load) ${ }^{* 1}$ |  |  |  |  |  |  |  |  |  |  |
| Weight [kg] [lbs] |  | 3.5 | 3.5 | 4.6 | 4.6 | 8.9 | 8.9 | 23.8 | 23.8 | 28.3 | 28.3 | 35.6 |

*1 When the power supply voltage is 210 V or 420 V or higher, and the operating load is $50 \%$ or higher, the power factor for the power supply drops to approximately 0.95 (only during regenerative operation).

## [ 2 ] Common specifications

| Item |  | Details |
| :---: | :---: | :---: |
| Control | Control method | AVR constant control with DC ACR minor |
|  | Digital input | Run, stop commands, alarm reset command, digital inputs (X1, X2), power supply for PLC signal |
|  | Digital output | Transistor output (Y1, Y2, Y3), relay output (Y5A/Y5C), and total alarm output (30A/30B/30C) |
|  | Analog output | FM1, FM2 |
|  | Input harmonic current | A conversion coefficient of ki $=0$ can be used in accordance with the harmonic suppression countermeasure guidelines issued by the Ministry of Economy, Trade and Industry. |
| Protection |  | AC overcurrent, $A C / D C$ low voltage, $A C / D C$ overvoltage, input phase loss, synchronous power supply frequency errors, cooling fin overheating, external alarms, internal overheating, overloads, memory errors, keypad communication errors, CPU errors, network equipment errors, charging circuit errors, AC blown fuses, AC input current errors, DC fan locks |
| Environmental specifications | Ambient temperature | -10 to $50^{\circ} \mathrm{C}$ |
|  | Relative humidity | 5 to 95\% (there should be no condensation) |
|  | Altitude | 1,000 m or lower |
|  | Atmospheric pressure | 86 to 106 kPa |
|  | Vibration | 3 mm (max. amplitude), less than 2 to 9 Hz <br> $9.8 \mathrm{~m} / \mathrm{s}^{2}$, less than 9 to 20 Hz <br> $2 \mathrm{~m} / \mathrm{s}^{2}$, less than 20 to 55 Hz <br> $1 \mathrm{~m} / \mathrm{s}^{2}$, less than 55 to 200 Hz |
| Peripheral equipment |  | Boosting reactors, filter reactors, filter capacitors, filter resistors, magnetic contactors, AC fuses, charging resistors |

## [ 3] Terminal functions

| Terminal |  |  | Specifications |
| :---: | :---: | :---: | :---: |
| Type | Symbol | Function |  |
|  | R, S, T | Main power supply input | Connect to a three-phase power supply via a dedicated reactor. |
|  | P, N | Converter output | Connect to inverter power supply input terminals P and N . |
|  | R0, T0 | Control power auxiliary input | These are backup terminals for the control power. ( 30 kW or higher) |
|  | G | Grounding terminal | This is a terminal for grounding. |
|  | $\mathrm{Ri}, \mathrm{Si}, \mathrm{Ti}$ | Synchronous power supply input for voltage detection | This is a voltage detection terminal used for control inside the converter, and is connected to the dedicated filter power supply side. |
|  | 73A, C | Charging circuit control output | This is the control output for the external charging circuit. Contact capacity: 250 VAC, 5 A |
| $\frac{0}{0}$000.50.0000000 | RUN | RUN / STOP commands | Runs when ON across RUN and CM, and stops when OFF. |
|  | RST | Alarm reset command | By eliminating the cause of the alarm when an alarm stoppage occurs, and turning ON between RST and CM, the protective function that was activated is canceled, and operation resumes. |
|  | X1, X2 | Digital input <br> (SINK / SOURCE) | Signals selected from the following functions can be input. <br> 0: External alarm [THR], 1: Current limiting cancel [LMT-CCL], <br> 2: 73 answerback [73ANS], 3: Current limiting switch [I-LIM], <br> 14: Universal DI [U-DI], 15: AC fuse blown [ACF] |
|  | PLC | PLC signal power supply | Connects the power supply for PLC output signals. The terminal can also be used as the power supply for loads connected to transistor outputs. Rated voltage: +24 V ( 22 to 27 VDC ), max. output current: 100 mA |
|  | CM | Digital input common | This is a common terminal for digital input signals. |
|  | 30 A | Total alarm output (non-voltage contact signal (1C) output) | A signal is output when the protective function activates and an alarm stoppage occurs. <br> Contact capacity: 250 VAC, $0.3 \mathrm{~A}, \cos \varphi=0.3$ |
|  | 30B |  |  |
|  | 30C |  |  |
|  | Y1, Y2, Y3 | Transistor output | Signals selected from the following functions can be output. <br> 0 : Running [RUN], 1: Ready for operation [RDY], 2: Power supply current limiting [IL], 3: Lifetime early warning [LIFE], 4: Cooling fin overheating early warning [PRE-OH], 5: Overload early warning [PRE-OL], 6: Power running [DRV], 7: Regenerating [REG], <br> 8: Current limiting warning [CUR], 9: Restart after momentary power failure [U-RES], 10: Source frequency synchronization [SY-HZ], 11: Alarm information [AL1], 12: Alarm information [AL2], 13: Alarm information [AL4], 14: DC fan lock [DCFL], 25: Universal DO [U-DO], <br> 27: Cooling fan running [FAN], 32: Alarm output (for any alarm) [ALM], 33: Y-terminal test output ON [Y-ON], 34: Y-terminal test output OFF [Y-OFF] |
|  | CMY | Transistor output common | This is a common terminal for transistor output signals. |
|  | Y5A | Relay output | Signals can be selected in the same way as terminals Y 1 to Y 3 . Contact capacity: 250 VAC, 0.3 A, $\cos \varphi=0.3$ |
|  | FM1, FM2 | Analog output | The following monitor signals are output by selecting from analog DC voltage 0 to 10 V , DC current 4 to 20 mA , or in pulse 25 to $32000 \mathrm{p} / \mathrm{s}$. <br> (FM2 can output DC voltage only). <br> 0: Power supply side power [PWR] 200\%/+10 V, <br> 1: Power supply side current RMS value [I-AC] 200\%/+10 V, <br> 2: Power supply side voltage RMS [V-AC] 250 (500) V/10 V, <br> 3: Intermediate DC voltage [V-DC] 500 (1000) V/10 V, <br> 4: Power supply frequency [FREQ] $100 \mathrm{~Hz} / 10 \mathrm{~V}$, <br> 5: +10 V output test [P10] |
|  | M | Analog output common | This is a common terminal for analog output signals. |
|  | RJ-45 connector | For keypad connection RJ-45 connector | This is used to connect the keypad. The keypad power is supplied from the converter via an extension cable for remote operation. |
|  |  | RS-485 communication port | This is used to connect a computer or programmable controller, etc. by RS485 communication. |

－Protection and early warning functions

| Alarm name | Display | Operation details |
| :---: | :---: | :---: |
| AC overcurrent | 日成 | This function is activated if the AC current instantaneous value exceeds the overcurrent detection level such as when a power supply circuit short circuit or ground fault occurs． |
| AC undervoltage | Bit it | This function is activated if the AC power supply voltage drops to the undervoltage detection level or below during converter operation．However，no alarm is output when＂F02：Restart mode after momentary power failure（mode selection）＂data is set to 1 （Operation）． |
| AC overvoltage | 9Dib | This function is activated if the AC power supply voltage exceeds the AC overvoltage detection level． |
| DC overvoltage | －itio | This function is activated at such times as when regenerative current from the inverter increases （regenerative energy exceeds braking capability），and the main circuit intermediate voltage exceeds the DC overvoltage detection level． |
| DC undervoltage | dit it | This function is activated if the intermediate DC voltage drops to the insufficient voltage detection level or below due to such reasons as a drop in the power supply voltage during converter operation． However，no alarm is output when＂F02：Restart mode after momentary power failure（mode selection）＂data is set to 1 （Operation）． |
| Input phase loss | LPU | This function is activated when the power is turned on，and if there is a phase interruption at the three－ phase power supply connected to main circuit main power supply input terminals $\mathrm{R}, \mathrm{S}$ ，and T ，or if the three－phase power supply voltage is unbalanced，an alarm stop will occur at the converter．It is necessary to turn the power OFF and ON again to reset the alarm． |
| Synchronous power supply frequency error | FrE | This function is activated when the power supply frequency detection value lies outside the range． However，no alarm is output when＂F02：Restart mode after momentary power failure（mode selection）＂data is set to 1 （Operation）． |
| Cooling fin overheat | 8ini | This function is activated when the temperature around the cooling fins used to cool main circuit semiconductor devices rises due to such reasons as cooling fan stoppage． |
| External alarm | ［176 | A converter alarm stoppage occurs when an external signal is input（THR）． |
| Converter internal overheat | ロット3 | This function is activated when the temperature around the PCBs rises due to reasons such as poor ventilation inside the converter． |
| Converter overload | ［itil | This function is activated if the AC power supply current exceeds the converter overload level． Converter overload detection level（ $150 \% / 60$ s） |
| Memory error | Eri | This function is activated if a memory error such as a data write error occurs． |
| Keypad communication error | Ere ${ }^{\text {c }}$ | This function is activated if a keypad transfer error occurs． |
| CPU error | Er3 | This function is activated if a CPU error occurs． |
| Network error | ErY | This alarm is triggered when a transmission abnormality such as noise occurs while the converter is running with RS－485 communication．It is most likely caused by a PLC device error or communication line disconnection． |
| Charger circuit fault | PbF | This function is activated only when＂73 answerback［73ANS］＂is selected using X1／X2 function selection．There is no $\mathrm{X} 1 / \mathrm{X} 2$ input（that is，the electromagnetic contactor for bypassing the charging circuit is closed）within 0.5 sec after the converter charging circuit control output（73A）signal is issued．To reset the alarm，change the X1／X2 function selection，or turn the power OFF and back ON again． |
| AC blown fuse | BLF | The converter external AC fuse blows due to shorting or damage to the internal circuit． |
| AC input current error | $B 6$ | This alarm is issued when the difference between the converter current command value and input AC current detection value exceeds the input current error detection level．However，no alarm is output when＂F02：Restart mode after momentary power failure（mode selection）＂data is set to 1 （Operation）． |
| DC fan lock | dir | This alarm is issued when the DC fan stops．（ 75 kW models only） <br> However，no alarm is output when＂H28：Light alarm target definition＂data is set to 1 （disable）． |

### 11.10.2 Device Configuration

## [1] Device configuration table

| Voltage | Applicable motor [kW] | Type | Boosting reactor |  | Filter resistor |  | Filter reactor |  | Filter capacitor |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (Lr) | Qty | (Rf) | Qty | (Lf) | Qty | (Cf) | Qty |
|  | 5.5 | RHC5.5C-2EJ | LR2C-7.5E | 1 | RF80-0.42OHM | 3 | LFC2C-7.5E | 1 | CF2C-7.5E | 1 |
|  | 7.5 | RHC7.5C-2EJ |  |  |  |  |  |  |  |  |
|  | 11 | RHC11C-2EJ | LR2C-15E | 1 | RF150-0.2OHM | 3 | LFC2C-15E | 1 | CF2C-15E | 1 |
|  | 15 | RHC15C-2EJ |  |  |  |  |  |  |  |  |
|  | 18.5 | RHC18.5C-2EJ | LR2C-22E | 1 | RF200-0.130HM | 3 | LFC2C-22E | 1 | CF2C-22E | 1 |
|  | 22 | RHC22C-2EJ |  |  |  |  |  |  |  |  |
|  | 5.5 | RHC5.5C-4EJ | LR4C-7.5E | 1 | RF80-1.74OHM | 3 | LFC4C-7.5E | 1 | CF4C-7.5E | 1 |
|  | 7.5 | RHC7.5C-4EJ |  |  |  |  |  |  |  |  |
|  | 11 | RHC11C-4EJ | LR4C-15E | 1 | RF150-0.790HM | 3 | LFC4C-15E | 1 | CF4C-15E | 1 |
|  | 15 | RHC15C-4EJ |  |  |  |  |  |  |  |  |
|  | 18.5 | RHC18.5C-4EJ | LR4C-22E | 1 | RF200-0.53OHM | 3 | LFC4C-22E | 1 | CF4C-22E | 1 |
|  | 22 | RHC22C-4EJ |  |  |  |  |  |  |  |  |
|  | 30 | RHC30C-4EJ | LR4C-37E | 1 | RF400-0.380HM | 3 | LFC4C-37E | 1 | CF4C-37E | 1 |
|  | 37 | RHC37C-4EJ |  |  |  |  |  |  |  |  |
|  | 45 | RHC45C-4EJ | LR4C-55E | 1 | RF400-0.260HM | 3 | LFC4C-55E | 1 | CF4C-55E | 1 |
|  | 55 | RHC55C-4EJ |  |  |  |  |  |  |  |  |
|  | 75 | RHC75C-4EJ | LR4C-75E | 1 | RF400-0.380HM | 3 | LFC4C-75E | 1 | CF4C-75E | 1 |


| Voltage | Applicable motor [kW] | Type | Charging circuit contactor |  | Charging circuit |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  | (73) | Qty | Charging resistor (RO) | Qty | Fuse (F) | Qty |
|  | 5.5 | RHC5.5C-2EJ | SC-5-1 | 1 | CR80-7.50HM | 3 | CR2LS-50S/UL | 2 |
|  | 7.5 | RHC7.5C-2EJ |  |  |  |  |  |  |
|  | 11 | RHC11C-2EJ | SC-N1 | 1 |  |  | CR2LS-75S/UL | 2 |
|  | 15 | RHC15C-2EJ | SC-N2 | 1 |  |  | CR2LS-100S/UL | 2 |
|  | 18.5 | RHC18.5C-2EJ | SC-N3 | 1 | CR120-2OHM | 3 |  |  |
|  | 22 | RHC22C-2EJ |  |  |  |  | CR2L-150S/UL | 2 |
|  | 5.5 | RHC5.5C-4EJ | SC-05 | 1 | CR60-300HM | 3 | CR6L-30S/UL | 2 |
|  | 7.5 | RHC7.5C-4EJ |  |  |  |  |  |  |
|  | 11 | RHC11C-4EJ | SC-4-0 | 1 |  |  | CR6L-50S/UL | 2 |
|  | 15 | RHC15C-4EJ | SC-5-1 | 1 |  |  |  |  |
|  | 18.5 | RHC18.5C-4EJ | SC-N1 | 1 | CR80-7.50HM | 3 |  |  |
|  | 22 | RHC22C-4EJ |  |  |  |  | CR6L-75S/UL | 2 |
|  | 30 | RHC30C-4EJ | SC-N2 | 1 |  |  | CR6L-100S/UL | 2 |
|  | 37 | RHC37C-4EJ | SC-N2S | 1 |  |  | CR6L-150S/UL | 2 |
|  | 45 | RHC45C-4EJ | SC-N3 | 1 |  |  | CR6L-150S/UL | 2 |
|  | 55 | RHC55C-4EJ | SC-N4 | 1 |  |  |  |  |
|  | 75 | RHC75C-4EJ | SC-N5 | 1 |  |  | CR6L-200S/UL | 2 |

Note 1) Filter resistors (Rf) and charging resistors (RO) come in sets of three.
When placing your order, three items will be shipped if "1" is specified for the quantity.
Note 2) Charging circuit contactors and fuses are products of Fuji Electric FA Components \& Systems Co., Ltd.

## [ 2 ] Basic connection diagrams


(Note 1) Install the recommended molded case circuit breaker (MCCB) or earth leakage circuit breaker (ELCB) (with overcurrent protection function) to protect wiring at the PWM converter input side (primary side). Do not use a circuit breaker that exceeds the recommended rated current.
(Note 2) An MC is used in addition to an MCCB or ELCB if isolating the PWM converter from the power supply, and therefore the recommended magnetic contactor (MC) should be installed if required. Please note that if installing a coil such as an MC or solenoid near the PWM converter or inverter, connect a surge absorber in parallel.
(Note 3) If wishing to retain the integrated alarm signal issued if the protective function is triggered even when the PWM converter main power supply is cut off, or to constantly display the keypad, connect these terminals to the power supply. The PWM converter can be run even without inputting the power supply to these terminals ( 30 kW or higher only).
(Note 4) Isolate the circuit using an insulated transformer, or magnetic contactor (MC) auxiliary contact (contact b). When using for a non-grounded power supply, it is necessary to add an insulated transformer.
(Note 5) Use twisted wire or shielded wire for control signal lines. Shielded wires are generally grounded, however, if subject to significant induction noise from outside, it may be possible to suppress the effect of the noise by connecting wires to [CM]. Isolate control signal lines from the main circuit wiring as best as possible, and do not run inside the same duct (a distance of $10(\mathrm{~cm})$ or greater is recommended.) If lines intersect, ensure that they do so almost perpendicularly to the main circuit wiring.
(Note 6) Each of the functions described for terminal [X1] to [X2] (digital input), terminals [Y1] to [Y3] (transistor output), and terminals [FM1] to [FM2] (monitor output) indicate the functions assigned by factory default.
(Note 7) These are the switches on control PCBs, and are used to set operation for each function.
(Note 8) 0 OV and (0V are isolated and insulated.
(Note 9) Ensure that inverter and PWM converter DC bus line wiring (between terminals $P$ and $P(+), N$ and $N(-))$ is within 5 m .
(Note 10) Ensure that the wire length between the filter capacitor and power line is within 5 m .
(Note 11) Design the sequence so that the RUN signal is not input to the inverter until the PWM converter is ready.
(Note 11) Set any of the inverter unit $X$ terminals for external alarm [THR].
(Note 13) If using a 400 V series inverter for the main power supply, connect a step-down transformer to ensure that the sequence circuit voltage is 220 V or less.

### 11.10.3 External Dimensions

- Figure A

- Figure B

- Figure C
(Unit: mm)

| Power supply <br> voltage | Type |
| :---: | :---: |
| Three-phase <br> 400 V | RHC30C-4EJ |
|  | RHC37C-4EJ |

### 11.10.4 Peripheral Equipment

## - Boosting reactor



| Converter type | Boosting reactor type | Dimension (mm) |  |  |  |  |  |  |  |  |  |  | K | M | Figure | Approx weight [kg] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \mathrm{H} \\ \text { (max.) } \end{gathered}$ | $\begin{gathered} \mathrm{W} \\ ( \pm 1) \end{gathered}$ | $\begin{gathered} \text { B } \\ ( \pm 1) \end{gathered}$ | $\begin{gathered} c \\ ( \pm 5) \end{gathered}$ | $\begin{gathered} \mathrm{D} \\ ( \pm 5) \end{gathered}$ | $\begin{aligned} & \text { W1 } \\ & ( \pm 1) \end{aligned}$ | $\begin{gathered} \text { D1 } \\ ( \pm 5) \end{gathered}$ | $\begin{gathered} \hline \text { D2 } \\ ( \pm 5) \end{gathered}$ | $\begin{gathered} \text { A } \\ ( \pm 5) \end{gathered}$ | G | J |  |  |  |  |
| RHC5.5C-2EJ | LR2C-7.5E | 150 | 180 | 128 | 127 | 149 | 160 | 57 | 100 | 10 | - | - | $7 \times 10$ | 5 | F2 | 11 |
| RHC7.5C-2EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC11C-2EJ | LR2C-15E | 180 | 210 | 140 | 133 | 155 | 175 | 63 | 115 | - | - | - | $7 \times 10$ | 8 | F1 | 16 |
| RHC15C-2EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC18.5C-2EJ | LR2C-22E | 195 | 240 | 160 | 153 | 175 | 200 | 63 | 115 | - | 170 | 99 | $7 \times 10$ | 8 | F3 | 21 |
| RHC22C-2EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC5.5C-4EJ | LR4C-7.5E | 152 | 180 | 128 | 117 | 139 | 160 | 47 | 90 | - | - | - | $7 \times 10$ | 5 | F1 | 10 |
| RHC7.5C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC11C-4EJ | LR4C-15E | 178 | 215 | 145 | 123 | 145 | 180 | 53 | 100 | - | - | - | $7 \times 10$ | 5 | F1 | 14 |
| RHC15C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC18.5C-4EJ | LR4C-22E | 175 | 210 | 150 | 143 | 165 | 185 | 73 | 115 | - | - | - | $7 \times 10$ | 6 | F1 | 19 |
| RHC22C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC30C-4EJ | LR4C-37E | 257 | 250 | 175 | 163 | 185 | 215 | 73 | 125 | - | 185 | 109 | $7 \times 10$ | 8 | F3 | 35 |
| RHC37C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC45C-4EJ | LR4C-55E | 269 | 305 | 205 | 180 | 202 | 255 | 86 | 135 | - | 225 | 122 | 12x14 | 10 | F3 | 50 |
| RHC55C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC75C-4EJ | LR4C-75E | 277 | 310 | 210 | 190 | 212 | 260 | 96 | 140 | - | 230 | 132 | 12x14 | 10 | F3 | 58 |

## - Filter resistor



| Converter type | Filter resistor Type | Dimension (mm) |  |  |  |  |  |  | M | Approx. weight [kg] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \mathrm{L} 1 \\ ( \pm 2) \end{gathered}$ | $\begin{gathered} \mathrm{L} 2 \\ ( \pm 2) \end{gathered}$ | $\begin{gathered} W \\ ( \pm 0.5) \end{gathered}$ | $\underset{\substack{\mathrm{H} \\( \pm 0.5)}}{ }$ | $\begin{gathered} \text { D1 } \\ ( \pm 0.3) \end{gathered}$ | $\begin{gathered} a \\ ( \pm 0.2) \end{gathered}$ | $\begin{gathered} \mathrm{b} \\ ( \pm 2) \end{gathered}$ |  |  |
| RHC5.5C-2EJ | RF80-0.42OHM | 150 | 137 | 41 | 22 | 4.3 | 6.5 | 10 | 3.2 | 0.20 |
| RHC7.5C-2EJ |  |  |  |  |  |  |  |  |  |  |
| RHC11C-2EJ | RF150-0.2OHM | 210 | 197 | 41 | 22 | 4.3 | 6.5 | 10 | 3.2 | 0.28 |
| RHC15C-2EJ |  |  |  |  |  |  |  |  |  |  |
| RHC18.5C-2EJ | RF200-0.130HM | 165 | 146 | 60 | 30 | 5.3 | 10 | 20.8 | 4.3 | 0.49 |
| RHC22C-2EJ |  |  |  |  |  |  |  |  |  |  |
| RHC5.5C-4EJ | RF80-1.74OHM | 150 | 137 | 41 | 22 | 4.3 | 6.5 | 10 | 3.2 | 0.20 |
| RHC7.5C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC11C-4EJ | RF150-0.790HM | 210 | 197 | 41 | 22 | 4.3 | 6.5 | 10 | 3.2 | 0.28 |
| RHC15C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC18.5C-4EJ | RF200-0.53OHM | 165 | 146 | 60 | 30 | 5.3 | 10 | 20.8 | 4.3 | 0.49 |
| RHC22C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC30C-4EJ | RF400-0.380HM | 265 | 246 | 60 | 30 | 5.3 | 10 | 20.8 | 4.3 | 0.77 |
| RHC37C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC45C-4EJ | RF400-0.260HM | 265 | 246 | 60 | 30 | 5.3 | 10 | 20.8 | 4.3 | 0.77 |
| RHC55C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC75C-4EJ | RF400-0.380HM | 265 | 246 | 60 | 30 | 5.3 | 10 | 20.8 | 4.3 | 0.77 |

## - Filter reactor



| Converter type | Filter Reactor type | Dimension (mm) |  |  |  |  |  |  |  |  | K | M | Figure | Approx. weight [kg] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \mathrm{H} \\ \text { (max.) } \end{gathered}$ | $\begin{gathered} \text { W } \\ ( \pm 1) \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ ( \pm 1) \end{gathered}$ | $\begin{gathered} c \\ ( \pm 5) \end{gathered}$ | $\begin{gathered} \text { D } \\ ( \pm 5) \end{gathered}$ | $\begin{aligned} & \text { W1 } \\ & ( \pm 1) \end{aligned}$ | $\begin{gathered} \text { D1 } \\ ( \pm 5) \end{gathered}$ | $\begin{gathered} \text { D2 } \\ ( \pm 5) \\ \hline \end{gathered}$ | $\begin{gathered} \text { A } \\ ( \pm 5) \end{gathered}$ |  |  |  |  |
| RHC5.5C-2EJ | LFC2C-7.5E | 105 | 155 | 91 | 95 | 117 | 114 | 25 | 80 | 40 | 7x10 | 5 | F2 | 3 |
| RHC7.5C-2EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC11C-2EJ | LFC2C-15E | 105 | 155 | 91 | 98 | 120 | 114 | 28 | 85 | - | 7x10 | 8 | F1 | 4 |
| RHC15C-2EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC18.5C-2EJ | LFC2C-22E | 105 | 155 | 91 | 102 | 124 | 114 | 32 | 95 | - | 7x10 | 8 | F1 | 4 |
| RHC22C-2EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC5.5C-4EJ | LFC4C-7.5E | 107 | 155 | 91 | 95 | 117 | 114 | 25 | 70 | 18 | 7X10 | 5 | F2 | 3 |
| RHC7.5C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC11C-4EJ | LFC4C-15E | 107 | 155 | 91 | 100 | 122 | 114 | 30 | 85 | - | 7x10 | 5 | F1 | 4 |
| RHC15C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC18.5C-4EJ | LFC4C-22E | 109 | 155 | 91 | 110 | 132 | 114 | 40 | 85 | - | 7x10 | 6 | F1 | 4 |
| RHC22C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC30C-4EJ | LFC4C-37E | 123 | 155 | 104 | 107 | 129 | 130 | 37 | 90 | - | 7x10 | 8 | F1 | 6 |
| RHC37C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC45C-4EJ | LFC4C-55E | 120 | 155 | 104 | 120 | 142 | 130 | 50 | 105 | - | 7x10 | 10 | F1 | 7 |
| RHC55C-4EJ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| RHC75C-4EJ | LFC4C-75E | 154 | 180 | 128 | 127 | 149 | 160 | 57 | 115 | - | 7x10 | 10 | F1 | 13 |

- Filter capacitor

4-6×10 HOLES EARTH TERMINAL(M4)



| Converter type | Filter capacitor type | Dimension (mm) |  |  |  |  |  | Approx. weight [kg] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { A } \\ ( \pm 3) \end{gathered}$ | $\begin{gathered} \mathrm{B} \\ ( \pm 7) \end{gathered}$ | $\begin{gathered} \text { C } \\ ( \pm 2) \end{gathered}$ | $\begin{gathered} \mathrm{C}^{\prime} \\ ( \pm 3) \end{gathered}$ | $\begin{gathered} \hline \text { C" } \\ ( \pm 4) \end{gathered}$ | $\begin{gathered} \hline \text { D } \\ ( \pm 5) \end{gathered}$ |  |
| RHC5.5C-2EJ | CF2C-7.5E | 120 | 176 | 170 | 200 | 210 | 60 | 4.3 |
| RHC7.5C-2EJ |  |  |  |  |  |  |  |  |
| RHC11C-2EJ | CF2C-15E | 160 | 216 | 170 | 200 | 210 | 60 | 5.2 |
| RHC15C-2EJ |  |  |  |  |  |  |  |  |
| RHC18.5C-2EJ | CF2C-22E | 170 | 226 | 170 | 200 | 210 | 60 | 5.4 |
| RHC22C-2EJ |  |  |  |  |  |  |  |  |
| RHC5.5C-4EJ | CF4C-7.5E | 140 | 196 | 170 | 200 | 210 | 60 | 4.7 |
| RHC7.5C-4EJ |  |  |  |  |  |  |  |  |
| RHC11C-4EJ | CF4C-15E | 160 | 216 | 170 | 200 | 210 | 60 | 5.2 |
| RHC15C-4EJ |  |  |  |  |  |  |  |  |
| RHC18.5C-4EJ | CF4C-22E | 180 | 236 | 170 | 200 | 210 | 60 | 5.7 |
| RHC22C-4EJ |  |  |  |  |  |  |  |  |
| RHC30C-4EJ | CF4C-37E | 180 | 236 | 170 | 200 | 210 | 60 | 5.7 |
| RHC37C-4EJ |  |  |  |  |  |  |  |  |
| RHC45C-4EJ | CF4C-55E | 250 | 306 | 170 | 200 | 210 | 60 | 7.2 |
| RHC55C-4EJ |  |  |  |  |  |  |  |  |
| RHC75C-4EJ | CF4C-75E | 180 | 236 | 170 | 200 | 210 | 60 | 5.7 |

## - Charging resistor



| Converter type | Charging resistor type | Dimension (mm) |  |  |  |  |  |  | M | Approx. weight [kg] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} \text { L1 } \\ ( \pm 2) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{L} 2 \\ ( \pm 2) \end{gathered}$ | $\begin{gathered} \text { W } \\ ( \pm 0.5) \\ \hline \end{gathered}$ | $\begin{gathered} \mathrm{H} \\ ( \pm 0.5) \end{gathered}$ | $\begin{gathered} \text { D1 } \\ ( \pm 0.3) \end{gathered}$ | $\begin{gathered} a \\ ( \pm 0.2) \\ \hline \end{gathered}$ | $\begin{gathered} \text { b } \\ ( \pm 2) \\ \hline \end{gathered}$ |  |  |
| RHC5.5C-2EJ | CR80-7.50HM | 150 | 137 | 41 | 22 | 4.3 | 6.5 | 10 | 3.2 | 0.20 |
| RHC7.5C-2EJ |  |  |  |  |  |  |  |  |  |  |
| RHC11C-2EJ |  |  |  |  |  |  |  |  |  |  |
| RHC15C-2EJ |  |  |  |  |  |  |  |  |  |  |
| RHC18.5C-2EJ | CR120-2OHM | 182 | 169 | 41 | 22 | 4.3 | 6.5 | 10 | 3.2 | 0.24 |
| RHC22C-2EJ |  |  |  |  |  |  |  |  |  |  |
| RHC5.5C-4EJ | CR60-300HM | 100 | 87 | 41 | 22 | 4.3 | 6.5 | 13 | 3.2 | 0.11 |
| RHC7.5C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC11C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC15C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC18.5C-4EJ | CR80-7.50HM | 150 | 137 | 41 | 22 | 4.3 | 6.5 | 10 | 3.2 | 0.20 |
| RHC22C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC30C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC37C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC45C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC55C-4EJ |  |  |  |  |  |  |  |  |  |  |
| RHC75C-4EJ |  |  |  |  |  |  |  |  |  |  |

### 11.11 DC Reactors (DCRs)

These reactors are mainly used for "coordinating power supply" and "improving input power factor (for reducing harmonics)". If connecting to an HND specification inverter, select with an HND specification standard applicable motor.

[^41]
## For coordinating power supply

- Use a DCR when the capacity of a power supply transformer exceeds 500 kVA and is 10 times or more the rated inverter capacity. In this case, the percent reactance of the power supply decreases, and harmonic components and their peak value increase. These factors may break rectifiers or capacitors in the converter section of inverter, or decrease the capacitance of the capacitor (which can shorten the inverter's service life).
- Also use a DCR when there are thyristor-driven loads or when phase-advancing capacitors are being turned ON/OFF.
- Use a DCR when the interphase voltage unbalance ratio of the inverter power supply exceeds $2 \%$.

$$
\text { Interphase voltage unbalance }(\%)=\frac{\text { Max. voltage }(\mathrm{V})-\text { Min. voltage }(\mathrm{V})}{\text { Three }- \text { phase average voltage }(\mathrm{V})} \times 67
$$

## For input power factor correction (for suppressing harmonics)

Generally a capacitor is used to improve the power factor of the load, however, it cannot be used in a system that includes an inverter. Using a DCR increases the reactance of inverter's power supply so as to decrease harmonic components on the power supply lines and improve the power factor of inverter. Using a DCR improves the input power factor to approximately $86 \%$ to $95 \%$.

[^42]- If a DCR is not going to be used, do not remove the jumper bar.


FRENIC-MEGA
Fig. 11.11-1 External view of $D C$ reactor ( $D C R$ ) and connection example

Table 11.11-1 DC reactor (DCR)

| Power system | Standard applicable motor (kW) [HP] | Inverter type | Specification | Reactor type | Rated current (A) | Inductance (mh) | Generated loss (W) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Threephase 200 V | 0.4 [1/2] | FRN0003G2S-2G | HHD | DCR2-0.4 | 3 | 12 | 1.9 |
|  | 0.75 [1] | FRN0005G2S-2G |  | DCR2-0.75 | 5 | 7 | 2.8 |
|  | 1.5 [2] | FRN0008G2S-2G |  | DCR2-1.5 | 8 | 4 | 4.6 |
|  | 2.2 [3] | FRN0011G2S-2G |  | DCR2-2.2 | 11 | 3 | 6.7 |
|  | 3.7 [5] | FRN0018G2S-2G |  | DCR2-3.7 | 18 | 1.7 | 8.8 |
|  | 5.5 [7.5] | FRN0032G2S-2G | HHD | DCR2-5.5 | 25 | 1.2 | 14 |
|  | 7.5 [10] |  | HND | DCR2-7.5 | 34 | 0.8 | 16 |
|  |  | FRN0046G2S-2G | HHD |  |  |  |  |
|  | 11 [15] |  | HND | DCR2-11 | 50 | 0.6 | 27 |
|  |  | FRN0059G2S-2G | HHD |  |  |  |  |
|  | 15 [20] |  | HND | DCR2-15 | 67 | 0.4 | 27 |
|  |  | FRN0075G2S-2G | HHD |  |  |  |  |
|  | 18.5 [25] |  | HND | DCR2-18.5 | 81 | 0.35 | 29 |
|  |  | FRN0088G2S-2G | HHD |  |  |  |  |
|  | 22 [30] |  | HND | DCR2-22A | 98 | 0.3 | 38 |
|  |  | FRN0115G2S-2G | HHD |  |  |  |  |
|  | 30 [40] |  | HND | DCR2-30B | 136 | 0.23 | 37 |
|  |  | FRN0146G2S-2G | HHD |  |  |  |  |
|  | 37 [50] |  | HND | $\begin{aligned} & \hline \text { DCR2-37B/ } \\ & \text { DCR2-37C } \end{aligned}$ | $\begin{aligned} & \hline 167 / \\ & 175 \end{aligned}$ | $\begin{aligned} & \hline 0.19 / \\ & 0.119 \end{aligned}$ | $\begin{aligned} & 47 / 1 \\ & 63 \end{aligned}$ |
|  |  | FRN0180G2S-2G | HHD |  |  |  |  |
|  | 45 [60] |  | HND | $\begin{aligned} & \text { DCR2-45B/ } \\ & \text { DCR2-45C } \end{aligned}$ | $\begin{aligned} & \hline 203 / \\ & 213 \end{aligned}$ | $\begin{aligned} & 0.16 / \\ & 0.1 \end{aligned}$ | $\begin{aligned} & \hline 521 \\ & 68 \end{aligned}$ |
|  |  | FRN0215G2S-2G | HHD |  |  |  |  |
|  | 55 [75] |  | HND | DCR2-55B/DCR2-55C | $\begin{aligned} & 244 / \\ & 256 \end{aligned}$ | $\begin{aligned} & 0.13 / \\ & 0.08 \end{aligned}$ | $\begin{aligned} & 55 / \\ & 75 \end{aligned}$ |
|  |  | FRN0288G2S-2G | HHD |  |  |  |  |
|  | 75 [100] |  | HND | DCR2-75C | 358 | 0.05 | 96 |
|  |  | FRN0346G2S-2G | HHD |  |  |  |  |
|  | 90 [125] |  | HND | DCR2-90C | 431 | 0.042 | 100 |
|  |  | FRN0432G2S-2G | HHD |  |  |  |  |
|  | 110 [150] |  | HND | DCR2-110C | 552 | 0.034 | 126 |

(Note 1) Generated losses listed in the above tables are approximate values that are calculated according to the following conditions:

- The power supply is 200 V or 400 V 50 Hz with $0 \%$ interphase voltage unbalance ratio.
- The capacity of the power supply used is the larger of either 500 kVA or 10 times the rated capacity of the inverter.
- The motor is a 4-pole standard model at full load (100\%).
- An AC reactor (ACR) is not connected.
(Note 2) Power factor based on differences in reactor type (at rated output)

DCR2/4-ac input power factor: approx. 86 to $90 \%$
The standard applicable motor lineup also includes a DCR2/4-abB type for 75 kW or higher models. Please contact Fuji Electric for details.

Table 11.11-1 DC reactor (DCR) (cont.)
$\left.\begin{array}{c|c|c|c|c|c|c|c}\hline \begin{array}{c}\text { Power } \\ \text { system }\end{array} & \begin{array}{c}\text { Standard } \\ \text { applicable } \\ \text { motor } \\ \text { (kW) [HP] }\end{array} & \text { Inverter type }\end{array}\right)$
(Note 1) $\square$ is replaced by a letter of the alphabet indicating the inverter type.
 S (basic type), E (type with built-in EMC filter)
(Note 2) Generated losses listed in the above tables are approximate values that are calculated according to the following conditions:

- The power supply is 200 V or 400 V 50 Hz with $0 \%$ interphase voltage unbalance ratio.
- The capacity of the power supply used is the larger of either 500 kVA or 10 times the rated capacity of the inverter.
- The motor is a 4-pole standard model at full load (100\%).
- An AC reactor (ACR) is not connected.
(Note 3) Power factor based on differences in reactor type (at rated output)
DCR2/4-ם 14 ( 1 B input power factor: approx. 90 to $95 \%$
DCR2/4-ac input power factor: approx. 86 to $90 \%$
The standard applicable motor lineup also includes a DCR2/4-anB type for 75 kW or higher models. Please contact Fuji Electric for details.


Table 11.11-2 DC reactor (DCRם-aם)

Table 11.11-2 DC reactor (DCR) external dimensions

|  |  | Inverter type |  | Reactor type | $\begin{aligned} & \text { 을 } \\ & \text { 믄 } \end{aligned}$ | Dimensions (mm) |  |  |  |  |  |  |  |  | Approx. Weight (kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{aligned} & \underline{\varepsilon} \\ & \stackrel{y}{\omega} \\ & \stackrel{N}{\omega} \\ & \omega \\ & \sum_{0}^{\omega} \\ & 0 \end{aligned}$ |  |  |  |  |  | W | W1 | D | D1 | D2 | H | H1 | Mounting hole G | Terminal hole J |  |
| $\begin{aligned} & > \\ & \hline \text { O} \\ & \text { N} \\ & \mathbb{N} \\ & \stackrel{\sim}{\circ} \\ & \stackrel{\rightharpoonup}{\dot{N}} \\ & \stackrel{0}{c} \end{aligned}$ | 0.4 [1/2] | FRN0003G2S-2G | HHD | DCR2-0.4 | A | 66 | 56 | 90 | 72 | 15 | 94 | - | M4 (5.2 x 8) | M4 | 1.0 |
|  | 0.75 [1] | FRN0005G2S-2G |  | DCR2-0.75 | A | 66 | 56 | 90 | 72 | 20 | 94 | - | M4 (5.2 x 8) | M4 | 1.4 |
|  | 1.5 [2] | FRN0008G2S-2G |  | DCR2-1.5 | A | 66 | 56 | 90 | 72 | 20 | 94 | - | M4 (5.2 x 8) | M4 | 1.6 |
|  | 2.2 [3] | FRN0011G2S-2G |  | DCR2-2.2 | A | 86 | 71 | 100 | 80 | 10 | 110 | - | M5 ( $6 \times 9$ ) | M4 | 1, 8 |
|  | 3.7 [5] | FRN0018G2S-2G |  | DCR2-3.7 | A | 86 | 71 | 100 | 80 | 20 | 110 | - | M5 ( $6 \times 9$ ) | M4 | 2.6 |
|  | 5.5 [7.5] | FRN0032G2S-2G | HHD | DCR2-5.5 | A | 111 | 95 | 100 | 80 | 20 | 130 | - | M6 ( $7 \times 11$ ) | M5 | 3, 6 |
|  | 7.5 [10] |  | HND | DCR2-7.5 | A | 111 | 95 | 100 | 80 | 23 | 130 | - | M6 ( $7 \times 11$ ) | M5 | 3.8 |
|  | 11 [15] | FRN0046G2S-2G | HND | DCR2-11 | A | 111 | 95 | 100 | 80 | 24 | 137 | - | M6 ( $7 \times 11$ ) | M6 | 4.3 |
|  | 15 [20] | FRN0059G2S-2G | HND | DCR2-15 | A | 146 | 124 | 120 | 96 | 15 | 180 | - | M6 ( $7 \times 11$ ) | M8 | 5.9 |
|  |  | FRN0075G2S-2G | HHD |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 18.5 [25] |  | HND | DCR2-18.5 | A | 146 | 124 | 120 | 96 | 25 | 180 | - | M6 ( $7 \times 11$ ) | M8 | 7.4 |
|  | 22 [30] | FRN0088G2S-2G |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  |  | HND | DCR2-22A | A | 146 | 124 | 120 | 96 | 25 | 180 | - | M6 ( $7 \times 11$ ) | M8 | 7.5 |
|  | 30 [40] | FRN0115G2S -2G | HND |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | FRN0146G2S-2G | HHD | DCR2-30B | B | 152 | 90 | 156 | 116 | 115 | 130 | 190 | M6 (¢8) | M10 | 12 |
|  | 37 [50] |  | HND | $\begin{aligned} & \hline \text { DCR2-37B } \\ & \text { DCR2-37C } \end{aligned}$ | $\begin{gathered} \hline \mathrm{B} / \\ \mathrm{D} \end{gathered}$ | $\begin{aligned} & \hline 171 / \\ & 210 \end{aligned}$ | $\begin{aligned} & 110 / \\ & 185 \end{aligned}$ | $\begin{aligned} & \hline 151 / \\ & 101 \end{aligned}$ | $\begin{array}{\|c\|} \hline 110 / \\ 81 \end{array}$ | $\begin{aligned} & \hline 115 / \\ & 125 \end{aligned}$ | $\begin{aligned} & \hline 150 / \\ & 125 \end{aligned}$ | $200 /$ | $\begin{gathered} \text { M6 }(\varphi 8) / \\ \text { M6 }(7 \times 13) \end{gathered}$ | M10/ M10 | $14 /$ |
|  | 45 [60] | FRN0180G2S-2G | HND <br> HHD | $\begin{aligned} & \text { DCR2-45B } \\ & \text { DCR2-45C } \end{aligned}$ | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{D} \end{aligned}$ | $\begin{array}{\|l\|l\|} \hline 171 / \\ 210 \end{array}$ | $\begin{aligned} & 110 / \\ & 185 \end{aligned}$ | $\begin{aligned} & 166 / \\ & 106 \end{aligned}$ | $\begin{gathered} 125 / \\ 86 \end{gathered}$ | $\begin{aligned} & 120 / \\ & 135 \end{aligned}$ | $\begin{aligned} & 150 / \\ & 125 \end{aligned}$ | $200 /$ | $\begin{gathered} \text { M6 }(\varphi 8) / \\ \text { M6 }(7 \times 13) \\ \hline \end{gathered}$ | $\begin{aligned} & \text { M10/ } \\ & \text { M12 } \end{aligned}$ | $\begin{aligned} & 16 / \\ & 8.4 \end{aligned}$ |
|  | 55 [75] | FRN0215G2S-2G | HND |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | FRN0288G2S-2G | HHD | DCR2-55B DCR2-55C | $\begin{gathered} C / \\ D \end{gathered}$ | $\begin{aligned} & 190 / \\ & 255 \end{aligned}$ | $\begin{aligned} & 160 / \\ & 225 \end{aligned}$ | $\begin{gathered} 131 / \\ 96 \end{gathered}$ | $\begin{aligned} & 90 / \\ & 76 \end{aligned}$ | $\begin{aligned} & 100 / \\ & 140 \end{aligned}$ | $\begin{gathered} 210 / \\ 145 \end{gathered}$ | $250 /$ | $\begin{gathered} \text { M6 ( } \varphi 8 \text { )/ } \\ \text { M6 }(7 \times 13) \end{gathered}$ | M12/ M12 | $\begin{aligned} & 16 / \\ & 11 \end{aligned}$ |
|  | 75 [100] |  | HND | DCR2-75C | D | 255 | 225 | 106 | 86 | 145 | 145 | - | M6 ( $7 \times 13$ ) | M12 | 12 |
|  | 90 [125] | FRN0346G2S-2G | HND | DCR2-90C | D | 255 | 225 | 116 | 96 | 155 | 145 | - | M6 ( $7 \times 13$ ) | M12 | 14 |
|  | 110 [150] | FRN0432G2S-2G | HND | DCR2-110C | D | 300 | 265 | 116 | 90 | 185 | 160 | - | M8 (10 x 18) | M12 | 17 |

Table 11.11-2 DC reactor (DCR) external dimensions (cont.)

| $\underset{\sim}{\underset{0}{e}}$ |  | Inverter type |  | Reactor type |  | Dimensions (mm) |  |  |  |  |  |  |  |  | Approx.Weight(kg) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | W | W1 | D | D1 | D2 | H | H1 | Mounting hole G | Terminal hole J |  |
|  | 0.4 [1/2] | FRN0002G2ם-4G | HHD | DCR4-0.4 | A | 66 | 56 | 90 | 72 | 15 | 94 | - | M4 (5.2 $\times 8$ ) | M4 | 1.0 |
|  | 0.75 [1] | FRN0003G2ם-4G |  | DCR4-0.75 | A | 66 | 56 | 90 | 72 | 20 | 94 | - | M $4(5.2 \times 8)$ | M4 | 1.4 |
|  | 1.5 [2] | FRN0004G2ם-4G |  | DCR4-1.5 | A | 66 | 56 | 90 | 72 | 20 | 94 | - | M4 (5.2 $\times 8$ ) | M4 | 1.6 |
|  | 2.2 [3] | FRN0006G2ם-4G |  | DCR4-2.2 | A | 86 | 71 | 100 | 80 | 15 | 110 | - | M5 ( $6 \times 9$ ) | M4 | 2.0 |
|  | 3.7 [5] | FRN0009G2ם-4G |  | DCR4-3.7 | A | 86 | 71 | 100 | 80 | 20 | 110 | - | M5 ( $6 \times 9$ ) | M4 | 2.6 |
|  | 5.5 [7.5] | FRN0018G2ם-4G | HHD | DCR4-5.5 | A | 86 | 71 | 100 | 80 | 20 | 110 | - | M5 (6x9) | M4 | 2.6 |
|  | 7.5 [10] |  | HND | DCR4-7.5 | A | 111 | 95 | 100 | 80 | 24 | 130 | - | M6 ( $7 \times 11$ ) | M5 | 4.2 |
|  | 11 [15] | FRN0023G2ם-4G | HND | DCR4-11 | A | 111 | 95 | 100 | 80 | 24 | 130 | - | M6 (7x 11) | M5 | 4.3 |
|  |  | FRN0031G2a-4G | HHD | DCR4-11 | A | 111 |  |  |  | 24 |  | - | M6 (7x11) | M5 |  |
|  | 15 [20] |  | HND | DCR4-15 | A | 146 | 124 | 120 | 96 | 15 | 168 | - | M6 ( $7 \times 11$ ) | M5 | 5.9 |
|  | 18.5 [25] | FRN0038G2a-4G | HND | DCR4-18.5 | A | 146 | 124 | 120 | 96 | 25 | 171 | - | M6 ( $7 \times 11$ ) | M6 | 7.2 |
|  | 22 [30] | FRN0045G2a-4G | HND | DCR4-22A | A | 146 | 124 | 120 | 96 | 25 | 171 | - | M6 ( $7 \times 11$ ) | M6 | 7.2 |
|  |  | FRN0060G2ם-4G | HHD | DCR4-22A | A | 146 | 124 | 120 | 96 | 25 | 171 | - | M6 (7x 11) | M6 | 7.2 |
|  | 30 [40] |  | HND | DCR4-30B | B | 152 | 90 | 157 | 115 | 100 | 130 | 190 | M6 ( $\varphi 8$ ) | M8 | 13 |
|  | 37 [50] | FRN0075G2a-4G | HND | $\begin{aligned} & \hline \text { DCR4-37B/ } \\ & \text { DCR4-37C } \end{aligned}$ | $\begin{gathered} \mathrm{B} / \\ \mathrm{D} \end{gathered}$ | $\begin{array}{\|l\|} \hline 171 / \\ 210 \end{array}$ | $\begin{gathered} 110 / \\ 185 \\ \hline \end{gathered}$ | $\begin{aligned} & \hline 150 / \\ & 101 \\ & \hline \end{aligned}$ | $\begin{gathered} 110 / \\ 81 \end{gathered}$ | $\begin{gathered} 100 / \\ 105 \end{gathered}$ | $\begin{array}{\|l\|} \hline 150 / \\ 125 \\ \hline \end{array}$ | $200 /$ | $\begin{gathered} \text { M6 }(\varphi 8) / \\ \text { M6 (7 } \times 13 \text { ) } \end{gathered}$ | $\begin{aligned} & \text { M8/ } \\ & \text { M8 } \end{aligned}$ | $\begin{aligned} & 15 / \\ & 7.4 \end{aligned}$ |
|  | 45 [60] | FRN0091G2a-4G | HND | $\begin{aligned} & \text { DCR4-45B/ } \\ & \text { DCR4-45C } \end{aligned}$ | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{D} \end{aligned}$ | $\begin{array}{\|l\|} \hline 171 / \\ 210 \end{array}$ | $\begin{array}{\|c\|} \hline 110 / \\ 185 \\ \hline \end{array}$ | $\begin{array}{l\|} \hline 165 / \\ 106 \\ \hline \end{array}$ | $\begin{gathered} 125 / \\ 86 \end{gathered}$ | $\begin{array}{\|l\|} \hline 110 / \\ 120 \end{array}$ | $\begin{array}{\|l\|} \hline 150 / \\ 125 \\ \hline \end{array}$ | $210 /$ | $\begin{gathered} \text { M6 }(\varphi 8) / \\ \text { M6 }(7 \times 13) \end{gathered}$ | $\begin{aligned} & \hline \text { M8/ } \\ & \text { M8 } \end{aligned}$ | $\begin{aligned} & 18 / \\ & 8.4 \end{aligned}$ |
|  | 55 [75] | FRN0112G2a-4G | HND <br> HHD | $\begin{aligned} & \hline \text { DCR4-55B/ } \\ & \text { DCR4-55C } \end{aligned}$ | $\begin{aligned} & \mathrm{B} / \\ & \mathrm{D} \end{aligned}$ | $\begin{array}{\|l\|} \hline 171 / \\ 255 \\ \hline \end{array}$ | $\begin{array}{\|c\|} \hline 110 / \\ 225 \\ \hline \end{array}$ | $\begin{gathered} \hline 170 / \\ 96 \\ \hline \end{gathered}$ | $\begin{gathered} \hline 130 / \\ 76 \\ \hline \end{gathered}$ | $\begin{array}{\|c\|} \hline 110 / \\ 120 \\ \hline \end{array}$ | $\begin{array}{\|l\|} \hline 150 / \\ 145 \\ \hline \end{array}$ | $210 /$ | $\begin{gathered} \text { M6 }(\varphi 8) / \\ \text { M6 }(7 \times 13) \\ \hline \end{gathered}$ | $\begin{aligned} & \hline \text { M8/ } \\ & \text { M10 } \\ & \hline \end{aligned}$ | $\begin{aligned} & \hline 20 / \\ & 11 \\ & \hline \end{aligned}$ |
|  | 75 [100] | FRN0150G2ם-4G | HND | DCR4-75C | D | 255 | 225 | 106 | 86 | 125 | 145 | - | M6 ( $7 \times 13$ ) | M10 | 13 |
|  | 90 [125] | FRN0180G2ם-4G | HND | DCR4-90C | D | 255 | 225 | 116 | 96 | 140 | 145 | - | M6 ( $7 \times 13$ ) | M12 | 15 |
|  |  | FRN0216G2ם-4G | HHD |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 110 [150] |  | HND | DCR4-110C | D | 300 | 265 | 116 | 90 | 175 | 155 | - | M8 (10 $\times 18$ ) | M12 | 19 |
|  | 132 [200] | FRN0260G2a-4G | HND | DCR4-132C | D | 300 |  |  |  |  |  |  |  |  |  |
|  |  | FRN0325G2ם-4G | HHD | DCR4-132C | D | 300 | 265 | 126 | 100 | 180 | 160 | - | M8 (10 x 18) | M12 | 22 |
|  | 160 [250] |  | HND <br> HHD | DCR4-160C | D | 350 | 310 | 131 | 103 | 180 | 190 | - | M10 (12 x 22) | M12 | 26 |
|  | 200 [300] | FRN0377G2a-4G | HND | DCR4-200C | D | 350 | 310 | 141 | 113 | 185 | 190 | - | M10 (12 x 22) | M12 | 30 |
|  |  | FRN0432G2a-4G | HHD | DCR4-200C | D |  |  |  |  |  |  |  |  |  |  |
|  | 220 [350] |  | HND HHD | DCR4-220C | D | 350 | 310 | 146 | 118 | 200 | 190 | - | M10 (12 x 22) | M12 | 33 |
|  | 250 [350] | FRN0520G2ם-4G | HND | DCR4-250C | D | 350 | 310 | 161 | 133 | 210 | 190 | - | M10 (12 x 22) | M12 | 35 |
|  | 280 [400] | FRN0650G2ם-4G | HHD | DCR4-280C | D | 350 | 310 | 161 | 133 | 210 | 190 | - | M10 (12 x 22) | M16 | 37 |
|  | 315 [450] |  | HND | DCR4-315C | D | 400 | 345 | 146 | 118 | 200 | 225 | - | M10 (12 x 22) | M16 | 40 |
|  | 355 [500] | FRN0650G2ם-4G | HND | DCR4-355C | E | 400 | 345 | 156 | 128 | 200 | 225 | - | M10 (12 x 22) | $4 \times \mathrm{M} 12$ | 49 |
|  |  | FRN0740G2ם-4G |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | FRN0960G2ם-4G | HHD |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 400 [600] | FRN0740G2ם-4G | HND | DCR4-400C | E | 455 | 385 | 145 | 117 | 213 |  | - | M10 (12 x 22) | $4 \times \mathrm{M} 12$ | 52 |
|  |  | FRN0960G2ם-4G |  |  |  |  |  |  |  |  | 245 |  |  |  |  |
|  |  | FRN1040G2ם-4G | HHD |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 450 [700] | FRN0960G2ם-4G | HND | DCR4-450C | E | 440 | 385 | 150 | 122 | 215 | 245 | - | M10 (12 x 22) | $4 \times \mathrm{M} 12$ | 62 |
|  | 500 [800] | FRN0960G2ם-4G | HND | DCR4-500C | E | 445 | 390 | 165 | 137 | 220 | 245 | - | M10 (12 x 22) | $4 \times \mathrm{M} 12$ | 72 |
|  |  | FRN1040G2ם-4G |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  |  | FRN0960G2ם-4G | HHD |  |  |  |  |  |  |  |  |  |  |  |  |
|  | 560 [900] | FRN1040G2ם-4G | HND | DCR4-560C | F | 270 | 145 | 203 | 170 | 195 | 480 | - | M12 (14 x 20) | $2 \times \mathrm{M} 12$ | 70 |
|  | 630 [900] | FRN1170G2ם-4G |  | DCR4-630C | F | 285 | 145 | 203 | 170 | 195 | 480 | - | M12 (14 x 20) | $2 \times \mathrm{M} 12$ | 75 |
|  |  | FRN1386G2ם-4G | HND | DCR4-710C | F | 340 | 160 | 295 | 255 | 225 | 480 | - | M12 ( $\varphi 15$ ) | $4 \times \mathrm{M} 12$ | 95 |

(Note) $\square$ in the inverter type is replaced by a letter of the alphabet.
ㅁ S (basic type), E (type with built-in EMC filter)

### 11.12 AC Reactors (ACRs)

Use an ACR when the converter part of the inverter should supply very stable DC power, for example, in DC link bus operation (shared PN operation). Generally, ACRs are used for correction of voltage waveform and power factor or for power supply matching, but not for suppressing harmonic components in the power lines. For suppressing harmonic components, use a DCR.
If connecting to an HND specification inverter, select with an HND specification standard applicable motor.


Fig. 11.12-1 AC reactor (ACR) and connection example

Table 11.12-1 AC reactor (ACR) specifications

| Power system | Standard | Inverter type | Specification | Reactor type | Rated current (A) | Reactance (m)/phase) |  | $\begin{aligned} & \text { Coil } \\ & \text { resistance } \\ & (\mathrm{m} \Omega) \end{aligned}$ | Generated loss (W) |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | applicable motor (kW) [HP] |  |  |  |  | 50 Hz | 60 Hz |  |  |
| Threephase 200 V | 0.4 [1/2] | FRN0003G2S-2G | HHD | ACR2-0.4A | 3 | 917 | 1100 | - | 10 |
|  | 0.75 [1] | FRN0005G2S-2G |  | ACR2-0.75 A | 5 | 493 | 592 | - | 12 |
|  | 1.5 [2] | FRN0008G2S-2G |  | ACR2-1.5 A | 8 | 295 | 354 | - | 14 |
|  | 2.2 [3] | FRN0011G2S-2G |  | ACR2-2.2 A | 11 | 213 | 256 | - | 16 |
|  | 3.7 [5] | FRN0018G2S-2G |  | ACR2-3.7 A | 17 | 128 | 153 | - | 23 |
|  | 5.5 [7.5] | FRN0032G2S-2G | HHD | ACR2-5.5 A | 25 | 87.7 | 105 | - | 27 |
|  | 7.5 [10] |  | HND | ACR2-7.5 A | 33 | 65 | 78 | - | 30 |
|  |  | FRN0046G2S-2G | HHD |  |  |  |  |  |  |
|  | 11 [15] |  | HND | ACR2-11A | 46 | 45.5 | 54.7 | - | 37 |
|  |  | FRN0059G2S-2G | HHD | ACR2-11A |  |  | 54.7 |  | 37 |
|  | 15 [20] |  | HND | ACR2-15A | 59 | 34.8 | 41.8 | - | 43 |
|  | 18.5 [25] | FRN0075G2S-2G | HND | ACR2-18.5 A | 74 | 28.6 | 34.3 | - | 51 |
|  |  | FRN0088G2S-2G | HHD |  |  |  |  |  |  |
|  | 22 [30] |  | HND | ACR2-22A | 87 | 24 | 28.8 | - | 57 |
|  |  | FRN0115G2S-2G | HHD | ACR2-22A |  |  | 28.8 |  | 57 |
|  | 30 [40] |  | HND | ACR2-37 | 200 | 10.8 | 13 | 0.5 | 28.6 |
|  | 37 [50] | FRN0146G2S-2G | HND | ACR2-37 | 200 | 10.8 | 13 | 0.5 | 40.8 |
|  |  | FRN0180G2S-2G | HHD | ACR2-37 | 200 | 10.8 | 13 | 0.5 | 40.8 |
|  | 45 [60] |  | HND | ACR2-55 | 270 | 7.5 | 9 | 0.375 | 47.1 |
|  |  | FRN0215G2S-2G | HHD |  |  |  |  |  |  |
|  | 55 [75] |  | HND | ACR2-55 | 270 | 7.5 | 9 | 0.375 | 66.1 |
|  | 75 [100] | FRN0288G2S-2G | HND | ACR2-75 | 390 | 5.45 | 6.54 | 0.25 | 55.1 |
|  |  | FRN0346G2S-2G | HHD | ACR2-75 |  | 5.45 | 6.54 | 0.25 | 55.1 |
|  | 90 [125] |  | HND | ACR2-90 | 450 | 4.73 | 5.67 | 0.198 | 61.5 |
|  | 110 [150] | FRN0432G2S-2G | HND | ACR2-110 | 500 | 4.25 | 5.1 | 0.18 | 83.4 |

(Note 1) Generated losses listed in the above tables are approximate values that are calculated according to the following conditions:

- The power supply is 200 V or 400 V 50 Hz with $0 \%$ interphase voltage unbalance ratio.
- The capacity of the power supply used is the larger of either 500 kVA or 10 times the rated capacity of the inverter.
- The motor is a 4 -pole standard model at full load (100\%).

Table 11.12-1 AC reactor (ACR) specifications (cont.)


* Perform fan cooling ( $3 \mathrm{~m} / \mathrm{s}$ or more).
(Note 1) $\square$ is replaced by a letter of the alphabet indicating the inverter type.
ㅁ S (basic type), E (type with built-in EMC filter)
(Note 2) Generated losses listed in the above tables are approximate values that are calculated according to the following conditions:
- The power supply is 200 V or 400 V 50 Hz with $0 \%$ interphase voltage unbalance ratio.
- The capacity of the power supply used is the larger of either 500 kVA or 10 times the rated capacity of the inverter.
- The motor is a 4-pole standard model at full load (100\%).


Fig. 11.12-2

Table 11.12-2 AC reactor (ACR) external dimensions

|  | Standard |  |  |  |  | Dimensions (mm) |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| system | $\left[\begin{array}{c} \text { applicable } \\ \text { motor } \\ (\mathrm{kW})[\mathrm{HP}] \end{array}\right.$ | Inverter type | Specification | type | Figure | W | W1 | D | D1 | D2 | G | H | Terminal hole J | Weight (kg) |
| Three phase 200 V | 0.4 [1/2] | FRN0003G2S-2G | HHD | ACR2-0.4A | A | 120 | 40 | 90 | 65 | 20 | M5 (6x 10) | 115 | M4 | 1.4 |
|  | 0.75 [1] | FRN0005G2S-2G |  | ACR2-0.75 A |  | 120 | 40 | 100 | 75 | 20 | M5 (6x 10) | 115 | M4 | 1.9 |
|  | 1.5 [2] | FRN0008G2S-2G |  | ACR2-1.5 A |  | 120 | 40 | 100 | 75 | 20 | M5 ( $6 \times 10$ ) | 115 | M4 | 2.0 |
|  | 2.2 [3] | FRN0011G2S-2G |  | ACR2-2.2 A |  | 120 | 40 | 100 | 75 | 20 | M5 ( $6 \times 10$ ) | 115 | M4 | 2.0 |
|  | 3.7 [5] | FRN0018G2S-2G |  | ACR2-3.7 A |  | 125 | 40 | 100 | 75 | 25 | M5 (6x 10) | 125 | M4 | 2.4 |
|  | 5.5 [7.5] | FRN0032G2S-2G | HHD | ACR2-5.5 A |  | 125 | 40 | 115 | 90 | 25 | M5 ( $6 \times 10$ ) | 125 | M4 | 3.1 |
|  | 7.5 [10] |  | HND | ACR2-7.5 A | B | 125 | 40 | 115 | 90 | 106 | M5 (6x 10) | 95 | M5 | 3.1 |
|  |  | FRN0046G2S-2G | HHD |  |  |  |  |  |  |  | M5 (6x10) |  |  |  |
|  | 11 [15] |  | HND | ACR2-11A |  | 125 | 40 | 125 | 100 | 106 | M5 (6x 10) | 95 | M6 | 3.7 |
|  | 15 [20] | FRN0059G2S-2G | HND | ACR2-15A |  | 180 | 60 | 110 | 85 | 106 | M6 ( $7 \times 11$ ) | 115 | M6 | 4.8 |
|  |  | FRN0075G2S-2G | HHD | ACR2-15A |  | 180 | 60 | 110 | 85 | 106 | M6 ( $7 \times 11$ ) | 115 | M6 | 4.8 |
|  | 18.5 [25] |  | HND | ACR2-18.5 A |  | 180 | 60 | 110 | 85 | 109 | M6 ( $7 \times 11$ ) | 115 | M6 | 5.1 |
|  | 22 [30] | FRN0088G2S-2G | HND | ACR2-22A |  |  | 60 | 110 | 85 | 109 |  | 115 | M6 | 5.1 |
|  |  | FRN0115G2S -2G | HHD | ACR2-22A |  | 180 | 60 | 110 | 85 | 109 | M6 ( $7 \times 11$ ) | 115 | M6 | 5.1 |
|  | 30 [40] |  | HND | ACR2-37 |  |  |  |  |  |  |  |  |  |  |
|  |  | FRN0146G2S-2G | HHD |  |  | 190 | 60 | 120 | 90 | 172 | M6 ( $7 \times 11$ ) | 190 | M8 | 11 |
|  | 37 [50] | FRN0180G2S-2G | HHD |  |  |  |  |  |  |  |  |  |  |  |
|  | 45 [60] |  | HND | ACR2-55 | C |  |  |  |  |  |  |  |  |  |
|  |  | FRN0215G2S-2G | HHD |  |  | 190 | 60 | 120 | 90 | 200 | M6 ( $7 \times 11$ ) | 190 | M12 | 13 |
|  | 55 [75] |  | HND |  |  |  |  |  |  |  |  |  |  |  |
|  | 75 [100] | FRN0288G2S-2G | HND |  |  |  |  |  |  |  |  |  |  |  |
|  |  | FRN0346G2S-2G | HHD | ACR2-75 |  | 250 | 100 | 120 | 90 | 200 | M8 (9 x 14) | 250 | M12 | 25 |
|  | 90 [125] |  | HND | ACR2-90 |  | 285 | 190 | 158 | 120 | 190 | M10 (12 x 20) | 210 | M12 | 26 |
|  | 110 [150] | FRN0432G2S-2G | HND | ACR2-110 |  | 280 | 150 | 138 | 110 | 200 | M8 (10 $\times 20$ ) | 270 | M12 | 30 |

Table 11.12-2 AC reactor (ACR) external dimensions (cont.)

(Note) $\square$ in the inverter type is replaced by a letter of the alphabet.

[^43]
### 11.13 Surge Suppression Units (SSU)



## External drawings

- 50 m specification: SSU 50TA-NS

- 100 m specification: SSU 100TA-NS

- Surge suppression unit benefits (motor line voltage waveform)

Motor, inverter capacity: $\mathbf{3 . 7} \mathrm{kW}$, wire length: $\mathbf{5 0} \mathbf{~ m}$, operating status: no load, power supply voltage: threephase 400 V


Motor, inverter capacity: $\mathbf{7 5} \mathrm{kW}$, wire length: 100 m , operating status: no load, power supply voltage: threephase 400 V


## Basic specifications



### 11.14 Output Circuit Filters (OFL)

Connect an OFL to the inverter power output side to:

- Suppress the surge voltage at motor terminals

This protects the motor from insulation damage caused by the application of high voltage surge currents from 400V series inverters.

- Suppress leakage current from output lines

This reduces leakage current from long power feed lines. (The maximum wire length must be 400 m .)

- Minimize radiation and induction noise from output lines

An OFL effectively suppresses noise from long lines such as wiring at plants.


Fig. 11.14-1 External view and connection example for output circuit filter (OFL)

Table 11.14-1 Output circuit filters (OFL)
OFL-םac-4A


OFL-ㅁํ-4A

- Filter dimensions ( $\mathbf{2 2} \mathbf{~ k W}$ or lower)

Filter dimensions ( $\mathbf{3 0} \mathbf{~ k W}$ or higher): reactors


## - Filter dimensions ( 30 kW or

 higher): resistors, capacitors

The reactor, and resistors and capacitors are separately installed on OFL-30-4A or higher models. (If ordering a filter type, reactors, resistors, and capacitors are shipped as a set.)

Figure H


Table 11.14-2 Filter for output circuit (external dimensions)


* Carrier frequency is not restricted on the OFL-***-4A.


### 11.15 Zero-phase Reactors for Suppressing Radio Noise (ACL)

An ACL is used to reduce radio frequency noise emitted from the inverter output wiring, and therefore inverter output wiring should be passed through the ACL. Pass all four wires including the three inverter output wires and grounding wire through the ACL in the same direction. If using shielded wires, the shields should also be passed through the ACL. Be sure to use wires with heat resistance of $75^{\circ} \mathrm{C}\left(167{ }^{\circ} \mathrm{F}\right)$ or higher. It is recommended that wiring should be passed though in a single turn.

The ACL absorbs high-frequency noise components and emits them as heat into the air so that the amount of heat generation can be large. If it happens, lower the carrier frequency, upgrade the heat-resistance rank of wires, increase the number of the ACLs to decrease the number of turns per ACL, replace the ACLs with higher type ones, or take any other measures.
The wire size is determined depending upon the ACL size (I.D.) and installation requirements. Refer to Table 11.15-1.


Fig. 11.15-1 External dimensions and connection example for zero-phase reactor for suppressing radio noise (ACL)

Table 11.15-1 Zero-phase reactors for suppressing radio noise (ACL)

| No. of turns | Inverter output wire size |  | Applicable zero-phase reactor |
| :---: | :---: | :---: | :---: |
|  | $75^{\circ} \mathrm{C}, 90^{\circ} \mathrm{C}$ wire *1 | $75^{\circ} \mathrm{C}$ wire (AWG) *2 |  |
| 1 | $\begin{gathered} 38 \mathrm{~mm}^{2} \text { or less } \\ 5.5 \mathrm{~mm}^{2} \times 2 \mathrm{P} \text { to } 22 \mathrm{~mm}^{2} \times 2 \mathrm{P} \end{gathered}$ | 1AWG or less <br> AWG $10 \times 2 \mathrm{P}$ to $\mathrm{AWG} 4 \times 2 \mathrm{P}$ | ACL-40C |
|  | $\begin{gathered} 250 \mathrm{~mm}^{2} \text { or less } \\ 38 \mathrm{~mm}^{2} \times 2 \mathrm{P} \text { to } 100 \mathrm{~mm}^{2} \times 2 \mathrm{P} \end{gathered}$ | 500 kcmil or less <br> AWG $2 \times 2 \mathrm{P}$ to AWG $4 / 0 \times 2 \mathrm{P}$ | ACL-74C |
|  | $\begin{aligned} & 150 \mathrm{~mm}^{2} \times 2 \mathrm{P} \text { to } 325 \mathrm{~mm}^{2} \times 2 \mathrm{P} \\ & 150 \mathrm{~mm}^{2} \times 3 \mathrm{P} \text { to } 325 \mathrm{~mm}^{2} \times 3 \mathrm{P} \\ & 250 \mathrm{~mm}^{2} \times 4 \mathrm{P} \text { to } 325 \mathrm{~mm}^{2} \times 4 \mathrm{P} \end{aligned}$ | $250 \mathrm{kcmil} \times 2 \mathrm{P}$ to $600 \mathrm{kcmil} \times 2 \mathrm{P}$ $250 \mathrm{kcmil} \times 3 \mathrm{P}$ to $600 \mathrm{kcmil} \times 3 \mathrm{P}$ $400 \mathrm{kcmil} \times 4 \mathrm{P}$ to $600 \mathrm{kcmil} \times 4 \mathrm{P}$ | F200160, F200160PB |
| 2 | $14 \mathrm{~mm}^{2}$ or less | AWG 6 or less | ACL-40C |
|  | $\begin{gathered} 60 \mathrm{~mm}^{2} \text { or less } \\ 5.5 \mathrm{~mm}^{2} \times 2 \mathrm{P} \text { to } 22 \mathrm{~mm}^{2} \times 2 \mathrm{P} \end{gathered}$ | AWG 1/ or less <br> AWG $10 \times 2 \mathrm{P}$ to $\mathrm{AWG} 4 \times 2 \mathrm{P}$ | ACL-74C |
| 4 | $5.5 \mathrm{~mm}^{2}$ or less | AWG 10 or less | ACL-40C |
|  | $14 \mathrm{~mm}^{2}$ or less | AWG 6 or less | ACL-74C |

[^44]
### 11.16 External Cooling Fan Attachments

The use of an external cooling attachment for FRN0032G2S-2G/FRN0018G2ם-4G to FRN0115G2S-2G/
FRN0060G2a-4G inverters allows cooling fins to be directed outside the panel. This enhances cooling efficiency, and allows the panel size to be reduced. It can release from the panel approximately $70 \%$ of the inverter's generated loss.
Installation with external cooling is possible for units of FRN0146G2S-2G/FRN0075G2a-4G or higher by moving the mounting base.


| Option type | Applicable inverter type |
| :---: | :---: |
| PB-F1-15 | FRN0032G2S-2G/FRN0018G2ם-4G |
|  | FRN0046G2S-2G/FRN0023G2ם-4G |
|  | FRN0059G2S-2G/FRN0031G2ם-4G |




Panel mounting face

| Option type | Applicable inverter type |
| :---: | :---: |
| PB-F1-30 | FRN0075G2S-2G/FRN0038G2ם-4G |
|  | FRN0088G2S-2G/FRN0045G2ם-4G |
|  | FRN0115G2S-2G/FRN0060G2ם-4G |

### 11.17 IP40 Compatibility Attachment (P40ST-F $\square 1$ )

(1) Overview

The inverter protective construction can be changed from IP20 (enclosed type) to IP40 (fully-enclosed type) by installing the IP40 compatibility attachment on FRENIC-MEGA standard specification 1 (basic type).

## (2) Configuration

## Table 11.17-1

Type

## (3) Specifications

This kit can only be installed on standard specification 1 (basic type).

## Applicable inverter

Table 11.17-2

| Model | Inverter capacity |
| :---: | :---: |
| FRENIC-MEGA (G2) | FRN0003G2S-2G/FRN0002G2ם-4G to |
|  | FRN0115G2S-2G/FRN0060G2ם-4G |

## Type and weight

Table 11.17-3

| Item | Specification |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type | P40ST-FA1 |  | P40ST-FB1 |  |  | P40ST-FC1 |  |  | P40ST-FD1 |  |  |
| Applicable inverter type <br> (FRNamaG2S-2/4) | 0.4 | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |
| Weight [kg] | 0.1 |  | 0.2 |  |  | 0.3 |  |  | 0.4 |  |  |

Changes to the specifications from standard specification 1 （basic type）when this compatibility attachment is installed are as follows．Other specifications are the same as the standard specification 1 （basic type）．

## Rated output current

The rated output current in the case of HND（High，Normal Duty applications）for three－phase 200V series low duty applications is shown in the following table．

Table 11．17－4

| Item |  | Specification |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Applicable inverter type（FRNauG2S－2） | 5.5 | 7.5 | 11 | 15 | 18.5 | 22 |  |
| Output ratings | Rated current［A］ | 29 | 42 | 55 | 68 | 80 | 107 |

## Ambient temperature

-10 to $+40^{\circ} \mathrm{C}$

## Number of installable option cards（PCBs）

By installing this compatibility attachment，a single option card can be installed．
（Two OPC－RY relay output interface cards can be installed．）
All option cards are supported．
The connection port differs based on the specifications for each option．

## （4）Setting change

Select IP40 with function code H 98 （Protection／Maintenance function（Mode selection））bit 7 （IP20／IP40 switching）． It is necessary to change to a level of protection appropriate for IP40 due to the protective coordination relationship．

### 11.18 External Frequency Command Potentiometer (External)

An external frequency command potentiometer may be used to set the drive frequency. Connect the potentiometer to control signal terminals [11] through [13] of the inverter as shown in Fig. 11.18-1.

- RJ-13 Type: RJ-13 (BA-2 B-characteristics, $1 \mathrm{k} \Omega$ )


Type: YS549810-0 Type::K-2901-S

(Note) The nameplate and dial must be ordered separately (parts available from Fuji Electric Technica Co., Ltd.)

## WA3W-1k $\Omega$ Type: WA3W-1k (3W B-characteristics)



Knob type: 25N



Dial plate type: 40P

(Note) The nameplate and dial must be ordered separately (parts available from Fuji Electric Technica Co., Ltd.)


Fig. 11.18-1 External dimensions and connection example for external frequency command potentiometer

### 11.19 Extension Cable for Remote Operation

This cable is used to connect the inverter unit RJ-45 connector with the keypad or USB-RS-485 converter, etc. The cable is available in lengths of $1 \mathrm{~m}, 3 \mathrm{~m}$, and 5 m . All cables are straight type.


Table 11.19-1 Extension cable length for remote operation

| Type | Length (m) |
| :---: | :---: |
| CB-5S | 5 |
| CB-3S | 3 |
| CB-1S | 1 |

### 11.20 Selecting Measurement Options

### 11.20.1 Frequency meters

By connecting a frequency meter to inverter control circuit terminal [FM1], [FM2] and [11], output frequency can be measured. The type is the same as that of a standard meter, but a type with frequency scale is available for the inverter.

- TRM-45

Type: TRM-45, 10 VDC 1 mA
This model has two types of calibration: " 0 to $60 / 120 \mathrm{~Hz}$ " and "60/120/240 Hz."


- FMN-60

Type: FMN-60, 10 VDC 1 mA


Panel cutout size

- FMN-80

Type: FMN-80, 10 VDC 1 mA


Panel cutout size

Parts available from Fuji Electric Technica Co., Ltd.
Parts available from Fuji Electric Technica Co., Ltd.


Fig. 11.20-1 Frequency meter external dimensions and connection example

## 11．21 Control Terminal Block（G1S Compatible）OPC－G1－TB1

The control terminal block for the conventional model MEGA（GS1）is available as an option to allow round crimp terminals to be connected．

Note
When using this terminal block option，terminal［X6］，［EN1］，［EN2］，and［FM2］functions cannot be used． If terminal［X6］was used with MEGA（G1），it will be necessary to reassign to other than terminal［X6］．


Table 11．21－1 Screw specification，tightening torque，and recommended wire size

| Common terminal | Screw specification |  | Recommended wire size（ $\mathrm{mm}^{2}$ ） |
| :---: | :---: | :---: | :---: |
|  | Screw size | Tightening torque（ $\mathrm{N} \cdot \mathrm{m}$ ） |  |
| Control circuit terminal | M3 | 0.7 | 0.75 |
| Fixing screws | M3 | 0.7 | - |

### 11.22 Built-in Option Card Types and Ports in Which They Can be Installed

The FRENIC-MEGA option card connection ports in which each built-in option card can be installed are shown in the following table.

Table 11.22-1

| Class | Type | Option card connection port |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | せ | 悥 | t <br> ¢ <br> 0 |  |
| Relay output | OPC-RY | Y | Y | N | Two cards can be installed simultaneously in the A and B ports (4 outputs). |
| Feedback | OPC-PG | N | N | Y |  |
|  | OPC-PG2 | N | N | Y |  |
|  | OPC-PG22 | N | *1 | Y |  |
|  | OPC-PMPG2 | N | *1 | Y | Dedicated MEGA part for driving synchronous motors |
| I/O system | OPC-DI | Y | Y | Y | A single card ( $\mathrm{A}, \mathrm{B}$, or C$)$ can be installed. |
|  | OPC-DO | Y | Y | Y | A single card ( $A, B$, or $C$ ) can be installed. |
|  | OPC-AIO | Y | Y | Y | A single card ( $\mathrm{A}, \mathrm{B}$, or C ) can be installed. |
| Communica tion system | OPC-DEV | Y | Y | Y | Only one communication system option can be installed (example: OPC-DEV and OPC-TL cannot be used at the same time.) |
|  | OPC-TL | Y | N | N |  |
|  | OPC-COP2 | Y | N | N |  |
|  | OPC-PDP2 | Y | N | N |  |
|  | OPC-CCL | Y | N | N |  |
|  | OPC-SX | Y | N | N |  |
|  | OPC-ETM | Y | N | N | Compatible with ROM version 0300 and later |

*1 The B/C port area is occupied, and therefore other options cannot be installed in the B port.

Note When using an IP40 compatibility attachment, only a single option card can be installed. (Two OPC-RY relay output interface cards can be installed.)


Fig. 11.22-1

### 11.22.1 T-Link Communication Card (OPC-TL)

The T-LINK communication card is used to connect the FRENIC-MEGA and Fuji programmable controller MICREX series by T-Link. Run commands and frequency commands can be set and monitored, and function code settings necessary for operation can be changed or checked from MICREX. The T-Link extension format can also be selected.

## Applicable port

This communication card can only be installed in the A port of the three FRENIC-MEGA option connection ports (A, $B$, and C ports).
[Note] Other communication cards (DeviceNet communication card, SX-bus communication card, etc.) cannot be installed with this communication card installed. If multiple communication cards are installed, an $5-4$ trip will occur at FRENIC-MEGA, and it will not be possible to cancel the trip condition until there is only one communication card installed.

## T-Link specifications

Table 11.22-2

| Item | Specification |
| :--- | :--- |
| Applicable controller | MICREX series |
| Transmission requirements | T-Link slave I/O transmission |
| No. of occupied <br> transmission words | Total of 8 words (MICREX $\rightarrow$ inverter: 4 words, inverter $\rightarrow$ MICREX: 4 words) |
| Number of connectable <br> units | 12 |
| Recommended cable | FURUKAWA ELECTRIC CO., LTD. twisted pair cable CPEV-SB $\varphi 0.9 \times 1$ pair, or <br> FURUKAWA ELECTRIC CO., LTD. twisted pair cable KPEV-SB0.5 $\mathrm{mm}^{2} \times 1$ pair |
| Max. baud rate | 500 kbps |

For items not contained in the above table, T-Link specifications apply.

## Station No. switch (RSW1, RSW2) settings

The T-Link station No. is set with the station No. switches (rotary switches RSW1 and RSW2). The station No. setting range is 00 to 99 .


Fig. 11.22-2

[^45]
## Dedicated T-Link interface function codes

Table 11.22-3

| No. | Function code name | Setting range <br> $* 1$ | Setting details |
| :---: | :--- | :---: | :--- | :--- | :--- |

[^46]
## Communication format

- G11 standard format data assignment address

When the G11 standard format is selected (when o30 $=0$ ), an 8 word area is used for each inverter in the input/output relay area as shown in the following diagram. The lower 4 words are for the read area, and the higher 4 words are for the write area.


Note) ** is the T-link bus station No. set with "RSW1" and "RSW2".
Fig. 11.22-3

- G9 compatible format data assignment address

When the G9 compatible format is selected (when $030=2$ ), an 8 word area is used for each inverter in the input/output relay area as shown in the following diagram. The lower 4 words are for the read area, and the higher 4 words are for the write area.

This is the format which requires the minimum of changes to the program at the controller side if switching from the FRENIC5000 G9 to FRENIC-MEGA.


Note) ** is the T-link bus station No. set with "RSW1" and "RSW2".
Fig. 11.22-4

## Extension format data assignment address

When the extension format is selected (if $030=3$ ), the lower 4 words are for the read area, and the higher 4 words are for the write area.

The desired function code can be selected with the function code type and number, and reading and writing are possible for all function codes accessible with communication.


Note) ** is the T-link bus station No. set with "RSW1" and "RSW2".
Fig. 11.22-5

## 11．22．2 SX－bus Communication Card（OPC－SX）

The SX－bus communication card is used to connect the FRENIC－MEGA and Fuji programmable controller MICREX－ SX series by SX－bus．Automatic operation and monitoring can be performed，and function code settings necessary for operation can be changed or checked with MICREX－SX programs．

## Applicable port

This communication card can only be installed in the A port of the three FRENIC－MEGA option card connection ports（ $\mathrm{A}, \mathrm{B}$ ，and C ports）．
［Note］This communication card uses certain B port functions，and therefore only a relay output card can be installed in the $B$ port．
［Note］When this communication card is installed，it cannot be used in combination with other communication cards （DeviceNet communication card，PROFIBUS DP card，etc．）If these communication cards are mistakenly installed at the same time，communication error alarm

## Hardware specifications

Table 11．22－4

| Item | Specification |
| :--- | :--- |
| Name | SX－bus communication card |
| Transmission requirements | SX－bus slave，I／O transmission |
| Baud rate | 25 Mbps |
| No．of occupied transmission <br> words | Standard format（16 words：8 words＋8 words） |
| Terminal／bus cable | Dedicated IN，OUT／SX bus cable <br> ＊NP1C－P3（0．3 m）to NP1C－25（25 m） |
| Station No．switch RSW1，RSW2 <br> （rotary switches） | The desired station No．can be assigned from 1 to 238 for the station No． <br> （address）setting． |
| Status indicator LED（RUN，ERR） | The local station（running，error）is indicated with an LED． |

## Dedicated SX－bus communication card function codes

Table 11．22－5

| No． | Function code name | Setting range ＊1 | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y96 | G1，GX1 compatibility mode | $\underline{0}$ to 3 | 0 ：Disable（factory default） <br> 1：Reserved（cannot be set） <br> 2：Enable（G1 compatible） <br> 3：Enable（GX1 compatible） |  |  |
| y98 | Run，frequency command source selection | $\underline{0}$ to 3 | Select from the following． |  |  |
|  |  |  | y98 | Frequency command source | Run command source |
|  |  |  | 0 | Inverter | Inverter |
|  |  |  | 1 | SX－bus | Inverter |
|  |  |  | 2 | Inverter | SX－bus |
|  |  |  | 3 | SX－bus | SX－bus |
| 027 | Operation selection when SX－ bus communication error detected | $\underline{0}, 4$ to 9 | Immediate coast to stop \＆ |  |  |
|  |  | 1 | Coast to stop and $\Xi$ 斤与 trip after time set at o28 elapses |  |  |
|  |  | 2 | Error ignored if communication link restored within time set at o28 <br> Coast to stop and $\sqrt[E]{5}$ g trip if timeout occurs |  |  |
|  |  | 3，13 to 15 | Communication error ignored and current situation maintained <br> （E－G does not occur） |  |  |
|  |  | 10 | Immediate forced deceleration EーG trip after stoppage |  |  |
|  |  | 11 | Forced deceleration and $\xi_{-} \zeta$ trip after stoppage after time set at o28 elapses |  |  |
|  |  | 12 | Error ignored if communication link restored within time set at o28 E－S trip after forced deceleration if timeout occurs |  |  |
| o28 | Operation timer when SX－bus communication error detected | $\underline{0.0}$ to 60.0 sec | Timer operating time when $1,2,11$ ，or 12 set for 027 |  |  |
| 030 | Communication format selection for SX－bus communication card | 0 | Standard format |  |  |
|  |  | 1 to 255 | Use prohibited |  |  |

[^47]
## Usage area and data assignment addresses

## - Standard format

When the standard format is selected (when $030=$ ), a 16 word area is used for each inverter in the MICREX-SX I/Q area as shown in the following diagram. (Up to 10 units can be connected.) The lower 8 words are for the read area, and the higher 8 words are for the write area.


Fig. 11.22-6


Note) **** is the SX-bus station No. set at "RSW1" and "RSW2".
Fig. 11.22-7

### 11.22.3 PROFIBUS-DP Communication Card (OPC-PDP2)

By installing the PROFIBUS-DP communication card in FRENIC-MEGA and connecting to the PROFIBUS-DP master device, run commands, frequency commands, and the operating status can be monitored, and all FRENIC-MEGA function codes can be changed or referenced.

The features of this communication card are shown below.

- PROFIBUS version: DP-V0 compatible
- Baud rate: 9,600 bps to 12 Mbps
- Compatible profile: PROFIDrive V2
- Reading/writing to all FRENIC-MEGA function codes possible


## Applicable port

This communication card can only be installed in the A port of the three FRENIC-MEGA option connection ports (A, B, and C ports).
[Note] Other communication cards (DeviceNet communication card, SX-bus communication card, etc.) cannot be installed with this communication card installed. If multiple communication cards are installed, an there is only one communication card installed.

## PROFIBUS-DP specifications

Table 11.22-6

| Item |  |  | Specification |
| :--- | :--- | :--- | :--- |
| Transmission | Line | RS-485 (insulated) |  |
|  | Connection <br> length | See table below. | Selected at master side |
|  | Baud rate | $9.6,19.2,45.45,93.75,187.5,500 \mathrm{kbit/s}$ <br> $1.5,3,6,12 \mathrm{Mbit}$ (automatic detection) | IEC 61158, 61784 |
|  | Transmission <br> protocol | PROFIBUS-DP (DP-V0) | PHOENIX CONTACT |
|  | Control | Controller | SPC3 (Siemens) |

The maximum transmission distance per segment when using a PROFIBUS-DP cable is as follows.
Table 11.22-7

| Communication <br> speed (bit/s) | Max. length per segment (m) |
| :---: | :---: |
| 9.6 k | 1200 |
| 19.2 k | 1200 |
| 45.45 k | 1200 |
| 93.75 k | 1000 |
| 187.5 k | 1000 |
| 500 k | 400 |
| 1.5 M | 200 |
| 3 M | 100 |
| 6 M | 100 |
| 12 M | 100 |

## Function code settings

To specify run commands and frequency commands from PROFIBUS, it is necessary to set inverter function codes. A list is shown in Table 11.22-8.

Table 11.22-8 Function code settings required to enable run and frequency commands from PROFIBUS

| Function code | Description | Factory default | Setting change value | Remarks |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y96 | G1, GX1 compatibility mode | 0 | 0/2/3 | 0 : Disable (factory default) <br> 1: Reserved (cannot be set) <br> 2: Enable (G1 compatible) <br> 3: Enable (GX1 compatible) |  |  |
| y98 | Run, frequency | 0 | 3 | Select from the following. |  |  |
|  | PROFIBUS |  |  | y98 | Frequency command source | Run command source |
|  |  |  |  | 0 | Inverter | Inverter |
|  |  |  |  | 1 | PROFIBUS | Inverter |
|  |  |  |  | 2 | Inverter | PROFIBUS |
|  |  |  |  | 3 | PROFIBUS | PROFIBUS |
| y99 | Run, frequency command from rotor | 0 | 0 | Unnecessary to change from factory default |  |  |
| $\begin{aligned} & \text { From } \\ & \text { E01 } \end{aligned}$ | Terminal [ $\mathrm{X}_{\square}$ ] function selection <br> (■: terminal number) | - | Set to other than 24, 1024 (other than "LE" selection). <br> (Applies to all terminal $X$ function codes.) | Even when "LE" is selected, the y98 setting will be valid if the terminal is turned ON. <br> When "LE" is set to OFF, the y98 setting will be invalid, and both run and frequency commands will be specified from the inverter. |  |  |

Other related function codes are shown in the following table.
Table 11.22-9 Related inverter function codes

| Function <br> code | Description | Factory <br> default | Setting range | Remarks |
| :---: | :--- | :--- | :--- | :--- |
| o27 | Operation selection <br> when PROFIBUS <br> communication error <br> detected | 0 | 0 to 15 |  |
| o28 | Operation timer when <br> PROFIBUS <br> communication error <br> detected | 0.0 s | 0.0 s to 60.0s |  |
| o30 | PPO TYPE | 0 | 0 to 255 | Refer to the communication card <br> instruction manual. |
| o31 | PROFIBUS station No. <br> selection | 0 | 0 to 125 | Station Nos. that are valid when the <br> rotary switch on the PCB is set to "00" |
| o40 to | Write function code <br> assignment 1 to 8 | 0000 | $0 x 0000$ to 0xFFFF | Sets function code for data mapped I/O <br> writing. <br> Same as PNU915 |
| o48 to <br> o55 | Read function code <br> assignment 1 to 8 | 0000 | $0 x 0000$ to 0xFFFF | Sets function code for data mapped I/O <br> reading. <br> Same as PNU916 |

## Node address

(1) Setting with rotary switches (SW1, SW2)

The node address must be set before turning ON the PROFIBUS-DP communication card power. The node address is set using the rotary switches (SW1, SW2) on the communication card, and can be set from 1 to 99 in decimal notation. SW1 is used to set the 10 digit, and SW2 is used to set the 1 digit.

Address $=($ SW1 setting value $\times 10)+($ SW2 setting value $\times 1)$
[Note] It is necessary to turn the power OFF and ON again after changing the node address.
[Note] If wishing to set an address greater than 99, the "(2) Setting with o31" procedure is required.

## (2) Setting with 031

By setting the rotary switch on the communication card to " 00 " and turning the power OFF and ON again, the code set with 031 will be valid. If the rotary switch is set to other than " 00 ", the rotary switch value will be valid.

The setting range is 0 to 125 . If a value of 126 or higher is set, the ERR LED on the communication card will blink, notifying the user that there is a problem with the setting.

## PPO type selection

This communication card supports PPO types 1 to 4 (refer to the FRENIC-MEGA PROFIBUS-DP Communication Card Instruction Manual for details on PPO).

Set the same PPO type at the keypad and in the master settings. If the settings are not the same, data exchange between the communication card and master will not start. If the settings do not match, the ERR LED on the communication card will blink, notifying the user that there is a problem with the setting.

## Setting from the keypad

Inverter function code o codes are used to specify PROFIBUS-DP interface settings. o codes can be accessed from the inverter keypad after installing this communication card.

PPO type selection uses o30. After changing this parameter, it is necessary to turn the inverter power OFF and ON again to enable the change.
Table 11.22-10

| 030 | PPO type selection |
| :--- | :--- |
| $0,1,6$ to 255 | PPO 1 |
| 2 | PPO 2 |
| 3 | PPO 3 |
| 4 | PPO 4 |
| 5 | PPO 5 |

## Setting from master

The module definition is sent with the PROFIBUS-DP Master setting frame. This definition can be found in the GSD file. For details on the PROFIBUS-DP setting method, refer to the "Master Manual".

### 11.22.4 CANopen Communication Card (OPC-COP2)

By installing the CANopen communication card in FRENIC-MEGA and connecting to CANopen, run commands and frequency commands can be set, and all FRENIC-MEGA function codes can be accessed from the CANopen master (PC, PLC, etc.). FRENIC-MEGA can be controlled as a slave.

## Applicable port

This communication card can only be installed in the A port of the three FRENIC-MEGA option connection ports (A, $B$, and $C$ ports).
[Note] Other communication cards (DeviceNet communication card, SX-bus communication card, etc.) cannot be installed with this communication card installed. If multiple communication cards are installed, an $E-4$ trip will occur at FRENIC-MEGA, and it will not be possible to cancel the trip condition until there is only one communication card installed.

## CANopen specifications

Table 11.22-11

| Item | Specification | Remarks |
| :--- | :--- | :--- |
| Physical layer | CAN (ISO11898) |  |
| Baud rate | $20 \mathrm{k}, 50 \mathrm{k}, 125 \mathrm{k}, 250 \mathrm{k}, 500 \mathrm{k}, 800 \mathrm{k}, 1 \mathrm{Mbit} / \mathrm{s}$ | Set with o32 |
| Maximum cable length | 2500 m (when $20 \mathrm{kbits} / \mathrm{s}$ ) to 25 m (when $1 \mathrm{Mbit} / \mathrm{s}$ ) |  |
| Node ID | 1 to 127 | Set with o31 |
| Profile | Conforms to the following profiles. <br> - CiA DS-301 Ver.4.02 <br>  <br> - CiA DS-402 Ver.2.0, Velocity mode |  |

## Function code settings

Function codes necessary for CANopen communication
The function codes which must be set to communicate between this communication card and the CANopen master are shown in the following table.

Table 11.22-12

| Function code | Function code name | Factory default | Data setting range | Description |
| :---: | :---: | :---: | :---: | :---: |
| o31 *1 | Node ID setting | 0 | 0 to 255 <br> (Valid range: 0 to 127) | By setting 0 or 128 or higher, data is recognized as 127 . |
| o32 *1 | Baud rate setting | 0 | 0 to 255 <br> (Valid range: 0 to 7 ) | 0: $125 \mathrm{kbits} / \mathrm{s}$ 5: $500 \mathrm{kbits} / \mathrm{s}$ <br> 1: $20 \mathrm{kbits} / \mathrm{s}$ 6: $800 \mathrm{kbits} / \mathrm{s}$ <br> 2: $50 \mathrm{kbits} / \mathrm{s}$ 7: $1 \mathrm{Mbit} / \mathrm{s}$ <br> 3: $125 \mathrm{kbits} / \mathrm{s}$ 8 to $255: 1 \mathrm{Mbit} / \mathrm{s}$ <br> 4: $250 \mathrm{kbits} / \mathrm{s}$  |

*1 To reflect settings after setting o31 and o32, either turn the inverter unit power OFF and ON again, or send a ResetNode command from the CANopen master.

Other related function codes
Other related function codes that can be set with CANopen communication are shown in the following table.
Table 11.22-13

| Function code | Function code name | Factory default | Data setting range | Description |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O27 | Operation when CANopen communication error detected | 0 | 0 to 15 |  |  |  |
| 028 | Timer when CANopen communication error detected | 0 | 0 to 60.0 s |  |  |  |
| $\begin{aligned} & \hline 040 \text { to } \\ & \text { o43 } \\ & \text { *2 } \end{aligned}$ | Applicable function code setting written via RPDO No. 3 | 0x0000 | $0 \times 0000$ to 0xFFFF | Set the function code as follows: <br> $0 x X X=$ <br> XX: Group (see table below) <br> : Number <br> Example) F07 $\rightarrow 0 \times 0407$ |  |  |
| 048 to 051 *2 | Applicable function code setting monitored via TPDO No. 3 | 0x0000 | $0 \times 0000 \text { to }$ 0xFFFF | As above |  |  |
| y96 | G1, GX1 compatibility mode | 0 | 0/2/3 | 0 : Disable (factory default) <br> 1: Reserved (cannot be set) <br> 2: Enable (G1 compatible) <br> 3: Enable (GX1 compatible) |  |  |
| y98 | Run, frequency command source selection | 0 | 0 to 3 | Select from the following. <br> Table 11.22-14 |  |  |
|  |  |  |  | y98 | Frequency command source | Run command source |
|  |  |  |  | 0 | Inverter | Inverter |
|  |  |  |  | 1 | CANopen | Inverter |
|  |  |  |  | 2 | Inverter | CANopen |
|  |  |  |  | 3 | CANopen | CANopen |

*2 To reflect settings after setting 040 to 043 and 048 to o51, either turn the inverter unit power OFF and ON again, or send a ResetNode command from the CANopen master.

Table 11.22-15 Function code types (function codes 040043 and 048 051)

| Type | Type code |  | Name | Type | Type | code | Name | Type | Type | code | Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S | 2 | 02h | Command, function data | W | 16 | 10h | Monitor data 2 | T | 30 | 1Eh | Scheduled operation |
| M | 3 | 03h | Monitor data | X | 17 | 11h | Alarm data | E1 | 31 | 1Fh | Terminal function |
| F | 4 | 04h | Basic function | z | 18 | 12h | Alarm data 2 | H1 | 32 | 20h | High performance function |
| E | 5 | 05h | Terminal function | b | 19 | 13h | Motor 3/speed control 3 parameter | 01 | 33 | 21h | Option function |
| C | 6 | 06h | Control function | d | 20 | 14h | Application function 2 | U1 | 34 | 22h | Customizable logic function |
| P | 7 | 07h | Motor 1 parameter |  | - |  |  | M1 | 35 | 23h | Monitor data |
| H | 8 | 08h | High performance function |  | - |  |  | J1 | 36 | 24h | Application function |
| A | 9 | 09h | Motor 2/speed control 2 parameter | W1 | 23 | 17h | Monitor data 2 | J2 | 37 | 25h | Application function |
| 0 | 10 | 0Ah | Option function | W2 | 24 | 18h | Monitor data 2 | J3 | 38 | 26h | Application function |
| L | 11 | OBh | Special function | W3 | 25 | 19h | Monitor data 2 | J4 | 39 | 27h | Application function |
| r | 12 | 0Ch | Motor 4/speed control 4 parameter | X1 | 26 | 1Ah | Alarm data | J5 | 40 | 28h | Application function |
| U | 13 | 0Dh | Customizable logic function | X2 | 27 | 1Bh | Alarm data | J6 | 41 | 29h | Application function |
| J | 14 | OEh | Application function | Z1 | 28 | 1Ch | Alarm data 2 | d1 | 42 | 2Ah | Application function 2 |
| y | 15 | OFh | Link function | K | 29 | 1Dh | Keypad related functions | d2 | 55 | 37h | Application function 2 |

## Communication

This communication card is a CANopen slave, and supports the services shown in the following table.
Table 11.22-16

| Item | Service | Remarks |
| :--- | :--- | :--- |
| PDO | RPDO $\times 3$, TPDO $\times 3$ <br> TPDO supports Sync, Cyclic, and Async. | PDO variable mapping can be <br> changed. |
| SDO | Expedited and Segmented protocol is supported. <br> Only Default SDO is supported. | Block protocol is not supported. |
| Emergency <br> (EMCY) Object | EMCY Producer | EMCY Consumer is not <br> supported. |
| Network <br> Management <br> (NMT) | NMT Slave (DS-301 state machine) <br> Guarding <br> Heartbeat Producer <br> Heartbeat Consumer <br> Boot-up Protocol | NMT master is not supported. |

### 11.22.5 DeviceNet Communication Card (OPC-DEV)

By installing the DeviceNet communication card in the FRENIC-MEGA and connecting to DeviceNet, run commands and frequency commands can be set and monitored, and function code settings necessary for operation can be changed or checked from the DeviceNet master.

## Applicable ports

This communication card can be installed in one of the three FRENIC-MEGA option connection ports (A, B, and C ports).
[Note] Other communication cards (CC-Link communication card, SX-bus communication card, etc.) cannot be installed with this communication card installed. If multiple communication cards are installed, an $E-4$ trip will occur at FRENIC-MEGA, and it will not be possible to cancel the trip condition until there is only one communication card installed.

## DeviceNet specifications

Table 11.22-17

| Item | Specification |  |  |  |
| :---: | :---: | :---: | :---: | :---: |
| Number of nodes connectable | Max. 64 (including the master) |  |  |  |
| MAC ID | 0 to 63 |  |  |  |
| Insulation | 500 VDC (photocoupler insulation) |  |  |  |
| Transmission speed | 500, 250, 125 kbit/s |  |  |  |
| Max. cable length (when using thick cables) | Baud rate | $500 \mathrm{kbits} / \mathrm{s}$ | 250 kbits/s | 125 kbits/s |
|  | Trunk line length | 100 m | 250 m | 500 m |
|  | Branch line length | 6 m | 6 m | 6 m |
|  | Total branch line length | 39 m | 78 m | 156 m |
| Messages supported | 1. I/O messages (Poll, Change of State) <br> 2. Explicit messages |  |  |  |
| Vendor ID | 319 (Registered name: Fuji Electric Group) |  |  |  |
| Device type | AC drive (code: 2) |  |  |  |
| Product code | 9221 |  |  |  |
| Applicable device profile | AC Drive |  |  |  |
| Number of input/output bytes | Max. 8 bytes for each of input and output. <br> * Based on selected format <br> See "Communication format" (Table 11.22-20). |  |  |  |
| Applicable DeviceNet specifications | CIP specifications <br> Volume1 2.2 edition Japanese version and Volume3 1.1 edition Japanese version |  |  |  |
| Node type | Group 2 only server (noncompliant with UCMM) |  |  |  |
| Network power consumption | $80 \mathrm{~mA}, 24 \mathrm{VDC}$ <br> [Note] The network power is supplied by an external power source. |  |  |  |

For items not contained in the above table, the DeviceNet specifications apply.

## DIP switch settings

The node address and data rate are set with DIP switches. (See figure below.) The node address setting range is 0 to 63, and the data rate setting range is $125 / 250 / 500 \mathrm{kbit} / \mathrm{s}$. Select the appropriate ranges with the DIP switches before turning ON the communication card power. Even if switches are set while the power is ON, please be aware that they will not be reflected until the power has been turned OFF and ON again.


| DR (bit/s) | DIP 1-2 |
| :---: | :---: |
| 125 K | 00 |
| 250 K | 01 |
| 500 K | 10 |
| Prohibited | 11 |


| NA | DIP 3-8 |
| :---: | :---: |
| 0 | 000000 |
| 1 | 000001 |
| 2 | 000010 |
| 3 | 000011 |
| $\ldots$ | $\ldots$ |
| 62 | 111110 |
| 63 | 111111 |

Fig. 11.22-8 DIP switch details (in the diagram, the node address is 63 , and the data rate is $500 \mathrm{kbit} / \mathrm{s}$ )

## Function code settings

Table 11.22-18

| Function code | Description | Factory default | Setting |  |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| y96 | G1, GX1 compatibility mode | 0 | 0 : Disable (factory default) <br> 1: Reserved (cannot be set) <br> 2: Enable (G1 compatible) <br> 3: Enable (GX1 compatible) |  |  |  |
| y98 | Run, frequency command source selection | 0 | Select from the following. |  |  |  |
|  |  |  | y98 | Frequency command source | Run command source |  |
|  |  |  | 0 | Inverter | Inverter |  |
|  |  |  | 1 | DeviceNet | Inverter |  |
|  |  |  | 2 | Inverter | DeviceNet |  |
|  |  |  | 3 | DeviceNet | DeviceNet |  |
| 027 | Operation selection when DeviceNet communication error detected | 0 |  | to the comm ction manual | ication card |  |
| 028 | Operation timer when DeviceNet communication error detected | 0.0s | 0.0 s | to 60.0 s |  |  |
| 031 | Output instance selection | 0 | See | Table 11.22-20 |  | After setting, it is |
| o32 | Input instance selection | 0 | See | Table 11.22-20 |  | necessary to turn |
| $\begin{gathered} 040 \text { to } \\ 43 \end{gathered}$ | Write function code assignment 1 to 4 | 0000 | See | supplementary | information below. | and ON again to reflect operation |
| $\begin{gathered} \text { o48 to } \\ 51 \end{gathered}$ | Read function code assignment 1 to 4 | 0000 | See | upplementary | information below. | to the inverter. |

[Supplementary information] Inverter function code 040 to 043 and 048 to 051 setting method Specify the function code type (Table11.22-19) and number with a 4 digit hexadecimal number as shown below.

Fig. 11.22-9

Table11.22-19 Function code types

| Type | Type code |  | Name | Type | Type | code | Name | Type | Typ | code | Name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S | 2 | 02h | Command, function data | W | 16 | 10h | Monitor data 2 | T | 30 | 1Eh | Scheduled operation |
| M | 3 | 03h | Monitor data | X | 17 | 11h | Alarm data | E1 | 31 | 1Fh | Terminal function |
| F | 4 | 04h | Basic function | z | 18 | 12h | Alarm data 2 | H1 | 32 | 20h | High performance function |
| E | 5 | 05h | Terminal function | b | 19 | 13h | Motor 3/speed control 3 parameter | 01 | 33 | 21h | Option function |
| C | 6 | 06h | Control function | d | 20 | 14h | Application function 2 | U1 | 34 | 22h | Customizable logic function |
| P | 7 | 07h | Motor 1 parameter |  | - |  |  | M1 | 35 | 23h | Monitor data |
| H | 8 | 08h | High performance function |  | - |  |  | J1 | 36 | 24h | Application function |
| A | 9 | 09h | Motor 2/speed control 2 parameter | W1 | 23 | 17h | Monitor data 2 | J2 | 37 | 25h | Application function |
| 0 | 10 | 0Ah | Option function | W2 | 24 | 18h | Monitor data 2 | J3 | 38 | 26h | Application function |
| L | 11 | 0Bh | Special function | W3 | 25 | 19h | Monitor data 2 | J4 | 39 | 27h | Application function |
| r | 12 | 0Ch | Motor 4/speed control 4 parameter | X1 | 26 | 1Ah | Alarm data | J5 | 40 | 28h | Application function |
| U | 13 | 0Dh | Customizable logic function | X2 | 27 | 1Bh | Alarm data | J6 | 41 | 29h | Application function |
| $J$ | 14 | 0Eh | Application function | Z1 | 28 | 1Ch | Alarm data 2 | d1 | 42 | 2Ah | Application function 2 |
| y | 15 | OFh | Link function | K | 29 | 1Dh | Keypad related functions | d2 | 55 | 37h | Application function 2 |

Example: In the case of F26 F $\Rightarrow$ type code 04
$\left.\begin{array}{l}F \Rightarrow \text { type code } 04 \\ 26 \Rightarrow 1 A(\text { hexadecimal notation })\end{array}\right\}$ " $041 \mathrm{~A} "$

## Communication formats

Supported communication formats are shown in the following table. Select o31 for output, and o32 for input. Please be aware that changes to the 031 and o32 settings are not reflected until the inverter power is turned OFF and ON again.

Table 11.22-20 Format list

| o31, o32 | Type | Instance ID | Content | Occupied words |
| :---: | :---: | :---: | :---: | :---: |
| o31 $=20$ | Output (master $\rightarrow$ inverter) | 20 | Basic I/O instance output | 4 |
| $\begin{aligned} & \text { o31=21 or } 0 \\ & \text { (initial value) } \end{aligned}$ |  | 21 | Extension I/O instance output | 4 |
| o31 $=100$ |  | 100 | Fuji Electric original output | 4 |
| o31 $=102$ |  | 102 | Data mapped I/O (write) | 8 |
| o31 = 104** |  | 104 | Function code access request | 8 |
| o32 $=70$ | Input (inverter $\rightarrow$ master) | 70 | Basic I/O instance input | 4 |
| $\begin{aligned} & \mathrm{o} 32=71 \text { or } 0 \\ & \text { (initial value) } \end{aligned}$ |  | 71 | Extension I/O instance input | 4 |
| o32 $=101$ |  | 101 | Fuji Electric original input | 4 |
| -32 $=103$ |  | 103 | Data mapped I/O (monitor) | 8 |
| o32 $=105$ * |  | 105 | Function code access response | 8 |

* When selecting function code access request (o31=104) for the output format, select the function code access response $(032=105)$ for the input format. Refer to the DeviceNet Communication Card Instruction Manual for details.


### 11.22.6 CC-Link Communication Card (OPC-CCL)

CC-Link (Control \& Communication Link) is an FA open field network system.
Installing the CC-Link communication in the FRENIC-MEGA and connecting to the CC-Link master unit with a dedicated cable supports a transmission speed of 156 kbps to 10 Mbps and total length of 100 to $1,200 \mathrm{~m}$, allowing it to be used in a wide range of systems requiring high-speed or long-distance transmission, enabling a flexible system configuration.

## Applicable port

This communication card can only be installed in the A port of the three FRENIC-MEGA option connection ports (A, $B$, and $C$ ports).
[Note] Other communication cards (DeviceNet communication card, SX-bus communication card, etc.) cannot be installed with this communication card installed. If multiple communication cards are installed, an $E-4$ trip will occur at FRENIC-MEGA, and it will not be possible to cancel the trip condition until there is only one communication card installed.

## CC-Link specifications

Table 11.22-21

| Item | Specification |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Applicable controller | Mitsubishi Electric PLC, etc. (CC-Link master) |  |  |  |  |
| Transmission system | CC-Link version 1.10 and 2.0 (Broadcast polling system) |  |  |  |  |
| Number of connected inverters | Max. 42 units (one station occupied/unit) |  |  |  |  |
| Number of stations occupied | CC-Link version 1.10: 1 station occupied <br> CC-Link version 2.0: 1 station occupied (Selectable from among $2 \mathrm{x}, 4 \mathrm{x}$ and 8 x settings) |  |  |  |  |
| Baud rate | $10 \mathrm{Mbps} / 5 \mathrm{Mbps} / 2.5 \mathrm{Mbps} / 625 \mathrm{Kbps} / 156 \mathrm{Kbps}$ |  |  |  |  |
| Total max. cable length | 10 Mbps | 5M bps | 2.5 M bps | 625 kbps | 156 kbps |
| cable) | 100 m | 150 m | 200 m | 600 m | 1200 m |
| Insulation | 500 VDC (photocoupler insulation) |  |  |  |  |
| Station type | Remote device station |  |  |  |  |
| Remote device type | Inverter (0x20) |  |  |  |  |

For items not contained in the above table, the CC-Link specifications apply.

## Dedicated CC-Link function codes

Table 11.22-22

| No. | Function code name | Setting range *1 | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y96 | G1, GX1 compatibility mode | 0/2/3 | 0 : Disable (factory default) <br> 1: Reserved (cannot be set) <br> 2: Enable (G1 compatible) <br> 3: Enable (GX1 compatible) |  |  |
| y98 | Run, frequency command source selection | $\underline{0}$ to 3 | Select from the following. |  |  |
|  |  |  |  | Frequency command source | Run command source |
|  |  |  | 0 | Inverter | Inverter |
|  |  |  | 1 | CC-Link | Inverter |
|  |  |  | 2 | Inverter | CC-Link |
|  |  |  | 3 | CC-Link | CC-Link |
| O27 | Operation selection when CCLink communication error detected | $\underline{0}, 4$ to 9 | Immediate coast to stop \& |  |  |
|  |  | 1 | Coast to stop and ErG after time set at o28 elapses |  |  |
|  |  | 2 | Error ignored if communication link restored within time set at o28 Coast to stop and G-G if timeout occurs |  |  |
|  |  | 3,13 to 15 | Communication error ignored and current situation maintained <br> (ETS does not occur) |  |  |
|  |  | 10 | Immediate forced deceleration EーG after stoppage |  |  |
|  |  | 11 | Forced deceleration and $\Xi \boxed{5}$ trip after stoppage after time set at o28 elapses |  |  |
|  |  | 12 | Error ignored if communication link restored within time set at o28 <br> E-5 after forced deceleration if timeout occurs |  |  |
| 028 | Timer time setting when communication error detected | $\underline{0.0}$ to 60.0 sec | $\begin{aligned} & \text { Time } \\ & \text { o27 } \end{aligned}$ | operating time | $\text { hen } 1,2,11 \text {, }$ |
| o30 | CC-Link extension setting (multiple setting) | 5 to 255 | Disable |  |  |
|  |  | $\underline{0}, 1$ | 1 station occupied (CC-Link version 1.10) |  |  |
|  |  | 2 | 1 station occupied, 2 x setting (CC-Link Ver.2.00) |  |  |
|  |  | 3 | 1 station occupied, 4x setting (CC-Link Ver.2.00) |  |  |
|  |  | 4 | 1 station occupied, 8 x setting (CC-Link Ver.2.00) |  |  |
| o31 | Station No. setting *2 | $\underline{0}, 1$ to 64 | Station No. setting (slave: 1 to 64) L.ERR lights up if other value set. |  |  |
| o32 | Baud rate setting *2 | $\underline{0}$ to 4 | $0: 156 \mathrm{kbps}, 1: 625 \mathrm{kbps}, 2: 2.5 \mathrm{Mbps}, 3: 5 \mathrm{Mbps}, 4:$ 10 Mbps <br> L.ERR lights up if other value set. |  |  |

*1 Underlined values are factory default setting values.
*2 By changing the station No. or baud rate settings while the inverter power is ON, L.ERR blinks, and communication is stopped. Setting values are reflected by resetting "RST" from the terminal block, or the next time the power is turned ON.

### 11.22.7 Multiprotocol Ethernet ${ }^{\circledR}$ Communication Card (OPC-ETM)

By installing the multiprotocol Ethernet communication card on FRENIC-MEGA (G2) (ROM version 0300 and later), and setting and monitoring run commands and frequency from a master device connected by Ethernet, function code settings required for operation can be changed and checked. Furthermore, data can be exchanged with peripheral equipment.

## Applicable port

This communication card can only be installed in the A port of the three FRENIC-MEGA option connection ports (A, $B$, and $C$ ports).
[Note] Other communication cards (DeviceNet communication card, SX-bus communication card, etc.) cannot be installed with this communication card installed. If multiple communication cards are installed, an $\xi_{-}-4$ trip will occur at FRENIC-MEGA, and it will not be possible to cancel the trip condition until there is only one communication card installed.

Specification

| Item |  | Remarks |
| :--- | :--- | :---: |
| Supported protocols | •Ethernet ${ }^{\circledR} /$ IP server <br> • PROFINET-RT device |  |
| Connector type | With RJ-45 shield, CAT5e or higher UTP or STP cable |  |
| Physical layer type | IEEE 802.3 |  |
| Number of ports | 2 ports (built-in switch function) |  |
| Transmission speed | 10 Mbps / 100 Mbps (automatically detected) |  |
| Duplex mode | Half duplex/full duplex (automatically detected) |  |
| Auto MDI-X | Enabled (auto straight/crossover cable recognition) |  |
| Auto Polarity | Enabled (auto polarity detection) |  |
| Cable length | Max. $100 \mathrm{~m}(328$ ft) per segment |  |

## Function code settings

Table 11.22-23

| $\begin{array}{\|c\|} \text { Function } \\ \text { code } \end{array}$ | Description | Factory default | Setting |
| :---: | :---: | :---: | :---: |
| y95 | Run operation command clear selection when communication error occurs | 0 | 0: Do not clear data when a communication error alarm occurs. <br> 1: Clear data for function codes $\mathrm{S} 01 / \mathrm{S} 05 / \mathrm{S} 19$ when a communications error occurs. <br> 2: Clear the run command assigned bit of function code S06 when a communications error occurs. <br> 3: Clear operations in 1 and 2 above are performed. <br> 4: Clear data for 3 above and for function codes S02/S03/S13/S15/S20/S21. <br>  |
| y97 | Communication data storage method selection | 0 | Set to "1" if frequently rewriting inverter function codes other than run command related $S$ codes (Sxx). <br> If the same value is written, the value is not written, and the number of times is not counted. <br> 0 : Store in nonvolatile memory (Rewritable times are limited) <br> 1: Write in temporary memory (Rewritable times are unlimited) <br> 2: Save all data from temporary memory to nonvolatile memory (After all save, return to Data 1) |

11.22 Built-in Option Card Types and Ports in Which They Can be Installed

| Function code | Description | Factory default | Setting |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| y98 | Run, frequency command source selection | 0 | Select from the following. |  |  |
|  |  |  | y98 | Frequency command source | Run command source |
|  |  |  | 0 | Inverter | Inverter |
|  |  |  | 1 | Ethernet | Inverter |
|  |  |  | 2 | Inverter | Ethernet |
|  |  |  | 3 | Ethernet | Ethernet |
| 027 | Transmission error (Operation selection) | 0 | 0: Immediate IT Trip when communication error occurs. <br> 1: Immediate timer after communication error occurs. <br> 2: Immediate $\left[\begin{array}{l}5 \\ 5\end{array}\right.$ trip if communication error occurs, and communication does not recover after retry while running for time specified with timer <br> 3: Motor continues to run without $\varsigma-5$ trip even if communication error occurs. Motor runs in accordance with communication command after communication recovers. <br> 4 to 9: Same as o27 $=0$ <br> 10: $G-5$ trip following deceleration stop due to communication error. <br> 11: $\boxed{\boxed{5} 5} 5$ trip following deceleration stop after running for time specified with timer after communication error occurs <br> 12: Deceleration stop if communication error occurs, and communication does not recover after retry while running for time specified with timer. Motor continues to run in accordance with communication command if communication recovers. <br> 13 to 15 : Same as o27 $=3$ |  |  |
| o28 | Transmission error (Timer time) | 0.0 | 0.0~60.0s |  |  |
| 0201 | IP address setting 1 |  | Example: Set as follows if 192.168.11.1 is set.$\begin{aligned} & \mathrm{o} 201=192 \\ & \mathrm{o} 202=168 \\ & \mathrm{o} 203=11 \end{aligned}$ |  |  |
| o202 | IP address setting 2 |  |  |  |  |
| o203 | IP address setting 3 |  |  |  |  |
| o204 | IP address setting 4 |  | o204 = 1 (if o213 = 1, the rotary switch setting is referenced) |  |  |
| o205 | Subnet mask setting 1 |  | Example: Set as follows if 255.255 .255 .0 is set.$\begin{aligned} & \mathrm{o} 205=255 \\ & \text { o206 }=255 \\ & \text { o207 }=255 \end{aligned}$ |  |  |
| o206 | Subnet mask setting 2 |  |  |  |  |
| o207 | Subnet mask setting 3 |  |  |  |  |
| o208 | Subnet mask setting 4 |  | o208 $=0$ |  |  |
| o209 | Default gateway setting 1 |  | Example: Set as follows if 192.168 .11 .1 is set.$\begin{aligned} & \mathrm{o} 205=192 \\ & \mathrm{o} 206=168 \\ & \mathrm{o} 207=11 \\ & \mathrm{o} 208=1 \end{aligned}$ |  |  |
| 0210 | Default gateway setting 2 |  |  |  |  |
| 0211 | Default gateway setting 3 |  |  |  |  |
| 0212 | Default gateway setting 4 |  |  |  |  |
| o213 | IP address setting mode |  | 0 : Fixed <br> 1: Hard switch <br> 2: DHCP (other than PROFINE) <br> 3: DCP (for PROFINET) <br> If 0 , set o201 to o212. <br> If 1 , set IP address <br> as o201.o202.o203.n. |  |  |
| o214 | Protocol setting |  | 0: None (invalid) <br> 1: PROFINET-RT <br> 2: EtherNet/IP |  |  |
| o215 | KEEP-ALIVE startup time |  | 10 to 720 s |  |  |

11.22 Built-in Option Card Types and Ports in Which They Can be Installed

| Function code | Description | Factory default | Setting |
| :---: | :---: | :---: | :---: |
| $\begin{gathered} \text { o221 } \\ \text { to } \\ \text { o252 } \end{gathered}$ | Write function code assignment 1 to 32 (max. 32 words) |  | Set function code for writing output from master to inverter. <br> (Group number) $\times 100 \mathrm{H}+2$ lower order digits of function code (see inverter function code settings) <br> Example: Function code E01 $=0501_{\mathrm{H}}$ (hexadecimal number) |
| $\begin{gathered} \text { o253 } \\ \text { to } \\ \text { o284 } \end{gathered}$ | Read function code assignment 1 to 32 (max. 32 words) |  | Set function code for reading input from inverter to master. (Group number) $\times 100_{\mathrm{H}}+2$ lower order digits of function code (see inverter function code settings) <br> Example: Function code E01 $=0501_{\mathrm{H}}$ (hexadecimal number) |

## Inverter function code settings

If accessing inverter function codes, specify the function code type (Table 11.22-24) and number with a 4 digit hexadecimal number as follows.
However, these are ignored if the inverter has no function codes.


Table 11.22-24 Function code type

| Type | Type code |  | Function code name | Type | Typ | code | Function code name |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| S | 2 | 02н | Command, function data | W3 | 25 | 19н | Monitor data 2 |
| M | 3 | 03 ${ }^{\text {H }}$ | Monitor data | X1 | 26 | $1 \mathrm{~A}_{\mathrm{H}}$ | Alarm data |
| F | 4 | 04н | Basic function | X2 | 27 | $1 \mathrm{BH}_{\mathrm{H}}$ | Reserved |
| E | 5 | 05 | Terminal function | Z1 | 28 | $1 \mathrm{CH}_{\mathrm{H}}$ | Reserved |
| C | 6 | 06\% | Control function | K | 29 | 1D ${ }_{\text {H }}$ | Keypad related function |
| P | 7 | 07 ${ }_{\text {H }}$ | Motor 1 parameter | T | 30 | $1 \mathrm{E}_{\mathrm{H}}$ | Scheduled operation |
| H | 8 | 08H | High-level function | E1 | 31 | $1 \mathrm{~F}_{\mathrm{H}}$ | Reserved |
| A | 9 | 09н | Motor 2/speed control 2 parameter | H1 | 32 | 20H | High-level function |
| $\bigcirc$ | 10 | ОАн | Option function | 01 | 33 | 21н | Option function |
| L | 11 | ОВн | Specific purpose function | U1 | 34 | 22н | Customizable logic function |
| $r$ | 12 | $\mathrm{OCH}_{\mathrm{H}}$ | Motor 4/speed control 4 parameter | M1 | 35 | 23H | Monitor data |
| U | 13 | ODH | Customizable logic function | J1 | 36 | $24_{\text {H }}$ | Application function |
| J | 14 | ОЕн | Application function | J2 | 37 | $25_{H}$ | Application function |
| y | 15 | OFH | Link function | J3 | 38 | 26 H | Application function |
| W | 16 | 10 H | Monitor data 2 | J4 | 39 | 27\% | Application function |
| X | 17 | 11, | Alarm data | J5 | 40 | 28 H | Application function |
| Z | 18 | 12н | Alarm data 2 | J6 | 41 | 29H | Application function |
| b | 19 | 13H | Motor 3/speed control 3 parameter | d1 | 42 | $2 \mathrm{~A}_{\mathrm{H}}$ | Application function 2 |
| d | 20 | 14 ${ }_{\text {H }}$ | Application function 2 | d2 | 55 | 37 ${ }_{\text {H }}$ | Application function 2 |
| W1 | 23 | 17\% | Monitor data 2 | o2 | 62 | 3Е, | Option function |
| W2 | 24 | 18H | Monitor data 2 |  |  |  |  |

Example: In the case of F26 F $\rightarrow$ type code 04

$$
26 \rightarrow 1 \mathrm{~A} \text { (hexadecimal notation) }
$$

### 11.22.8 Digital Input Interface Card (OPC-DI)

The digital input interface card is equipped with a 16-point digital input terminal (SINK/SOURCE method switching possible), and by installing the card in FRENIC-MEGA, the frequency can be set, and general-purpose input terminals can be extended with a binary code ( $8,12,15,16$ bits) or BCD code ( 4 digits).

## Applicable ports

This interface card can be installed in one of the three FRENIC-MEGA option connection ports ( $\mathrm{A}, \mathrm{B}$, and C ports).

## Electrical specifications

Table 11.22-25

| Terminal <br> symbol | Item |  | Specification |  |
| :---: | :--- | :--- | :---: | :---: |
|  |  | Min. | Max. |  |
|  | Operating <br> voltage <br> (SINK) | ON level | 0 V | 2 V |
|  | Operating <br> voltage <br> (SOURCE) | OFF level | OF level | 22 V |
|  | Operating current when ON <br> (when input voltage 0 V) | 22 V | 27 V |  |
|  | Permissible leakage current <br> when OFF | 2.5 mA | 5 mA |  |

## Terminal function

Table 11.22-26

| Terminal <br> symbol | Terminal name | Function |
| :---: | :---: | :--- |
| $[I 1]$ to [I16] | Digital input 1 to 16 | (1) The frequency can be set using the frequency setting <br> methods set with function codes o19 and o20. <br> Refer to "Function code settings" on the following page <br> for details. <br> (2) By setting function code o101 to o116, these terminal <br> signals can be used as general-purpose input signals in <br> the same way as terminal [X1] to [X9]. <br> (3) The SINK/SOURCE method can be switched using SW1. |
| $[\mathrm{M} 1]$ | External power supply input | This is a power supply input terminal used for an external <br> power supply (+22 to +27 VDC). |
| $[\mathrm{CM}]$ | Digital common | This is a common terminal for digital input signals. <br> Same electric potential as inverter unit terminal [CM] |

## Connection example

Table 11.22-27

| Power supply | Connection example |  |
| :---: | :---: | :---: |
|  | SINK method | SOURCE method |
| Internal |  | * The maximum permissible MEGA unit [PLC] terminal current is 100 mA |
| External |  |  |

## Function code settings

## 1. If setting the frequency

To enable frequency setting input from this interface card, it is necessary to set " 11 " (digital input interface) for function code F01 (frequency setting 1) or C30 (frequency setting 2). Furthermore, the frequency setting polarity and input mode are set with function code o19 (DI polarity selection) and o20 (DI mode selection).

The data for each bit is " 0 " when terminal input is OFF, and " 1 " when terminal input is ON.
Table 11.22-28

| No. | o19 | o20 | Input signal name | Terminal function and description of setting content |
| :---: | :---: | :---: | :--- | :--- |
| $(1)$ | 0 | 0 | 8-bit binary <br> frequency setting | Set resolution = Maximum output frequency $\times(1 / 255)$ |
| $(2)$ | 0 | 1 | 12-bit binary <br> frequency setting | Set resolution = Maximum output frequency $\times(1 / 4095)$ |
| $(3)$ | 0 | 2 | 15-bit binary <br> frequency setting | Set resolution = Maximum output frequency $\times(1 / 32767)$ |
| $(4)$ | 0 | 3 | 16-bit binary <br> frequency setting | Set resolution = Maximum output frequency $\times(1 / 65535)$ |
| $(5)$ | 0,1 | 4 | BCD, 4 digits <br> Frequency setting <br> $(0$ to 99.99 Hz) | The frequency can be set in the 0 to 99.99 Hz (set resolution $=$ <br> 0.01 Hz) range. <br> If a value equal to or higher than the maximum output <br> frequency is entered, the value is restricted to the maximum <br> output frequency. |

11.22 Built-in Option Card Types and Ports in Which They Can be Installed

| No. | 019 | o20 | Input signal name | Terminal function and description of setting content |
| :---: | :---: | :---: | :---: | :---: |
| (6) | 0,1 | 5 | BCD, 4 digits <br> Frequency setting ( 0 to 599.0 Hz ) | The frequency can be set in the 0 to 599.0 Hz (set resolution = 0.1 Hz ) range. <br> If a value equal to or higher than the maximum output frequency is entered, the value is restricted to the maximum output frequency. |
| (7) | 1 | 0 | 8-bit binary frequency setting | Frequency setting range: - (Maximum output frequency) to + (maximum output frequency) $-128 \text { to }+127$ <br> Set resolution $=$ Maximum output frequency $\times(1 / 127)$ |
| (8) | 1 | 1 | 12-bit binary frequency setting | Frequency setting range: - (Maximum output frequency) to + (maximum output frequency) $-2048 \text { to }+2047$ <br> Set resolution $=$ Maximum output frequency $\times(1 / 2047)$ |
| (9) | 1 | 2 | 15-bit binary frequency setting | Frequency setting range: - (Maximum output frequency) to + (maximum output frequency) $-16384 \text { to }+16383$ <br> Set resolution $=$ Maximum output frequency $\times(1 / 16383)$ |
| (10) | 1 | 3 | 16-bit binary frequency setting | Frequency setting range: - (Maximum output frequency) to + (maximum output frequency) $-32768 \text { to }+32767$ <br> Set resolution $=$ Maximum output frequency $\times(1 / 32767)$ |

(Note) When o20 $=4$ or 5 (BCD code), operation is performed "without polarity".

## 2. If using as a general-purpose digital input

Terminals can be used as general-purpose input terminals in the same way as terminal [X1] to [X9].

| Function code | Name | Setting code and content | Factory default |
| :---: | :---: | :---: | :---: |
| 020 | Input mode selection | 90: General-purpose digital input | 0 |
| 0101 | Terminal [11] <br> (Function selection) | Same content as function codes E01 to E09 <br> Refer to Chapter 5 "FUNCTION CODES". | 100 |
| 0102 | Terminal [12] <br> (Function selection) |  | 100 |
| to | to |  | 100 |
| 0116 | Terminal [116] (Function selection) |  | 100 |

### 11.22.9 Digital Output Interface Card (OPC-DO)

The digital output interface card is equipped with an 8 -point transistor output terminal (compatible with SINK method/SOURCE method), and by installing it in FRENIC-MEGA, output frequency, etc. can be monitoredand general-purpose output terminals can be extended with binary code (8 bits).

## Applicable ports

This interface card can be installed in one of the three FRENIC-MEGA option connection ports ( $\mathrm{A}, \mathrm{B}$, and C ports).

## Electrical specifications

Table 11.22-29

| Terminal <br> symbol | Item |  | Specification |  |  |  |  |
| :---: | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
|  | [O1] to [O8] |  |  |  | Operating <br> voltage | ON level | Max. |
|  | OFF level | 27 V |  |  |  |  |  |
|  | Source current when ON | 50 mA |  |  |  |  |  |
|  | Leakage current when OFF |  | 0.1 mA |  |  |  |  |

## Terminal function

Table 11.22-30

| Terminal <br> symbol | Terminal name | Function |
| :---: | :---: | :--- |
| [O1] to [O8] | Transistor output 1 to 8 | (1) All signals (output frequency, output current, etc.) set with <br> function code o21 can be output as 8-bit parallel signals. <br> (2) Signals can be output as general-purpose digital output. |
| [M2] | Transistor output common | This is a common terminal for transistor output signals. <br> The terminal is insulated from inverter unit terminals [CM], [11], <br> and [CMY]. |

## Connection example

Table 11.22-31
SINK method

## Function code settings

## 1. If using as an output status monitor

Items monitored with this interface card digital signals are set with function code o21 (DO mode selection). The same monitor signals to those of analog output (terminal [FM1], [FM2]) can be output as digital signals.

Terminal output turns OFF when the data bit is set to " 0 ", and ON when the data bit is set to " 1 ".
Table 11.22-32

| Function <br> code | LED | Output signal name | Terminal function and description of setting content |
| :---: | :---: | :--- | :--- |
| o21 | 0 | Refer to F31 (terminal [FM1] <br> function selection) in <br> Chapter "5 FUNCTION <br> CODES". | Output with terminal [01] (LSB) to terminal [08] (MSB) <br> 8-bit signals. <br> Max. value: 255 |
|  | 1 |  |  |
|  | 2 |  |  |
|  | to |  |  |
|  | 124 |  |  |

## 2. If using as a general-purpose digital output

Terminals can be used as general-purpose output terminals in the same way as terminal [Y1] to [Y4].

| Function code | Name | Setting code and content | Factory default |
| :---: | :---: | :---: | :---: |
| 021 | Output mode selection | 90: General-purpose digital output | 0 |
| 0121 | Terminal [01] <br> (Function selection) | Same content as function codes E20 to E24 <br> Refer to Chapter 5 "FUNCTION CODES". | 0 |
| 0122 | Terminal [02] <br> (Function selection) |  | 2 |
| 0123 | Terminal [o3] <br> (Function selection) |  | 1 |
| 0124 | Terminal [04] <br> (Function selection) |  | 3 |
| 0125 | Terminal [05] <br> (Function selection) |  | 5 |
| 0126 | Terminal [06] (Function selection) |  | 6 |
| 0127 | Terminal [07] <br> (Function selection) |  | 100 |
| 0128 | Terminal [08] <br> (Function selection) |  | 100 |

### 11.22.10 Analog Interface Card (OPC-AIO)

The analog interface card is equipped with the following terminals, and by installing in FRENIC-MEGA, analog input and output can also be used.

- One analog voltage input ( 0 to $\pm 10 \mathrm{~V}$ )
- One analog current input (4 to 20 mA )
- One analog voltage output ( 0 to $\pm 10 \mathrm{~V}$ )
- One analog current output (4 to 20 mA )


## Applicable ports

This interface card can be installed in one of the three FRENIC-MEGA option connection ports (A, B, and C ports).

## Terminal function

Table 11.22-33

| Classification | Terminal symbol | Terminal name | Explanation | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  | [P10] | Power supply for potentiometer | Power supply for frequency command potentiometer (Variable resistor: 1 to $5 \mathrm{k} \Omega$ ) (max. $10 \mathrm{VDC}, 10 \mathrm{mADC}$ ) |  |
|  | [32] | Analog voltage input | - Used as frequency setting voltage input. <br> 0 to $\pm 10 \mathrm{VDC} / 0$ to $\pm 100 \%$ ( 0 to $\pm 5 \mathrm{VDC} / 0$ to $\pm 100 \%)$ <br> - One signal content item can be selected from the following. <br> - Auxiliary frequency setting <br> - PID command <br> -PID feedback value <br> - Ratio setting <br> - Torque limit value <br> - Analog input monitor <br> - Resolution: 1/3000 | Input <br> impedance: <br> $22 \mathrm{k} \Omega$ <br> Maximum input: <br> $\pm 15$ VDC |
|  | [C2] | Analog current input | - Used as frequency setting current input. <br> 4 to $20 \mathrm{mADC} / 0$ to $100 \%$ <br> - One signal content item can be selected from the following. <br> - Auxiliary frequency setting <br> - PID command <br> - PID feedback value <br> - Ratio setting <br> - Torque limit value <br> - Analog input monitor <br> - Resolution: 1/3000 | Input <br> impedance: <br> $250 \Omega$ <br> Maximum input: <br> 30 mA DC |
|  | [31] | Analog common | - Reference terminal for frequency setting signals (P10, 32, C2) | Equipotent with the inverter's terminal [11] |


| Classification | Terminal symbol | Terminal name | Explanation | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  | [ $\mathrm{OO}^{+}$] | Voltage output + | - Outputs analog DC voltage analog 0 to 10 VDC monitor signal. <br> - One of the following selected items can be output. <br> - Output frequency (before slip compensation, after slip compensation) <br> - Output current <br> - Output voltage <br> - Output torque <br> - Load factor <br> - Power consumption <br> - PID feedback value <br> -PG feedback value <br> -DC intermediate circuit voltage <br> - Universal AO <br> - Motor output <br> - Analog output test <br> - PID command <br> - PID output <br> -Resolution: 1/3000 <br> * Capable of driving up to two analog voltmeters with $10 \mathrm{k} \Omega$ impedance. |  |
|  | [Ao-] | Analog voltage output - | - Reference terminal for analog voltage output + [Ao+] | Equipotent with the inverter's terminal [11] |
|  | [CS+] | Analog current output + | - Outputs the analog DC current 4 to 20 mA DC monitor signal. <br> - One of the following selected items can be output. <br> - Output frequency (before slip compensation, after slip compensation) <br> - Output current <br> - Output voltage <br> - Output torque <br> - Load factor <br> - Power consumption <br> - PID feedback value <br> -PG feedback value <br> - DC intermediate circuit voltage <br> - Universal AO <br> - Motor output <br> - Analog output test <br> - PID command <br> - PID output <br> - Resolution: 1/3000 <br> * Can be connected to a measuring instrument up with maximum resistance of $500 \Omega$. | Isolated from terminals [31], [Ao-], and [11] |
|  | [CS-] | Analog current output - | * Can be connected to a measuring instrument up with maximum resistance of $500 \Omega$. |  |

## Connection example

Table 11.22-34

| Terminal symbol | Connection method |
| :---: | :---: |
| [32] |  |
| [C2] |  |
| [Ao] |  |
| [CS] |  |

## Function code settings

Table 11.22-35 Analog input terminal [32] function code setting content

| Function code | Function code content | LED | Data content | Factory default |
| :---: | :---: | :---: | :---: | :---: |
| 060 | Terminal [32] <br> (Function selection) | 0 | Refer to E61 to E63 (extension function selection) in Chapter 5 "FUNCTION CODES". | 0: No extension function assignment |
|  |  | to |  |  |
|  |  | 20 |  |  |
| 061 | (Offset adjustment) <br> (Gain adjustment) | -5.0 to +5.0\% | Offset adjustment value | 0.0 |
| 062 |  | 0.00 to 200.00\% | Gain adjustment value | 100.00 |
| 063 | (Filter setting) <br> (Gain reference point) | 0.00 to 5.00 s | Filter constant | 0.05 |
| 064 |  | 0.00 to 100.00\% | Gain reference point | 100.00 |
| 065 | (Polarity selection) | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | Bipolar <br> Unipolar | 1 |
| 066 | (Bias) <br> (Bias reference point) | -100.00 to 100.00\% | Bias adjustment value | 0.00 |
| 067 |  | 0.00 to 100.00\% | Bias reference point | 0.00 |
| 069 | (Display unit) | 1 to 80 | Refer to J105 to J107 (PID control) in Chapter 5 "FUNCTION CODES". | 2 |
| -70 | (Maximum scale) | -999 to 0.00 to 9990 |  | 100 |
| 071 | (Minimum scale) | -999 to 0.00 to 9990 |  | 0.00 |

Table 11.22-35 Analog input terminal [32] function code setting content

| Function code | Function code content | LED | Data content | Factory default |
| :---: | :---: | :---: | :---: | :---: |
| 075 | Terminal [C2] <br> (Range selection) | 0 | 4 to 20 mA (0 to 100\%) | 0 |
|  |  | 1 | 0 to 20 mA (0 to 100\%) |  |
|  |  | 10 | $\begin{aligned} & 4 \text { to } 20 \mathrm{~mA}(-100 \text { to } \\ & 100 \%) \end{aligned}$ |  |
|  |  | 11 | $\begin{aligned} & 0 \text { to } 20 \mathrm{~mA}(-100 \text { to } \\ & 100 \%) \end{aligned}$ |  |
| 076 | (Function selection) | 0 | Refer to E61 to E63 (extension function selection) in Chapter 5 "FUNCTION CODES". | 0 : No extension function assignment |
|  |  | to |  |  |
|  |  | 20 |  |  |
| 077 | (Offset adjustment) <br> (Gain adjustment) | -5.0 to $+5.0 \%$ | Offset adjustment value | 0.0 |
| 078 |  | 0.00 to 200.00\% | Gain adjustment value | 100.00 |
| 079 | (Filter setting) | 0.00 to 5.00 s | Filter constant | 0.05 |
| 081 | (Gain reference point) <br> (Bias) | 0.00 to 100.00\% | Gain reference point | 100.00 |
| 082 |  | -100.00 to 100.00\% | Bias adjustment value | 0.00 |
| 083 | (Bias reference point) (Display unit) | -100.00 to 100.00\% |  | 0.00 |
| 085 |  | 1 to 80 | Refer to J105 to J107 (PID control) in Chapter 5 "FUNCTION CODES". | 2 |
| 086 | (Maximum scale) | -999 to 0.00 to 9990 |  | 100.0 |
| 087 | (Minimum scale) | -999 to 0.00 to 9990 |  | 0.00 |

Table 11.22-36 Analog voltage output terminal [Ao] function code setting content

| Function code | Function code content | LED | Data content | Factory default |
| :---: | :---: | :---: | :---: | :---: |
| 090 | Terminal [Ao] <br> (Function selection) | 0 | Refer to F31 (terminal [FM1] function selection) in Chapter " 5 FUNCTION CODES". | 0: Output frequency (before slip compensation) |
|  |  | to |  |  |
|  |  | 124 |  |  |
| 091 | (Gain adjustment) <br> (Polarity selection) | 0 to 300\% | Gain adjustment value | 100 |
| 093 |  | $\begin{aligned} & 0 \\ & 1 \end{aligned}$ | Bipolar <br> Unipolar | 1 |

Table 11.22-37 Analog current output terminal [CS] function code setting content

| Function code | Function code content | LED | Data content | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| 096 | Terminal [CS] <br> (Function selection) | 0 | Refer to F31 (terminal [FM1] function selection) in Chapter " 5 FUNCTION CODES". | 0: Output frequency (before slip compensation) |
|  |  | to |  |  |
|  |  | 124 |  |  |
| ०97 | (Output gain) | 0 to 300\% | Gain adjustment value | 100 |

## 11．22．11 Relay Output Interface Card（OPC－RY）

The relay output interface card is a general－purpose output signal relay output（1C contact）card．It is equipped with two relay outputs，and four relay outputs are possible by installing two of these interface cards．

The signals output to each relay output are set with function codes E20 to E23．By selecting active OFF with a function code，relays can be set to a non－excitation state when active，allowing the card to be used for fail safe applications．
By selecting function code $022=1$ ，a different output setting to terminal $[\mathrm{Y} 1]$ to $[\mathrm{Y} 4]$ can be specified．

## Applicable ports

FRENIC－MEGA is equipped with three option connection ports．Please note that restrictions apply to each connection port．

Table 11．22－38

| Port | Output signal | Output signal assignment | Remarks |
| :---: | :---: | :---: | :---: |
|  |  | When function code $022=0$（factory default） | When function code $022=1$ |
| A port | Relay output 1 <br> Relay output 2 | Function code E20（linked to terminal Y1） <br> Function code E21（linked to terminal Y2） | Function code o23（operates independently） <br> Function code o24（operates independently） |
| B port | Relay output 1 <br> Relay output 2 | Function code E22（linked to terminal Y3） <br> Function code E23（linked to terminal Y4） | Function code o25（operates independently） <br> Function code o26（operates independently） |
| C port | Connection not possible |  |  |

## Terminal function

Table 11．22－39

| Terminal <br> symbol | Terminal name | Function description |
| :---: | :--- | :--- |
| $[1 \mathrm{~A}]$ | Relay output 1 | －Terminal［Y1］（A port）／［Y3］（B port）signals are output with relay contacts． <br> －Signals are selected with function codes o23／o25，output with relay <br> contacts． <br> $[1 \mathrm{~B}]$ |
| $[2 \mathrm{C}]$ |  | Relay output 2 |
| $[2 \mathrm{~B}]$ |  | －Terminal［Y2］（A port）／［Y4］（B port）signals are output with relay contacts． <br> $[2 \mathrm{~S}]$ |
|  |  | Signals are selected with function codes o24／o26，output with relay |

## Electrical specifications

Table 11．22－40

| Item | Specification |
| :--- | :--- |
| Contact capacity | $250 \mathrm{VAC}, 0.3 \mathrm{~A} \mathrm{COS} \mathrm{\Phi}=0.3$ or，48 VDC，0．5 A（with resistive load） |
| Contact life <br> expectancy | $250 \mathrm{VAC}, 0.3 \mathrm{~A}: 200,000$ times（if turned ON，OFF in 1 second intervals） <br> $48 \mathrm{VDC}, 0.5 \mathrm{~A}: 200,000$ times（if turned ON，OFF in 1 second intervals） <br> Note）Where frequent ON／OFF switching is anticipated（for example，when selecting <br> signals during inverter output limiting to perform aggressive current limiting），use <br> terminal［Y1］to［Y4］（transistor output）． <br> Applicable safety <br> standards EN61800－5－1：2007，Over Voltage Category II（reinforced insulation）250 VAC |

## Internal circuit configuration



Fig. 11.22-10 Internal circuit configuration
Relay output functions can be selected with the following function codes.
Table 11.22-41

| Function code | Function code content | Data setting range | Factory default |
| :---: | :---: | :---: | :---: |
| 022 | RY option (Mode selection) | 0: Linked to terminal [Y1] to [Y4] <br> 1: Set independently | ```0: Linked to terminal [Y1] to [Y4]``` |
| 023 | RY1 output signal (port A) | The content is the same as that for function codes E20 to E24. Refer to Chapter 5 "FUNCTION CODES". | 0 : Running |
| 024 | RY2 output signal (port A) |  | 1: Frequency arrival |
| 025 | RY1 output signal (port B) |  | 2: Frequency detection |
| O26 | RY2 output signal (port B) |  | 7: Motor overload early warning |

### 11.22.12 PG Interface Card (OPC-PG)

The PG interface card is equipped with a 2 system pulse (ABZ-phase) input circuit and PG (pulse generator) power supply output circuit, and the following functions can be realized by installing it in FRENIC-MEGA.
(1) Speed control with PG feedback signal (vector control with speed sensor, V/f control with speed sensor, dynamic torque vector control with speed sensor) and servo lock function
(2) Pulse train input as frequency command

Note) By installing this interface card in FRENIC-MEGA, the inverter unit terminal [X6] and [X7] pulse train input function cannot be used.

## Applicable port

This interface card can be installed only in port C of the three FRENIC-MEGA option connection ports (A, B, and C ports).

## PG interface specifications

The PG interface specifications for this interface card are shown in Table 11.22-42.
Table 11.22-42 PG interface specifications

| Item | Specification |
| :--- | :--- |
| Encoder pulse count | 20 to $3000 \mathrm{P} / \mathrm{R}$ (A-phase, B-phase, Z-phase incremental type) |
| Pulse input mode | Open collector method (wire length: 20 m or less) <br> Complementary method (wire length: 100 m or less) |
| Pulse input voltage | High level $\geq 8 \mathrm{~V}$, Low level $\leq 3 \mathrm{~V}$ <br> (when using 12 V power supply specification) <br> High level $\geq 10 \mathrm{~V}$, Low level $\leq 3 \mathrm{~V}$ <br> (when using 15 V power supply specification) |
| Pulse input current | 8 mA or less |
| PG power supply *1 | $+12 \mathrm{VDC} \pm 10 \% / 120 \mathrm{~mA}$ or less, or $+15 \mathrm{VDC} \pm 10 \% / 120 \mathrm{~mA}$ or less |

*1 If the PG power supply current exceeds 120 mA , use an external power supply.

## Pulse train input interface specifications

The pulse train input specifications for this interface card are shown in Table 11.22-43.
Table 11.22-43 Pulse train input interface specifications

| Item | Specification |
| :--- | :--- |
| Input pulse frequency | Up to 30 kHz (open collector method) <br> Up to 100 kHz (complementary method) |
| Pulse input mode | Open collector method (wire length: 20 m or less) <br> Complementary method (wire length: 100 m or less) |
| Pulse input voltage | High level $\geq 8 \mathrm{~V}$, w level $\leq 3 \mathrm{~V}$ <br> (when using 12 V power supply specification) <br> High level $\geq 10 \mathrm{~V}$, w level $\leq 3 \mathrm{~V}$ <br> (when using 15 V power supply specification) |
| Pulse input current | 8 mA or less |

## Terminal function

Table 11.22-44

| Terminal symbol | Terminal name | Specification |
| :---: | :---: | :---: |
| [PI] | External power supply input terminal *1 | Terminal for inputting external PG power supply $\begin{aligned} & \text { +12 VDC } \pm 10 \% \text { input, or } \\ & \text { +15 VDC } \pm 10 \% \text { input } \end{aligned}$ <br> (Ensure that the connected power supply is equal to or greater than the PG power supply current consumption +150 mA .) |
| [PO] | Power supply output terminal *2 | Terminal for outputting external PG power supply $\text { +12 VDC } \pm 10 \% / 120 \mathrm{~mA} \text { output, or }$ $\text { +15 VDC } \pm 10 \% / 120 \mathrm{~mA} \text { output }$ |
| [CM] | Common output | PG power supply common terminal <br> (Same electric potential as inverter unit terminal [CM]) |
| [XA] | Command A-phase pulse input terminal | Terminal for inputting command pulse A-phase signal |
| [XB] | Command B-phase pulse input terminal | Terminal for inputting command pulse B-phase signal |
| [XZ] | - | (Not used) |
| [YA] | Feedback A-phase pulse input terminal | Terminal for inputting feedback pulse A-phase signal |
| [YB] | Feedback B-phase pulse input terminal | Terminal for inputting feedback pulse B-phase signal |
| [YZ] | Feedback Z-phase pulse input terminal | Terminal for inputting feedback pulse Z-phase signal |

*1 If the PG power supply power consumption exceeds 120 mA , use an external power supply.
*2 Change the internal switch based on the voltage specification for the PG power supply used.

## Internal circuit configuration

The internal circuit configuration is shown in Fig. 11.22-11. This diagram shows an example of power being supplied from the internal power supply (12 v) to the PG.


Fig. 11.22-11 Internal circuit configuration

## Control method

Speed control (vector control with speed sensor, V/f control with speed sensor, dynamic torque vector control with speed sensor)

The motor speed is detected with a feedback signal from the motor PG (pulse generator). This control makes it possible to achieve speed control with responsiveness.
(The use of a dedicated Fuji motor for vector control (VG motor) is recommended for the motor when performing vector control.)

Table 11.22-45

| Item |  | Specification | Remarks |
| :---: | :---: | :---: | :---: |
| Control specifications *1 | Maximum output frequency | 5 to 599 Hz (encoder upper limit pulse: $30 \mathrm{kHz} / 100$ kHz *2) | When using VG motor (1024 P/R) |
|  | Speed control range | Under vector control with speed sensor <br> Minimum speed: base speed (1:1500) (in the case of 4 P motor: 1 to $1500 \mathrm{~min}^{-1}$ ) <br> Under V/f control with speed sensor, dynamic torque vector control with speed sensor <br> Minimum speed: base speed (1:100) <br> (in the case of 4P motor: 15 to $1500 \mathrm{~min}^{-1}$ ) |  |
|  | Speed control accuracy | Rated rotation speed $\pm 0.2 \%\left(25^{\circ} \mathrm{C} \pm 10^{\circ} \mathrm{C}\right)$ |  |

*1 The control performance changes significantly depending on the pulse count. A pulse count of 1024 P/R or higher is recommended.
*2 30 kHz : open collector type, 100 kHz : complementary type

## Pulse train input

Pulse train input is a function used to give inverter frequency commands with a pulse train. Pulse train sign/pulse train input, forward rotation pulse/reverse rotation pulse, and AB-phase $90^{\circ}$ phase difference pulse train input are possible. Use terminal $[\mathrm{XA}]$ and terminal $[\mathrm{XB}]$ for pulse train input.

Table 11.22-46

| Pulse train format | Operation overview |
| :--- | :--- |
| Pulse train sign / Pulse train <br> input | Terminal [XB] frequency/speed command according to the pulse train <br> rate is given to the inverter. Furthermore, the speed command polarity <br> can be set with terminal [XA] ON/OFF input *1. |
| Forward rotation pulse / <br> Reverse rotation pulse | If there is terminal [XB] pulse train input, a positive polarity speed <br> command based on the frequency is given to the inverter. <br> If there is terminal [XA] pulse train input, a reverse polarity speed <br> command based on the frequency is given to the inverter. *1 |
| A, B phase $90^{\circ}$ phase <br> difference | Speed commands with polarity are given to the inverter unit from the <br> phase difference and frequency from two types of pulse signal with <br> terminal [XA] and terminal [XB] $90^{\circ}$ phase difference. *1 |

*1 The rotation direction of the motor is determined by the polarity of the pulse train input and the inverter unit "FWD"/"REV" commands.

### 11.22.13 PG Interface (5 V Line Driver) Card (OPC-PG2)

The PG interface ( 5 V line driver) card is equipped with a 5 V line driver output type PG (pulse generator) 1 system pulse (A-, B-, Z-phase) input circuit, a wire break detection circuit (Z-phase can be canceled), and a PG power supply output circuit.

The following functions can be realized by installing this interface card in FRENIC-MEGA.
(1) Speed control with PG feedback signal (vector control with speed sensor, V/f control with speed sensor, dynamic torque vector control with speed sensor) and servo lock function
(2) Pulse train input as frequency command

## Applicable port

This interface card can be installed only in port $C$ of the three FRENIC-MEGA option connection ports (A, B, and C ports).

## PG interface specifications

Table 11.22-47

| Item |  | Specification |
| :---: | :---: | :---: |
| PG used | Output pulse count | 20 to 3000 P/R |
|  | Max. response frequency | 100 kHz |
|  | Pulse output method | Line driver method (26C31, 26LS31 or equivalent) SOURCE current + 20 mA (max.) <br> SINK current - 20 mA (max.) |
|  | Max. wire length *1 | 100 m (when using cable coil diameter AWG 16) |
| PG power supply *2 |  | +5 VDC $\pm 10 \% / 200 \mathrm{~mA}$ or less |

*1 The relationship between wire length and minimum connectable coil diameter is shown in Table 11.22-48.
*2 If the PG power supply current exceeds 200 mA , use an external power supply.

Table 11.22-48 Relationship between wire length and minimum connectable coil diameter

| PG power supply <br> specification | Wire length [m] |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Up to 20 | Up to 30 | Up to 50 | Up to 75 | Up to 100 |
| $5 \mathrm{~V} \pm 10 \%, 200 \mathrm{~mA}$ | AWG24 <br> $\left(0.25 \mathrm{~mm}^{2}\right)$ | AWG22 <br> $\left(0.34 \mathrm{~mm}^{2}\right)$ | AWG20 <br> $\left(0.50 \mathrm{~mm}^{2}\right)$ | AWG18 <br> $\left(0.75 \mathrm{~mm}^{2}\right)$ | AWG16 <br> $\left(1.25 \mathrm{~mm}^{2}\right)$ |

## Terminal function

Table 11.22-49

| Terminal <br> symbol | Terminal name | Function |
| :---: | :--- | :--- |
| $[\mathrm{PI}]$ | External power supply input <br> terminal *1 | Terminal for inputting external PG power supply <br> +5 VDC $\pm 10 \%$ input *2 <br> (Ensure that the connected power supply is equal to or greater <br> than the PG power supply current consumption of 200 mA.) |
| $[\mathrm{PO}]$ | Internal power supply output <br> terminal | Terminal for outputting external PG power supply <br> +5 VDC $-0 \%$ to $+10 \% / 200$ mA output |
| $[\mathrm{CM}]$ | Common terminal | PG power supply common terminal <br> $($ same electric potential as inverter unit terminal $[\mathrm{CM}])$ |
| $[\mathrm{YA}]$ | Feedback A (+) phase pulse <br> input terminal | Terminal for inputting feedback pulse A-phase (+) signal |
| $[$ YA] | Feedback A (-) phase pulse <br> input terminal | Terminal for inputting feedback pulse A-phase (-) signal |
| $[\mathrm{YB}]$ | Feedback B (+) phase pulse <br> input terminal | Terminal for inputting feedback pulse B-phase (+) signal |
| $\left[{ }^{*} \mathrm{YB}\right]$ | Feedback B (-) phase pulse <br> input terminal | Terminal for inputting feedback pulse B-phase (-) signal |
| $[\mathrm{YZ}]$ | Feedback Z (+) phase pulse <br> input terminal | Terminal for inputting feedback pulse Z-phase (+) signal |
| $[* Y Z]$ | Feedback Z (-) phase pulse <br> input terminal | Terminal for inputting feedback pulse Z-phase (-) signal |

*1 If the PG power supply power current consumption exceeds 200 mA , use an external power supply.
*2 Use an external power supply to match the allowable voltage range for the PG. Furthermore, adjust the external power supply voltage within the PI voltage range (upper limit $+10 \%$ ) taking the voltage drop caused by the PG and wiring impedance into consideration. Or use a wire with thicker coil diameter.

## Circuit configuration

The circuit configuration is shown below. This diagram shows an example of power being supplied from the internal power supply ( 5 v ) to the PG. (J1: INT side)
Input for each phase is equipped with a wire break detection circuit. The A-phase and B-phase wire break detection circuits are always enabled. The Z-phase wire break detection circuit can be enabled or disabled by setting the SW1 switch (Fig. 11.22-13) to the ON side or OFF side. The SW1 switch is set to the OFF side by factory default.


Fig. 11.22-12 Circuit configuration


Fig. 11.22-13 Switch setting diagram for Z-phase wire break detection

## Control method

Speed control (vector control with speed sensor, V/f control with speed sensor, dynamic torque vector control with speed sensor)

The motor speed is detected with a feedback signal from the motor PG (pulse generator). Motor current is divided up into excitation current and torque current, each of which can be controlled with vector control, enabling highaccuracy, high-response speed control. Refer to Chapter 5 "FUNCTION CODES" for details on vector control settings and adjustment.
(The use of a dedicated Fuji motor for vector control (VG motor) is recommended for the motor when performing vector control.)

Table 11.22-50

| Item |  | Specification | Remarks |
| :---: | :---: | :---: | :---: |
| Control specifications *1 | Maximum output frequency | 5 to 599 Hz (encoder upper limit pulse: 100 kHz) | When using 1024 P/R |
|  | Speed control range | Under vector control with speed sensor Minimum speed: base speed (1:1500) (in the case of 4P motor: 1 to $1500 \mathrm{~min}^{-1}$ ) <br> Under V/f control with speed sensor, dynamic torque vector control with speed sensor <br> Minimum speed: base speed (1:100) (in the case of 4P motor: 1 to $1500 \mathrm{~min}^{-1}$ ) |  |
|  | Speed control accuracy | Analog setting: $\pm 0.2 \%$ of maximum frequency or below (at $25 \pm 10^{\circ} \mathrm{C}$ ) <br> Digital setting: $\pm 0.01 \%$ of maximum output frequency or below (at -10 to $+50^{\circ} \mathrm{C}$ ) |  |

*1 The control performance changes significantly depending on the pulse count. A pulse count of 1024 P/R or higher is recommended.

### 11.22.14 PG Interface (5 V Line Driver $\mathbf{x} 2$ Systems) Card (OPC-PG22)

The PG interface ( 5 V line driver $\times 2$ systems) card is equipped with a 5 V line driver output type 2 system pulse (YA, YB, YZ and $X A, X B, X Z$ ) input circuit, a wire break detection circuit ( $Y Z, X A, X B$, and $X Z$-phases can be canceled), and a PG (pulse generator) power supply output circuit. With this card, master-follower operation is possible for two motors with PG with feedback signals from the PG, positioning control can be performed, and frequency commands can be specified with pulse train input.

## Applicable port

This interface card can be installed only in port $C$ of the three FRENIC-MEGA option connection ports (A, B, and C ports). However, the B port space is also occupied when this card is installed, meaning that it is not possible to install any other option cards in the B port.

## PG interface specifications

Table 11.22-51

| Item |  | Specification |
| :--- | :--- | :--- |
| PG used | Output pulse count | 20 to 3000 P/R (Note 1) |
|  | Max. response frequency | 100 kHz |
|  | Pulse output method | Line driver method (26C31, 26LS31 or equivalent) <br> SOURCE current +20 mA (max.) <br> SINK current -20 mA (max.) |
|  | Max. wire length (Note 3) | 100 m |
| PG power supply |  | $+5 \mathrm{~V} \pm 10 \% / 300 \mathrm{~mA}$ or less (Note 2) |

Note 1) The setting range is 20 to $60000 \mathrm{P} / \mathrm{R}$.
Note 2) If the total connected PG power supply current exceeds 300 mA , use an external power supply.
Note 3) If PG power supply specifications are no longer satisfied due to the voltage drop that occurs when increasing the wire length, increase the cable diameter. A wire length and cable coil diameter guide is shown in Table 11.22-52. Or use an external power supply.
Note 4) Use a PG with the same pulse count for the master side PG and follower side PG when performing masterfollower operation.

Table 11.22-52 Relationship between wire length and minimum connectable coil diameter

| PG power supply <br> specification | Wire length (m) |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Up to 20 | Up to 30 | Up to 50 | Up to 75 | Up to 100 |
| $5 \mathrm{VDC} \pm 10 \%, 300 \mathrm{~mA}$ | AWG24 | AWG22 | AWG20 | AWG18 | AWG16 |
|  | $\left(0.25 \mathrm{~mm}^{2}\right)$ | $\left(0.34 \mathrm{~mm}^{2}\right)$ | $\left(0.50 \mathrm{~mm}^{2}\right)$ | $\left(0.75 \mathrm{~mm}^{2}\right)$ | $\left(1.25 \mathrm{~mm}^{2}\right)$ |

## Pulse train input interface specifications

Table 11.22-53

| Item |  | Specification |
| :--- | :--- | :--- |
| Pulse train <br> generator | Max. response frequency | 100 kHz |
|  | Pulse output method | Line driver method (26C31, 26LS31 or equivalent) <br> SOURCE current +20 mA (max.) <br> SINK current -20 mA (max.) |
|  | Max. wire length | 100 m |

## Terminal function description

Table 11．22－54

| Terminal symbol | Terminal name | Terminal function description |
| :---: | :---: | :---: |
| ［PI］ | External power supply input terminal（Note 1） | Terminal for inputting external PG power supply +5 VDC $\pm 10 \%$ input（Note 2） <br> （Ensure that the connected power supply is equal to or greater than the PG power supply current consumption．） |
| ［PO］ | Internal power supply output terminal | Terminal for outputting PG power supply When +5 VDC $-0 \%$ to $+10 \% / 300 \mathrm{~mA}$ output |
| ［CM］ | Common terminal | PG power supply common terminal （Same electric potential as inverter unit terminal［CM］） |
| ［YA］ | YA（＋）phase pulse input terminal | Terminal for inputting follower side pulse YA（＋）phase signal |
| ［＊YA］ | YA（－）phase pulse input terminal | Terminal for inputting follower side pulse YA（－）phase signal |
| ［YB］ | YB（＋）phase pulse input terminal | Terminal for inputting follower side pulse $\mathrm{YB}(+)$ phase signal |
| ［＊YB］ | YB（－）phase pulse input terminal | Terminal for inputting follower side pulse YB（－）phase signal |
| ［YZ］ | YZ（＋）phase pulse input terminal | Terminal for inputting follower side pulse YZ（＋）phase signal |
| ［＊YZ］ | YZ（－）phase pulse input terminal | Terminal for inputting follower side pulse YZ（－）phase signal |
| ［XA］ | XA（＋）phase pulse input terminal | Terminal for inputting master side pulse XA（＋）phase signal |
| ［＊XA］ | XA（－）phase pulse input terminal | Terminal for inputting master side pulse XA（－）phase signal |
| ［XB］ | XB（＋）phase pulse input terminal | Terminal for inputting master side pulse XB（＋）phase signal |
| ［＊XB］ | XB（－）phase pulse input terminal | Terminal for inputting master side pulse XB（－）phase signal |
| ［XZ］ | XZ（＋）phase pulse input terminal | Terminal for inputting master side pulse XZ（＋）phase signal |
| ［＊XZ］ | XZ（－）phase pulse input terminal | Terminal for inputting master side pulse XZ（－）phase signal |

Note 1）If the total connected PG current consumption exceeds 300 mA ，use an external power supply．
Note 2）Use an external power supply to match the allowable voltage range for the PG．Furthermore，adjust the external power supply voltage within the PI voltage range（upper limit $+10 \%$ ）taking the voltage drop caused by wiring impedance into consideration．Or use a wire with thicker coil diameter．

## Circuit configuration

The circuit configuration is shown below. This diagram shows an example of power being supplied from the internal power supply ( 5 v ) to the PG. (J1: INT side)
Input for each phase is equipped with a wire break detection circuit. This can be disabled if not performing YZ-, XA-, XB-, or XZ-phase wire break detection. The YA-phase and YB-phase wire break detection circuits are always enabled.


Fig. 11.22-14 Circuit configuration

## Corresponding control method

By using this interface card, the following control is possible.
(1) Vector control with speed sensor
(2) V/f control with speed sensor, torque vector control with speed sensor
(3) Pulse train input
(4) Master-follower operation
(5) Positioning control

## 11．22．15 PG Interface Card for Synchronous Motor with Sensor（OPC－PMPG2）

The PG interface card for synchronous motor with sensor（OPC－PMPG2）is equipped with a 5 V line driver output type 2 system pulse（YA，YB，YZ and U，V，W）input circuit，a wire break detection circuit（YZ－，U－，V－，W－phases can be canceled），and a PG（pulse generator）power supply output circuit．With this card，vector control with sensor is possible for synchronous motors with speed and magnetic pole position sensor．

## Applicable port

This interface card can be installed only in port $C$ of the three FRENIC－MEGA option connection ports（A，B，and C ports）．However，the B port space is also occupied when this card is installed，meaning that it is not possible to install any other option cards in the B port．

## PG interface specifications

Table 11．22－55

| Item |  |  |  |  |  |  | Specification |
| :--- | :--- | :--- | :---: | :---: | :---: | :---: | :---: |
| PG used | Output pulse count | 20 to 3000 P／R（Note 1） |  |  |  |  |  |
|  | Max．response frequency | 100 kHz |  |  |  |  |  |
|  | Pulse output method | Line driver method（26C31，26LS31 or equivalent） <br> SOURCE current +20 mA （max．） <br> SINK current－20 mA（max．） |  |  |  |  |  |
|  | Magnetic pole position <br> detection method | 3－bit code（U－，V－，W－phase）method |  |  |  |  |  |
|  | Max．wire length（Note 3） | 100 m |  |  |  |  |  |
| PG power supply | $+5 \mathrm{VDC} \pm 10 \% / 300 \mathrm{~mA}$ or less（Note 2） |  |  |  |  |  |  |

Note 1）The setting range is 20 to $60000 \mathrm{P} / \mathrm{R}$ ．
Note 2）If the total connected PG power supply current exceeds 300 mA ，use an external power supply．
Note 3）If PG power supply specifications are no longer satisfied due to the voltage drop that occurs when increasing the wire length，increase the cable diameter．A wire length and cable coil diameter guide is shown in Table 11．22－56．Or use an external power supply．

Table 11．22－56 Relationship between wire length and minimum connectable coil diameter

| PG power supply <br> specification | Wire length（m） |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | Up to 20 | Up to 30 | Up to 50 | Up to 75 | Up to 100 |
| $5 \mathrm{VDC} \pm 10 \%, 300 \mathrm{~mA}$ | AWG24 | AWG22 | AWG20 | AWG18 | AWG16 |
|  | $\left(0.25 \mathrm{~mm}^{2}\right)$ | $\left(0.34 \mathrm{~mm}^{2}\right)$ | $\left(0.50 \mathrm{~mm}^{2}\right)$ | $\left(0.75 \mathrm{~mm}^{2}\right)$ | $\left(1.25 \mathrm{~mm}^{2}\right)$ |

## Terminal function description

Table 11.22-57

| Terminal symbol | Terminal name | Function |
| :---: | :---: | :---: |
| [PI] | External power supply input terminal (Note 1) | Terminal for inputting external PG power supply +5 VDC $\pm 10 \%$ input (Note 2) <br> (Ensure that the connected power supply is equal to or greater than the PG power supply current consumption.) |
| [PO] | Internal power supply output terminal | Terminal for outputting external PG power supply +5 VDC $-0 \%$ to $+10 \% / 300 \mathrm{~mA}$ output $\mathrm{mm}^{2}$ |
| [CM] | Common terminal | PG power supply common terminal (Same electric potential as inverter unit terminal [CM]) |
| [YA] | YA (+) phase pulse input terminal | Terminal for inputting follower side pulse YA (+) phase signal |
| [*YA] | YA (-) phase pulse input terminal | Terminal for inputting follower side pulse YA (-) phase signal |
| [YB] | YB (+) phase pulse input terminal | Terminal for inputting follower side pulse YB (+) phase signal |
| [*YB] | YB (-) phase pulse input terminal | Terminal for inputting follower side pulse YB (-) phase signal |
| [YZ] | YZ (+) phase pulse input terminal | Terminal for inputting follower side pulse YZ (+) phase signal |
| [*YZ] | YZ (-) phase pulse input terminal | Terminal for inputting follower side pulse YZ (-) phase signal |
| [U] | $\mathrm{U}(+)$ phase pulse input terminal | Terminal for inputting magnetic pole position detection U-phase (+) signal |
| [*U] | U (-) phase pulse input terminal | Terminal for inputting magnetic pole position detection U-phase (-) signal |
| [V] | $V(+)$ phase pulse input terminal | Terminal for inputting magnetic pole position detection V-phase (+) signal |
| [*V] | V (-) phase pulse input terminal | Terminal for inputting magnetic pole position detection V-phase (-) signal |
| [W] | W (+) phase pulse input terminal | Terminal for inputting magnetic pole position detection W-phase (+) signal |
| [*W] | W (-) phase pulse input terminal | Terminal for inputting magnetic pole position detection W-phase (-) signal |

Note 1) If the total connected PG current consumption exceeds 300 mA , use an external power supply.
Note 2) Use an external power supply to match the allowable voltage range for the PG. Furthermore, adjust the external power supply voltage within the PI voltage range (upper limit $+10 \%$ ) taking the voltage drop caused by wiring impedance into consideration. Or use a wire with thicker coil diameter.

## 11．23 Multi－function Keypad（TP－A2SW）

Multi－function keypad TP－A2SW is equipped with an LCD screen with backlight，and displays data names and units in Japanese，English，and Chinese．This allows function codes and all internal data to be set and referenced in an easy－to－follow format．


## Specifications

| Item | Specification | Remarks |
| :---: | :---: | :---: |
| Available languages | Support for total of 19 languages including Japanese，English，and Chinese |  |
| Copy function | Possible to memorize or copy three function data sets． |  |
| USB interface | Type．Mini－B | FRENIC Loader support with Windows OS |
| Wireless communication | Bluetooth Ver．5．0 | FRENIC Mobile Loader support with Android OS |
| microSD card＊1 | SDHC standard（capacity：max． 32 GB ） | Traceback function |
| Coin battery＊${ }^{1}$ | CR2032 | Real－time clock function |
| Applicable inverter | FRENIC－MEGA（G2）series | Cannot be used for MEGA（G1）． |
| Connection cable | Conforming to ANSI／TIA／EIA568A Category 5 or higher（for 10BASE－T／100BASE－TX straight connection） | Option type：CB－5S，CB－3S，CB－1S |
| Cable length | 20 m （65 ft）or less |  |
| Connector | RJ－45 |  |
| Protective construction | Panel side：IP55，reverse side：IP20 |  |
| Weight | 135 g |  |

＊1：This is not built in as standard，and must be purchased separately．

## External drawings



## Panel cutting drawing



When using previous compatible panel cutting

mm (inch)

This chapter describes the inverter output ratings.

## Contents

12.1 Standard Specifications 1 (Basic Type) ..... 12-1
12.1.1 Three-phase 200 V series ..... 12-1
12.1.2 Three-phase 400 V series ..... 12-4
12.2 Standard Specifications 2 (Type with Built-in EMC Filter) ..... 12-8
12.2.1 Three-phase 400V series ..... 12-8
12.3 Common Specifications ..... 12-12

### 12.1 Standard Specifications 1 (Basic Type)

### 12.1.1 Three-phase 200V series

- HHD specification for High, Heavy Duty applications

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3)
If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR) (option).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*7) If using motors with output of 75 kW or higher, be sure to use a DC reactor (option).
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

HND specification for High, Normal Duty applications

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3)
If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR) (option).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*7) If using motors with output of 75 kW or higher, be sure to use a DC reactor (option).
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

### 12.1.2 Three-phase 400 V series

## - HHD specification for High, Heavy Duty applications

| Item |  |  | Specification |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type (FRN***G2S-4G) |  |  | 0002 | 0003 | 0004 | 0006 | 0009 | 0018 | 0023 | 0031 | 0038 | 0045 | 0060 | 0075 | 0091 | 0112 | 0150 |
| Standard applicable motor [kW (HP)] (*1) (rated output) |  |  | $\begin{gathered} 0.4 \\ (1 / 2) \end{gathered}$ | 0.75 <br> (1) | 1.5 <br> (2) | 2.2 <br> (3) | 3.7 <br> (5) | $\begin{gathered} 5.5 \\ (7.5) \end{gathered}$ | $\begin{aligned} & 7.5 \\ & (10) \end{aligned}$ | $\begin{gathered} 11 \\ (15) \end{gathered}$ | $\begin{gathered} 15 \\ (20) \end{gathered}$ | $\begin{aligned} & 18.5 \\ & (25) \end{aligned}$ | $\begin{gathered} 22 \\ (30) \end{gathered}$ | $\begin{gathered} 30 \\ (40) \end{gathered}$ | $\begin{gathered} 37 \\ (50) \end{gathered}$ | $\begin{gathered} 45 \\ (60) \end{gathered}$ | $\begin{gathered} 55 \\ (75) \end{gathered}$ |
|  | Rated capacity [kVA] (*2) |  | 1.1 | 1.9 | 3.2 | 4.5 | 6.8 | 10 | 14 | 18 | 24 | 29 | 34 | 45 | 57 | 69 | 85 |
|  | Rated voltage [V]$(* 3)$ |  | Three-phase 380 to 480 V (with AVR function) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated current [A] |  | 1.5 | 2.5 | 4.2 | 6.0 | 9.0 | 13.5 | 18.5 | 24.5 | 32 | 39 | 45 | 60 | 75 | 91 | 112 |
|  | Overload current rating |  | 150\% for 1 min, 200\% for 3.0 s |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Voltage, frequency |  | Three-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Permissible voltage, frequency fluctuation |  | Voltage: +10 to $-15 \%$ (interphase unbalance ratio: $2 \%$ or less) (*4) Frequency: +5 to -5\% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated input current [A] <br> (*8) | with <br> DCR | 0.85 | 1.6 | 3.0 | 4.5 | 7.5 | 10.6 | 14.4 | 21.1 | 28.8 | 35.5 | 42.2 | 57.0 | 68.5 | 83.2 | 102 |
|  |  | w/o <br> DCR | 1.7 | 3.1 | 5.9 | 8.2 | 13 | 17.3 | 23.2 | 33 | 43.8 | 52.3 | 60.6 | 77.9 | 94.3 | 114 | 140 |
|  | Required capacity (with DCR) [kVA] (*5) |  | 0.6 | 1.2 | 2.1 | 3.2 | 5.2 | 7.4 | 10 | 15 | 20 | 25 | 30 | 40 | 48 | 58 | 71 |
|  | Torque [\%] (*6) |  | 150\% |  | 100\% |  |  |  |  | 20\% |  |  |  | 10 to 15\% |  |  |  |
|  | Braking transistor |  | Built-in |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Minimum connectable resistance value [ $\Omega$ ] |  | 200 |  | 160 |  | 96 | 64 | 48 | 32 | 24 | 16 |  | 10 | 9.0 | 8.0 | 6.5 |
|  | Built-in braking resistor [ $\Omega$ ] |  | 720 | 470 | 160 |  |  | 80 |  | - |  |  |  |  |  |  |  |
|  | Braking time [s] |  | 5 s |  |  |  |  |  |  | - |  |  |  |  |  |  |  |
|  | Duty cycle [\%ED] |  | 5 | 3 | 5 | 3 | 2 | 3 | 2 | - |  |  |  |  |  |  |  |
| DC reactor (DCR) |  |  | Option |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Applicable safety standards |  |  | UL61800-5-1, C22.2 No.274-17, IEC/EN 61800-5-1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Protective construction (IEC 60529) |  |  | Enclosed IP20 type, UL open type |  |  |  |  |  |  |  |  |  |  | IP00, UL open type <br> IP55 at external side when external cooling installed |  |  |  |
| Cooling system |  |  | Natural cooling |  |  | Fan cooling |  |  |  |  |  |  |  |  |  |  |  |
| Weight [kg (lbs)] |  |  | $\begin{gathered} 1.7 \\ (3.7) \end{gathered}$ | $\begin{gathered} 2.0 \\ (4.3) \end{gathered}$ | $\begin{gathered} 2.6 \\ (5.8) \end{gathered}$ | $\begin{gathered} 2.9 \\ (6.4) \end{gathered}$ | $\begin{gathered} 3.0 \\ (6.6) \end{gathered}$ | $\begin{gathered} 5.9 \\ (13) \end{gathered}$ | $\begin{gathered} 6.0 \\ (13) \end{gathered}$ | $\begin{gathered} 5.7 \\ (13) \end{gathered}$ | $\begin{gathered} 10 \\ (23) \end{gathered}$ | 11 (23) | $\begin{gathered} 11 \\ (23) \end{gathered}$ | $\begin{gathered} 23 \\ (51) \end{gathered}$ | $\begin{gathered} 23 \\ (51) \end{gathered}$ | $\begin{gathered} 28 \\ (62) \end{gathered}$ | $\begin{gathered} 31 \\ (68) \end{gathered}$ |

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3)
If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR) (option).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

| Item |  |  | Specification |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type (FRN***G2S-4G) |  |  | 0180 | 0216 | 0260 | 0325 | 0377 | 0432 | 0520 | 0650 | 0740 | 0960 | 1040 | 1170 | 1386 |
| Standard applicable motor [kW (HP)] (*1) <br> (rated output) |  |  | $\begin{gathered} 75 \\ (100) \end{gathered}$ | $\begin{gathered} 90 \\ (125) \end{gathered}$ | $\begin{gathered} 110 \\ (150) \end{gathered}$ | $\begin{gathered} 132 \\ (200) \end{gathered}$ | $\begin{gathered} 160 \\ (250) \end{gathered}$ | $\begin{gathered} 200 \\ (300) \end{gathered}$ | $\begin{gathered} 220 \\ (350) \end{gathered}$ | $\begin{gathered} 280 \\ (400) \end{gathered}$ | $\begin{gathered} 315 \\ (450) \end{gathered}$ | $\begin{gathered} 355 \\ (500) \end{gathered}$ | $\begin{gathered} 400 \\ (600) \end{gathered}$ | $\begin{gathered} 500 \\ (800) \end{gathered}$ | $\begin{gathered} 630 \\ (900) \end{gathered}$ |
|  | Rated capac (*2) | $[\mathrm{kVA}]$ | 114 | 137 | 164 | 198 | 247 | 287 | 329 | 396 | 445 | 495 | 563 | 731 | 891 |
|  | Rated voltage [V] (*3) |  | Three-phase 380 to 480 V (with AVR function) |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated curren |  | 150 | 180 | 216 | 260 | 325 | 377 | 432 | 520 | 585 | 650 | 740 | 960 | 1170 |
|  | Overload current rating |  | 150\% for $1 \mathrm{~min}, 200 \%$ for 3.0 s |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Voltage, frequency |  | Three-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Permissible voltage, frequency fluctuation |  | Voltage: +10 to -15\% (interphase unbalance ratio: 2\% or less) (*4) Frequency: +5 to $-5 \%$ |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated input current [A] (*8) | with DCR | 138 | 164 | 201 | 238 | 286 | 357 | 390 | 500 | 559 | 628 | 705 | 881 | 1115 |
|  | Required capacity (with DCR) [kVA] (*5) |  | 96 | 114 | 140 | 165 | 199 | 248 | 271 | 347 | 388 | 436 | 489 | 611 | 773 |
|  | Braking torque [\%](*6) |  | 10 to 15\% |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Braking transistor |  | Builtin | - |  |  |  |  |  |  |  |  |  |  |  |
|  | Minimum connectable resistance value [ $\Omega$ ] |  | 4.7 | - |  |  |  |  |  |  |  |  |  |  |  |
|  | Built-in braking resistor |  | - |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Duty cycle | \%ED] | - |  |  |  |  |  |  |  |  |  |  |  |  |
| DC reactor (DCR) |  |  | Option (*7) |  |  |  |  |  |  |  |  |  |  |  |  |
| Applicable safety standards |  |  | UL61800-5-1, C22.2 No.274-17, IEC/EN 61800-5-1 |  |  |  |  |  |  |  |  |  |  |  |  |
| Protective construction (IEC 60529) |  |  | IP00, UL open type <br> IP55 at external side when external cooling installed |  |  |  |  |  |  |  |  |  |  |  |  |
| Cooling system |  |  | Fan cooling |  |  |  |  |  |  |  |  |  |  |  |  |
| Weight [kg (lbs)] |  |  | $\begin{gathered} 38 \\ (84) \end{gathered}$ | $\begin{gathered} 60 \\ (132) \end{gathered}$ | $\begin{gathered} 60 \\ (132) \end{gathered}$ | $\begin{gathered} 89 \\ (196) \end{gathered}$ | $\begin{gathered} 89 \\ (196) \end{gathered}$ | $\begin{gathered} 116 \\ (256) \end{gathered}$ | $\begin{gathered} 124 \\ (273) \end{gathered}$ | $\begin{gathered} 221 \\ (487) \end{gathered}$ | $\begin{gathered} 221 \\ (487) \end{gathered}$ | $\begin{gathered} 291 \\ (642) \end{gathered}$ | $\begin{gathered} 295 \\ (650) \end{gathered}$ | $\begin{gathered} 450 \\ (992) \end{gathered}$ | $\begin{gathered} 450 \\ (992) \end{gathered}$ |

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3)
If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR) (option).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*7) If using motors with output of 75 kW or higher, be sure to use a DC reactor (option).
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

HND specification for High, Normal Duty applications

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3)
If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR) (option).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*7) If using motors with output of 75 kW or higher, be sure to use a DC reactor (option).
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

| Item |  |  | Specification |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type (FRN***G2S-4G) |  |  | 0216 | 0260 | 0325 | 0377 | 0432 | 0520 | 0650 | 0740 | 0960 | 1040 | 1170 | 1386 |
| Standard applicable motor [kW (HP)] (*1) <br> (rated output) |  |  | $\begin{gathered} 110 \\ (150) \end{gathered}$ | $\begin{gathered} 132 \\ (200) \end{gathered}$ | $\begin{gathered} 160 \\ (250) \end{gathered}$ | $\begin{gathered} 200 \\ (300) \end{gathered}$ | $\begin{gathered} 220 \\ (350) \end{gathered}$ | $\begin{gathered} 280 \\ (400) \end{gathered}$ | $\begin{gathered} 355 \\ (500) \end{gathered}$ | $\begin{gathered} 400 \\ (600) \end{gathered}$ | $\begin{gathered} 500 \\ (700) \end{gathered}$ | $\begin{gathered} 560 \\ (800) \end{gathered}$ | $\begin{gathered} 630 \\ (900) \end{gathered}$ | $\begin{gathered} 710 \\ (1000) \end{gathered}$ |
|  | Rated capac (*2) | $[\mathrm{kVA}]$ | 164 | 198 | 247 | 287 | 329 | 396 | 495 | 563 | 731 | 792 | 891 | 1056 |
|  | Rated voltage [V] (*3) |  | Three-phase 380 to 480 V (with AVR function) |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated curren |  | 216 | 260 | 325 | 377 | 432 | 520 | 650 | 740 | 960 | 1040 | 1170 | 1386 |
|  | Overload current rating |  | 120\% |  |  |  |  |  |  |  |  |  |  |  |
|  | Voltage, frequency |  | Three-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |
|  | Permissible voltage, frequency fluctuation |  | Voltage: +10 to -15\% (interphase unbalance ratio: 2\% or less) (*4) Frequency: +5 to -5\% |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated input current [A] (*8) | with DCR | 201 | 238 | 286 | 357 | 390 | 500 | 628 | 705 | 881 | 990 | 1115 | 1256 |
|  | Required capacity (with DCR) [kVA] (*5) |  | 140 | 165 | 199 | 248 | 271 | 347 | 436 | 489 | 611 | 686 | 773 | 871 |
|  | Braking torque [\%] (*6) |  | 7 to 12\% |  |  |  |  |  |  |  |  |  |  |  |
|  | Braking transistor |  | - |  |  |  |  |  |  |  |  |  |  |  |
|  | Built-in braking resistor |  | - |  |  |  |  |  |  |  |  |  |  |  |
|  | Duty cy | [\%ED] | - |  |  |  |  |  |  |  |  |  |  |  |
| DC reactor (DCR) |  |  | Option (*7) |  |  |  |  |  |  |  |  |  |  |  |
| Applicable safety standards |  |  | UL61800-5-1, C22.2 No.274-17, IEC/EN 61800-5-1 |  |  |  |  |  |  |  |  |  |  |  |
| Protective construction (IEC 60529) |  |  | IP00, UL open type <br> IP55 at external side when external cooling installed |  |  |  |  |  |  |  |  |  |  |  |
| Cooling system |  |  | Fan cooling |  |  |  |  |  |  |  |  |  |  |  |
| Weight [kg (lbs)] |  |  | $\begin{gathered} 60 \\ (132) \end{gathered}$ | $\begin{gathered} 60 \\ (132) \end{gathered}$ | $\begin{gathered} 89 \\ (196) \end{gathered}$ | $\begin{gathered} 89 \\ (196) \end{gathered}$ | $\begin{gathered} 116 \\ (256) \end{gathered}$ | $\begin{gathered} 124 \\ (273) \end{gathered}$ | $\begin{gathered} 221 \\ (487) \end{gathered}$ | $\begin{gathered} 221 \\ (487) \end{gathered}$ | $\begin{gathered} 291 \\ (642) \end{gathered}$ | $\begin{gathered} 295 \\ (650) \end{gathered}$ | $\begin{gathered} 450 \\ (992) \end{gathered}$ | $\begin{gathered} 450 \\ (992) \end{gathered}$ |

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3)
If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR) (option).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*7) If using motors with output of 75 kW or higher, be sure to use a DC reactor (option).
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

### 12.2 Standard Specifications 2 (Type with Built-in EMC Filter)

### 12.2.1 Three-phase 400V series

## - HHD specification for High, Heavy Duty applications

| Item |  |  | Specification |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type (FRN***G2E-4G) |  |  | 0002 | 0003 | 0004 | 0006 | 0009 | 0018 | 0023 | 0031 | 0038 | 0045 | 0060 | 0075 | 0091 | 0112 | 0150 |
| Standard applicable motor [kW (HP)] (*1) <br> (rated output) |  |  | $\begin{gathered} 0.4 \\ (1 / 2) \end{gathered}$ | $\begin{gathered} 0.75 \\ (1) \end{gathered}$ | 1.5 <br> (2) | $\begin{aligned} & 2.2 \\ & (3) \end{aligned}$ | $\begin{aligned} & 3.7 \\ & \text { (5) } \end{aligned}$ | $\begin{gathered} 5.5 \\ (7.5) \end{gathered}$ | $\begin{gathered} 7.5 \\ (10) \end{gathered}$ | $\begin{gathered} 11 \\ (15) \end{gathered}$ | $\begin{gathered} 15 \\ (20) \end{gathered}$ | $\begin{aligned} & 18.5 \\ & (25) \end{aligned}$ | $\begin{gathered} 22 \\ (30) \end{gathered}$ | $\begin{gathered} 30 \\ (40) \end{gathered}$ | $\begin{gathered} 37 \\ (50) \end{gathered}$ | $\begin{gathered} 45 \\ (60) \end{gathered}$ | $\begin{gathered} 55 \\ (75) \end{gathered}$ |
|  | Rated capacity [kVA](*2) |  | 1.1 | 1.9 | 3.2 | 4.5 | 6.8 | 10 | 14 | 18 | 24 | 29 | 34 | 45 | 57 | 69 | 85 |
|  | Rated voltage [V] (*3) |  | Three-phase 380 to 480 V (with AVR function) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated current [A] |  | 1.5 | 2.5 | 4.2 | 6.0 | 9.0 | 13.5 | 18.5 | 24.5 | 32 | 39 | 45 | 60 | 75 | 91 | 112 |
|  | Overload current rating |  | 150\% for $1 \mathrm{~min}, 200 \%$ for 3.0 s |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Voltage, frequency |  | Three-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Permissible voltage, frequency fluctuation |  | Voltage: +10 to $-15 \%$ (interphase unbalance ratio: $2 \%$ or less) (*4) Frequency: +5 to -5\% |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated input current [A] (*8) | with <br> DCR | 0.85 | 1.6 | 3.0 | 4.5 | 7.5 | 10.6 | 14.4 | 21.1 | 28.8 | 35.5 | 42.2 | 57.0 | 68.5 | 83.2 | 102 |
|  |  | w/o DCR | 1.7 | 3.1 | 5.9 | 8.2 | 13 | 17.3 | 23.2 | 33 | 43.8 | 52.3 | 60.6 | 77.9 | 94.3 | 114 | 140 |
|  | Required capacity (with DCR) [kVA] (*5) |  | 0.6 | 1.2 | 2.1 | 3.2 | 5.2 | 7.4 | 10 | 15 | 20 | 25 | 30 | 40 | 48 | 58 | 71 |
| $\begin{aligned} & \text { O } \\ & . \frac{\bar{y}}{\overline{0}} \\ & \stackrel{\rightharpoonup}{0} \end{aligned}$ | Braking torque [\%] (*6) |  | 150\% |  | 100\% |  |  |  |  | 20\% |  |  | 10 to 15\% |  |  |  |  |
|  | Braking transistor |  | Built-in |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
|  | Minimum connectable resistance value [ $\Omega$ ] |  | 200 |  | 160 |  | 96 | 64 | 48 | 32 | 24 | 16 |  | 10 | 9.0 | 8.0 | 6.5 |
|  | Built-in braking resistor$[\Omega]$ |  | 720 | 470 | 160 |  |  | 80 |  | - |  |  |  |  |  |  |  |
|  | Braking time [s] |  | 5 s |  |  |  |  |  |  | - |  |  |  |  |  |  |  |
|  | Duty cycle [\%ED] |  | 5 | 3 | 5 | 3 | 2 | 3 | 2 | - |  |  |  |  |  |  |  |
| EMC filter |  |  | Complying EMC standard on emissions and immunity: Category C3 (2nd Env.) (IEC61800-3) |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| DC reactor (DCR) |  |  | Option |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Applicable safety standards |  |  | UL61800-5-1, C22.2 No.274-17, IEC/EN 61800-5-1 |  |  |  |  |  |  |  |  |  |  |  |  |  |  |
| Protective construction (IEC60529) |  |  | Enclosed IP20 type, UL open type |  |  |  |  |  |  |  |  |  |  | IP00, UL open type IP55 at external side when external cooling installed |  |  |  |
| Cooling system |  |  | Natural cooling |  |  |  | Fan cooling |  |  |  |  |  |  |  |  |  |  |
| Weight [kg (lbs)] |  |  | $\begin{gathered} 1.8 \\ (3.9) \end{gathered}$ | $\begin{gathered} 2.1 \\ (4.5) \end{gathered}$ | $\begin{gathered} 2.8 \\ (6.1) \end{gathered}$ | $\begin{gathered} 3.1 \\ (6.8) \end{gathered}$ | $\begin{gathered} 3.2 \\ (6.9) \end{gathered}$ | $\begin{gathered} 6.6 \\ (15) \end{gathered}$ | $\begin{gathered} 6.6 \\ (15) \end{gathered}$ | $\begin{gathered} 6.4 \\ (14) \end{gathered}$ | $\begin{gathered} 11 \\ (25) \end{gathered}$ | $\begin{gathered} 11 \\ (25) \end{gathered}$ | $\begin{gathered} 12 \\ (25) \end{gathered}$ | $\begin{gathered} 23 \\ (51) \end{gathered}$ | $\begin{gathered} 23 \\ (51) \end{gathered}$ | $\begin{gathered} 30 \\ (66) \end{gathered}$ | $\begin{gathered} 31 \\ (68) \end{gathered}$ |

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3)
If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3) If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*7) If using motors with output of 75 kW or higher, be sure to use a DC reactor (option).
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

HND specification for High, Normal Duty applications

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3)
If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR) (option).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*7) If using motors with output of 75 kW or higher, be sure to use a DC reactor (option).
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

| Item |  |  | Specification |  |  |  |  |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Type (FRN*** ${ }^{*}$ E-4G) |  |  | 0216 | 0260 | 0325 | 0377 | 0432 | 0520 | 0650 | 0740 | 0960 | 1040 | 1170 | 1386 |
| Standard applicable motor [kW (HP)] (*1) (rated output) |  |  | $\begin{gathered} 110 \\ (150) \end{gathered}$ | $\begin{gathered} 132 \\ (200) \end{gathered}$ | $\begin{gathered} 160 \\ (250) \end{gathered}$ | $\begin{gathered} 200 \\ (300) \end{gathered}$ | $\begin{gathered} 220 \\ (350) \end{gathered}$ | $\begin{gathered} 280 \\ (400) \end{gathered}$ | $\begin{gathered} 355 \\ (500) \end{gathered}$ | $\begin{gathered} 400 \\ (600) \end{gathered}$ | $\begin{gathered} 500 \\ (700) \end{gathered}$ | $\begin{gathered} 560 \\ (800) \end{gathered}$ | $\begin{gathered} 630 \\ (900) \end{gathered}$ | $\begin{gathered} 710 \\ (1000) \end{gathered}$ |
|  | Rated capac (*2) | ty [kVA] | 164 | 198 | 247 | 287 | 329 | 396 | 495 | 563 | 731 | 792 | 891 | 1056 |
|  | Rated voltage [V] (*3) |  | Three-phase 380 to 480 V (with AVR function) |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated current [A] |  | 216 | 260 | 325 | 377 | 432 | 520 | 650 | 740 | 960 | 1040 | 1170 | 1386 |
|  | Overload current rating |  | 120\% for 1 min |  |  |  |  |  |  |  |  |  |  |  |
|  | Voltage, frequency |  | Three-phase 380 to $480 \mathrm{~V}, 50 / 60 \mathrm{~Hz}$ |  |  |  |  |  |  |  |  |  |  |  |
|  | Permissible voltage, frequency fluctuation |  | Voltage: +10 to -15\% (interphase unbalance ratio: $2 \%$ or less) (*4) Frequency: +5 to -5\% |  |  |  |  |  |  |  |  |  |  |  |
|  | Rated input current [A] <br> (*8) | with DCR | 201 | 238 | 286 | 357 | 390 | 500 | 628 | 705 | 881 | 990 | 1115 | 1256 |
|  | Required capacity (with DCR) [kVA] (*5) |  | 140 | 165 | 199 | 248 | 271 | 347 | 436 | 489 | 611 | 686 | 773 | 871 |
|  | Braking torque [\%](*6) |  | 7 to 12\% |  |  |  |  |  |  |  |  |  |  |  |
|  | Braking transistor |  | - |  |  |  |  |  |  |  |  |  |  |  |
|  | Built-in braking resistor |  | - |  |  |  |  |  |  |  |  |  |  |  |
|  | Duty cy [\%ED] |  | - |  |  |  |  |  |  |  |  |  |  |  |
| EMC filter |  |  | Complying EMC standard on emissions and immunity: Category C3 (2nd Env.) (IEC61800-3) |  |  |  |  |  |  |  |  |  |  |  |
| DC reactor (DCR) |  |  | Option (*7) |  |  |  |  |  |  |  |  |  |  |  |
| Applicable safety standards |  |  | UL61800-5-1, C22.2 No.274-17, IEC/EN 61800-5-1 |  |  |  |  |  |  |  |  |  |  |  |
| Protective construction (IEC 60529) |  |  | IP00, UL open type <br> IP55 at external side when external cooling installed |  |  |  |  |  |  |  |  |  |  |  |
| Cooling system |  |  | Fan cooling |  |  |  |  |  |  |  |  |  |  |  |
| Weight [kg (lbs)] |  |  | $\begin{gathered} 60 \\ (132) \end{gathered}$ | $\begin{gathered} 60 \\ (132) \end{gathered}$ | $\begin{gathered} 89 \\ (196) \end{gathered}$ | $\begin{gathered} 89 \\ (196) \end{gathered}$ | $\begin{gathered} 116 \\ (256) \end{gathered}$ | $\begin{gathered} 124 \\ (273) \end{gathered}$ | $\begin{gathered} 221 \\ (487) \end{gathered}$ | $\begin{gathered} 221 \\ (487) \end{gathered}$ | $\begin{gathered} 291 \\ (642) \end{gathered}$ | $\begin{gathered} 295 \\ (650) \end{gathered}$ | $\begin{gathered} 450 \\ (992) \end{gathered}$ | $\begin{gathered} 450 \\ (992) \end{gathered}$ |

(*1) Fuji 4-pole standard motor
(*2) The rated capacity indicates 220 V for the 200 V series, and 440 V for the 400 V series.
(*3) It is not possible to output a voltage higher than the power supply voltage.
(*4) Interphase unbalance ratio (\%) = Max. voltage [V] - min. voltage [V] / Three-phase average voltage [V] x 67 (See IEC/EN 61800-3)
If using the motor with an unbalance ratio of 2 to $3 \%$, use an AC reactor (ACR: option).
(*5) This indicates the capacity when the motor is equipped with a DC reactor (DCR) (option).
(*6) This is the average braking torque value for the motor on its own. (This will vary based on the motor efficiency.)
(*7) If using motors with output of 75 kW or higher, be sure to use a DC reactor (option).
(*8) This specification is an estimated value to be applied when the power supply capacity is 500 kVA (Inverter capacity $\times 10$ when the capacity exceeds 50 kVA ) and the power supply with $\% \mathrm{X}=5 \%$ is connected.

### 12.3 Common Specifications

Table 12.3-1

| Item |  |  | Explanation |  | Remarks |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Maximum output frequency | 5 to 599 Hz variable setting |  |  |
|  |  | Base frequency | 5 to 599 Hz variable setting (in conjunction with maximum output frequency) |  |  |
|  |  | Number of motor poles setting | 2 to 128 poles |  |  |
|  |  | Starting frequency | 0.1 to 60.0 Hz variable setting ( 0.0 Hz when performing speed sensorless vector control/vector control with speed sensor) |  |  |
|  |  | Carrier frequency | $\cdot 0.75$ to 16 kHz variable setting <br> (HHD specification: FRN0003G2S-2G to FRN0288G2S-2G/ <br> FRN0002G2』-4G to FRNO150G2■-4G) <br> (HND specification: FRN0032G2S-2G to FRN0088G2S-2G/ <br> FRN0018G2■-4G to FRN0045G2■-4G) <br> $\cdot 0.75$ to 10 kHz variable setting <br> (HHD specification: FRN0346G2S-2G to FRN0432G2S-2G/ <br> FRN0180G2■-4G to FRN1386G2■-4G) <br> (HND specification: FRN0115G2S-2G to FRN0288G2S-2G/ <br> FRN0060G2■-4G to FRN0150G2■-4G) <br> - 0.75 to 6 kHz variable setting <br> (HND specification: FRN0346G2S-2G to FRN0432G2S-2G/ <br> FRN0180G2■-4G to FRN1386G2■-4G) <br> Note: The carrier frequency may automatically lower depending upon the ambient temperature or the output current to protect the inverter. (The automatic lowering function can be disabled.) |  |  |
|  | Output frequency accuracy |  | Analog setting: $\pm 0.2 \%$ of maximum output frequency $\text { (at } 25 \pm 10^{\circ} \mathrm{C} \text { ) }\left(77 \pm 18^{\circ} \mathrm{F}\right)$ <br> Keypad setting: $\pm 0.01 \%$ of maximum output frequency (at -10 to $+50^{\circ} \mathrm{C}$ ) ( 14 to $122^{\circ} \mathrm{F}$ ) |  |  |
|  | Frequency setting resolution |  | - Analog setting: $1 / 3000$ of maximum output frequency <br> - Keypad setting: 0.01 Hz <br> - Link setting: 1/20000 of maximum output frequency or 0.01 Hz (fixed) |  |  |
|  |  | When performing V/f control with sensor (*1) <br> When performing dynamic torque vector control with sensor (*2) | Speed control range | - 1:20 (*1) (Minimum speed: Nominal speed) <br> - 1:200 (*2) (Minimum speed: Nominal speed) <br> - 1:2 (fixed torque area: fixed output area) |  |
|  |  |  | Speed control accuracy | Analog setting: $\pm 0.2 \%$ of maximum output frequency or below (at $\left.25 \pm 10^{\circ} \mathrm{C}\right)\left(77 \pm 18{ }^{\circ} \mathrm{F}\right.$ ) <br> - Digital setting: $\pm 0.01 \%$ of maximum output frequency or below (at -10 to $\left.+50^{\circ} \mathrm{C}\right)\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ |  |


| Item |  | Explanation |  | Remarks |
| :---: | :---: | :---: | :---: | :---: |
|  | When performing sensorless vector control | Speed control range | 1：200 <br> （Minimum speed：Nominal speed，4P， 7.5 to $1500 \mathrm{r} / \mathrm{min}$ ） <br> 1：2（fixed torque area ：fixed output area） |  |
|  |  | Speed control accuracy | －Analog setting：$\pm 0.5 \%$ of nominal speed or below （at $\left.25 \pm 10^{\circ} \mathrm{C}\right)\left(77 \pm 18{ }^{\circ} \mathrm{F}\right)$ <br> Digital setting：$\pm 0.5 \%$ of nominal speed or below （at -10 to $+50^{\circ} \mathrm{C}$ ）$\left(14\right.$ to $122^{\circ} \mathrm{F}$ ） |  |
|  | When performing vector control with sensor | Speed control range | $\cdot 1: 1500$ <br> （Minimum speed：Nominal speed，4P， 1 to $1500 \mathrm{r} / \mathrm{min}$ ） －1：16（fixed torque area ：fixed output area） |  |
|  |  | Speed control accuracy | Analog setting：$\pm 0.2 \%$ of maximum output frequency or below（at $\left.25 \pm 10^{\circ} \mathrm{C}\right)\left(77 \pm 18{ }^{\circ} \mathrm{F}\right)$ <br> －Digital setting：$\pm 0.01 \%$ of maximum output frequency or below（at -10 to $\left.+50^{\circ} \mathrm{C}\right)\left(14\right.$ to $\left.122^{\circ} \mathrm{F}\right)$ |  |
|  | When performing sensorless vector control | Speed control range | －1：10 <br> （Minimum speed：Nominal speed，6P， 180 to $1800 \mathrm{r} / \mathrm{min}$ ） －1：2（fixed torque area ：fixed output area） |  |
|  |  | Speed control accuracy | －Analog setting：$\pm 0.5 \%$ of nominal speed or below （at $\left.25 \pm 10^{\circ} \mathrm{C}\right)\left(77 \pm 18{ }^{\circ} \mathrm{F}\right)$ <br> Digital setting：$\pm 0.5 \%$ of nominal speed or below （at -10 to $+50^{\circ} \mathrm{C}$ ）$\left(14\right.$ to $122^{\circ} \mathrm{F}$ ） |  |
|  | When performing vector control with sensor | Speed control range | $\cdot 1: 1500$ <br> （Minimum speed：Nominal speed，4P， 1 to $1500 \mathrm{r} / \mathrm{min}$ ） <br> －1：2（fixed torque area ：fixed output area） |  |
|  |  | Speed control accuracy | －Analog setting：$\pm 0.2 \%$ of maximum output frequency $\text { (at } 25 \pm 10^{\circ} \mathrm{C} \text { ) }\left(77 \pm 18^{\circ} \mathrm{F}\right)$ <br> Digital setting：$\pm 0.01 \%$ of maximum output frequency （at -10 to $+50^{\circ} \mathrm{C}$ ）$\left(14\right.$ to $122^{\circ} \mathrm{F}$ ） |  |
| $\overline{0}$00 | Control method | －V／f control <br> －Dynamic torque vector control <br> －V／f control with sensor， dynamic torque vector control with sensor <br> －Sensorless vector control <br> －Vector control with sensor <br> －Sensorless vector control（synchronous motors） <br> －Vector control with sensor（synchronous motors） |  |  |
|  | Voltage／frequency characteristics | $200 \mathrm{~V}$ series | －The base frequency and maximum output frequency are common，and the voltage can be set between 80 and 240 V ． <br> －AVR control can be turned ON or OFF． <br> －Non－linear V／f setting（3 points）：The desired voltage（0 to 240 V）and frequency（ 0 to 599 Hz ）can be set． |  |
|  |  | $\begin{aligned} & 400 \mathrm{~V} \\ & \text { series } \end{aligned}$ | －The base frequency and maximum output frequency are common，and the voltage can be set between 160 and 500 V ． <br> －AVR control can be turned ON or OFF． <br> －Non－linear V／f setting（3 points）：The desired voltage（0 to 500 $V$ ）and frequency（ 0 to 599 Hz ）can be set． |  |

Table 12.3-2

|  | Item | Explanation | Remarks |
| :---: | :---: | :---: | :---: |
|  | Torque boost | - Auto torque boost (for constant torque load) <br> - Manual torque boost: The desired torque boost value (0.0 to 20.0\%) can be set. <br> - The applicable load can be selected (for constant torque load, quadratic-torque load) |  |
|  | Starting torque (HHD specification) | FRN0115G2S-2G/FRN0060G2■-4G or below 200\% or higher, <br> FRN0145G2S-2G/FRN0075G2■-4G or above $180 \%$ or higher <br> set frequency: 0.3 Hz , when performing V/f control (base frequency: 50 Hz , slip compensation/auto torque boost) |  |
|  | Running, operation | Key operation: Start and stop with and and keys (standard keypad) Start and stop with em, and soop keys (optional multi-function keypad) |  |
|  |  | External signals: Forward (reverse) rotation, start/stop commands (capable of 3 -wire operation), (digital input) coast to stop command, external alarm, alarm reset, etc. |  |
|  |  | Link operation: Operation through RS-485, field bus communication (option) |  |
|  |  | Run command switching: Remote/local switching, link switching |  |
|  | Frequency setting | Keypad operation: Using $\odot$ and $\odot$ keys |  |
|  |  | External potentiometer: Using external frequency command potentiometer (external resistor of 1 to $5 \mathrm{k} \Omega$, 1/2 W) |  |
|  |  | Analog input: Voltage input (terminal [12], [V2], [C1] (V3 function)) <br>  0 to $\pm 10 \mathrm{VDC}( \pm 5 \mathrm{VDC}) / 0$ to $\pm 100 \%$ <br>  0 to $+10 \mathrm{VDC} \mathrm{(+5VDC)/0} \mathrm{to} \mathrm{+100} \mathrm{\%}$ <br>  $(+1$ to +5 VDC can also be adjusted with bias, analog <br>  input gain) <br>  Voltage input (terminal [C1] (C1 function)) <br>  4 to $20 \mathrm{~mA} \mathrm{DC/O}$ to $100 \%, 0$ to $20 \mathrm{~mA} \mathrm{DC/} / 0$ to $100 \%$ <br>  4 to $20 \mathrm{~mA} \mathrm{DC/}-100$ to $+100 \%, 0$ to $20 \mathrm{~mA} \mathrm{DC/} /-100$ to <br>  $+100 \%$ |  |
|  |  | UP/DOWN operation: Frequency can be increased or decreased while the digital input signal is ON. The frequency is cleared with digital input "STZ". |  |
|  |  | Multistep frequency selection: Selectable from 16 different frequencies (step 0 to 15) |  |
|  |  | Pattern operation: The inverter runs automatically according to the previously specified run time, rotation direction, acceleration/deceleration time and reference frequency. Up to 7 stages can be specified. |  |
|  |  | Link operation: Setting through RS-485, field bus communication (option) (built in as standard) |  |
|  |  | Frequency setting switching: Two types of frequency settings can be switched with an external signal (digital input). <br> Remote/local switching, link switching |  |
|  |  | Auxiliary frequency setting: Can be selected by adding and entering the respective terminal [12], [C1], or [V2] inputs. |  |
|  |  | Operation at a specified ratio: The ratio can be set with an analog input signal. |  |


|  | Item | Explanation | Remarks |
| :---: | :---: | :---: | :---: |
|  | Frequency setting | Inverse operation: Can be switched from "0 to $+10 \mathrm{VDC} / 0$ to $100 \%$ " to "-10 to 0 VDC/0 to $100 \%$ " from an external source. <br> Can be switched from " 4 to $20 \mathrm{~mA} \mathrm{DC/0} \mathrm{to} 100 \%$ " to " 20 to $4 \mathrm{mADC} / 0$ to $100 \%$ " from an external source. <br> Can be switched from " 0 to $20 \mathrm{mADC} / 0$ to $100 \%$ " to " 20 to $0 \mathrm{~mA} \mathrm{DC/0}$ to $100 \%$ " from an external source. |  |
|  |  | Pulse train input : Pulse input = terminal [X6], [X7], <br> (standard) forward/reverse pulse, pulse + rotation direction <br> Complementary output: Max. 100 kHz <br> Open collector output: Max. 30 kHz |  |
|  |  | Pulse train input: PG interface option, forward/reverse pulse, (option) pulse + rotation direction Complementary output: Max. 100 kHz Open collector output: Max. 30 kHz |  |
|  | Acceleration/deceler ation time | Setting range: Setting range from 0.00 to 6000 s |  |
|  |  | Switching: The four types of acceleration/deceleration time can be set or selected individually (switchable during operation). |  |
|  |  | Acceleration/deceleration pattern: <br> Linear acceleration/Deceleration, S-curve acceleration/deceleration (week, random (weak)), curve line acceleration/deceleration (max. acceleration/deceleration at rated output) |  |
|  |  | Deceleration mode (coast to stop): <br> Shutoff of the run command lets the motor coast to a stop. |  |
|  |  | Forcible stop deceleration time: Deceleration stop in exclusive deceleration time by forced stop (STOP). |  |
|  |  | JOG dedicated acceleration/deceleration time |  |
|  |  | Acceleration/deceleration time is changed to 0 with acceleration/deceleration operation cancel "BPS". |  |

Table 12.3-3

| Item | Explanation | Remarks |
| :---: | :---: | :---: |
| Frequency limiter (upper limit and lower limit frequencies) | - Specifies the upper and lower frequencies in Hz . <br> Processing can be selected when the reference frequency is less than the lower limit (F16). (The output frequency will be maintained at the lower limit/motor decelerates and stops.) <br> Setting is possible with analog input terminals [12], [C1] (C1 function, V3 function) and [V2]. |  |
| Frequency/PID command bias | Bias of reference frequency and PID command can be independently set (setting range: 0 to $\pm 100 \%$ ). |  |
| Analog input | - Gain: Setting range from 0 to $400 \%$ <br> - Offset: Setting range from -5.0 to $+5.0 \%$ <br> - Filter: Setting range from 0.00 to 5.00 s |  |
| Jump frequency | Six operation points and their common jump width ( 0 to 30.0 Hz ) can be set. |  |
| Ready for jogging | Operation with Rum key (standard keypad), ©o or Rev keys (multi-function keypad), or digital contact inputs "FWD" or "REV" (Exclusive acceleration/deceleration time setting, exclusive frequency setting) |  |
| Restart mode after momentary power failure | - Trip immediately: Trip immediately at the time of power failure. <br> - Trip after recovery from power failure: <br> Coast to a stop at the time of power failure and trip when the power is recovered. <br> - Trip after decelerate-to-stop: <br> Deceleration stop at power failure, and trip after stoppage <br> - Continue to run: Operation is continued using the load inertia energy. <br> - Start at the frequency selected before momentary power failure: <br> Free run at power failure and start after power recovery at the frequency selected before momentary stop. <br> - Start at starting frequency: <br> Free run at power failure and start at the starting frequency after power recovery. |  |
| Hardware current limiter | Limits the current by hardware to prevent an overcurrent trip from being caused by fast load variation or momentary power failure, which cannot be covered by the software current limiter. This limiter can be canceled. |  |
| Current limiting (software current limiter) | - Automatically reduces the frequency so that the output current becomes lower than the preset operation level. (This limiter can be canceled.) <br> The operation can be selected (operation at constant speed only, operation when accelerating and at constant speed). |  |
| Operation by commercial power supply | With commercial power selection commands ("SW50", "SW60"), the inverter outputs $50 / 60 \mathrm{~Hz}$. <br> - Commercial switching sequence built in |  |
| Slip compensation | Compensates for decrease in speed according to the load. |  |
| Droop control | Decreases the speed according to the load torque. |  |
| Torque limit control | Switchable between 1st and 2nd torque limit values. <br> - Torque limiting/torque current limiting/power limiting for each quadrant <br> - Analog torque limit input |  |
| Software current limiter | Automatically reduces the frequency so that the output current becomes lower than the preset operation level. |  |


|  | Item | Explanation | Remarks |
| :---: | :---: | :---: | :---: |
| $\begin{aligned} & \text { O} \\ & \text { 릉 } \\ & 0 \end{aligned}$ | PID control | - PID processor for process control/dancer control <br> - Switch normal/inverse operation <br> - Low liquid level stop function (pressurized operation possible before low liquid level stop) <br> - PID command: keypad, analog input (terminals [12], [C1] (C1 function, V3 function), [V2],), RS-485 communication <br> - PID feedback value: analog input (terminals [12], [C1] (C1 function, V3 function), [V2]) <br> - Alarm output (absolute value alarm, deviation alarm) <br> - PID output limiter <br> - Integration reset/hold <br> - Anti-reset wind-up function <br> - PID constant auto tuning function for process control PID controller |  |
|  | Auto search | The motor speed is estimated before startup, and the motor is started without ever stopping the motor while it is idling. <br> (Motor constants must be tuned. Auto tuning (offline)) |  |

Table 12.3-4


| Item | Explanation | Remarks |
| :--- | :--- | :--- | :--- |
| Mechanical brake <br> control | - The control signal release and input timing can be adjusted with output <br> current and torque commands, output frequency, and a timer. <br> - The timing of control signals can be adjusted individually when <br> performing forward rotation (hoisting) and reverse rotation (lowering). <br> -Errors are detected with mechanical brake operation check input signals. |  |
| Torque control | - Analog torque command input <br> - Speed limit function is provided to prevent the motor from becoming out <br> of control. |  |
| Rotation direction <br> limitation | Select either of reverse or forward rotation prevention. |  |
| Motor <br> condensation <br> prevention | Current flows automatically when the motor is stopped, and the motor <br> temperature is raised to prevent condensation. |  |
| Customizable <br> logic interface | It is possible to select or connect digital logic circuits or analog operation <br> circuits with digital/analog l/O signals, configure a simple relay sequence, <br> and operate it freely. (Max. 260 steps) |  |
| Fating) possible |  |  |


| Item |  | Explanation | Remarks |
| :---: | :---: | :--- | :--- |
| $\overline{\mathrm{O}}$ |  | Data (can be selected by user) such as the frequency, voltage, and current |  |
| C | Traceback | immediately prior to tripping can be analyzed when saving. |  |

Table 12.3-5

|  | Item | Explanation | Remarks |
| :---: | :---: | :---: | :---: |
|  | Running/stopping | Speed monitor (reference frequency, output frequency, motor speed, load shaft speed, line speed, and speed indication percentage), output current [A], output voltage [V], calculated torque [\%], power consumption [kW], PID command value, PID feedback value, PID output, load factor [\%], motor output [kW], torque current (\%), magnetic flux command (\%), analog input monitor, input watt-hour |  |
| $\begin{aligned} & \frac{त}{0} \\ & \frac{0}{n} \\ & \stackrel{n}{0} \end{aligned}$ | Inverter lifetime alarm | It is judged that the life of main circuit capacitors, electrolytic capacitors on PCBs,IGBT or the cooling fan has been reached. <br> - Life alarm information can be output externally. <br> - Ambient temperature: $40^{\circ} \mathrm{C}$ <br> Load factor: Inverter rated current of 100\% (HHD specification), 80\% (HND specification) |  |
|  | Cumulative operating status | The inverter cumulative running time, cumulative input watt-hours, and motor cumulative running time/start count (for each motor) is displayed. <br> - A warning is output if the maintenance time or startup count set beforehand is exceeded. |  |
|  | Trip | Displays the cause of a trip. |  |
|  | Warning | The cause of light alarms is displayed. |  |
|  | During operation, when trip occurs | - Trip history: The cause (code) of the up to the last four trips is retained and displayed. <br> - All kinds of running status data for up to the past four trips is retained and displayed. <br> - The month, day, and year can be displayed in the history by using the clock function (TP-A2SW). |  |
|  | Refer to Chapter 6 "TROUBLESHOOTING". |  |  |
|  | Refer to Chapter 1 | 3 Precautions for Using Inverters". |  |

## EXTERNAL DIMENSIONS

This chapter gives external dimensions of the inverter.

## Contents

13.1 Standard Specification, Semi-standard Specification ..... 13-1
13.2 Keypad ..... 13-17

### 13.1 Standard Specification, Semi-standard Specification

External dimension drawings for each inverter capacity are shown below.
(Note) $\square$ is replaced by a letter of the alphabet indicating the inverter type $\square$ : S (basic type)
Refer to 13-9 onward for external dimension drawings indicated in inches.

- FRN0003G2S-2G/FRN0002G2■-4G


Fig. 13.1-2

Fig. 13.1-1

FRN0008G2S-2G/FRN0004G2■-4G


Fig. 13.1-3

FRN0011G2S-2G/FRN0006G2ם-4G, FRN0018G2S-2G/FRN0009G2ם-4G


Fig. 13.1-4

FRN0032G2S-2G/FRN0018G2ם-4G,
FRN0046G2S-2G/FRN0023G2ם-4G,
FRN0059G2S-2G/FRN0031G2■-4G


Fig. 13.1-5

FRN0075G2S-2G/FRN0038G2■-4G, FRN0088G2S-2G/FRN0045G2ם-4G, FRN0115G2S-2G/FRN0060G2■-4G


Fig. 13.1-6

■ FRN0146G2S-2G/FRN0075G2■-4G, FRN0091G2■-4G


Fig. 13.1-7

■ FRN0180G2S-2G, FRN0112G2■-4G


Fig. 13.1-8

FRN0150G2■-4G


Fig. 13.1-9

FRN0215G2S-2G, FRN0288G2S-2G, FRN0180G2■-4G


Fig. 13.1-10

## FRN0346G2S-2G



Fig. 13.1-11

## - FRN0432G2S-2G



Fig. 13.1-12

## FRN0216G2■-4G, FRN0260G2■-4G



Fig. 13.1-13

■ FRN0325G2■-4G, FRN0377G2■-4G


Fig. 13.1-14

FRN0432G2■-4G, FRN0520G2■-4G


Fig. 13.1-15

## - FRN0650G2■-4G, FRN0740G2■-4G



Fig. 13.1-16

FRN0960G2■-4G, FRN1040G2■-4G


Fig. 13.1-17

## ■ FRN01170G2■-4G, FRN1386G2■-4G



Fig. 13.1-18

External dimension drawings indicated in inches.
(Unit: inches)

■ FRN0003G2S-2G/FRN0002G2■-4G


■ FRN0005G2S-2G/FRN0003G2■-4G


Fig. 13.1-20

Fig. 13.1-19

FRN0008G2S-2G/FRN0004G2■-4G


Fig. 13.1-21

■ FRN0011G2S-2G/FRN0006G2■-4G, FRN0018G2S-2G/FRN0009G2■-4G


Fig. 13.1-22

(Unit: inches)
■ FRN0075G2S-2G/FRN0038G2■-4G, FRN0088G2S-2G/FRN0045G2ם-4G, FRN0115G2S-2G/FRN0060G2■-4G




Fig. 13.1-24

■ FRN0146G2S-2G/FRN0075G2■-4G, FRN0091G2■-4G


Fig. 13.1-25

■ FRN0180G2S-2G, FRN0112G2■-4G


Fig. 13.1-26

FRN0150G2■-4G


Fig. 13.1-27

FRN0215G2S-2G, FRN0288G2S-2G, FRN0180G2■-4G


Fig. 13.1-28

FRN0346G2S-2G


Fig. 13.1-29

## - FRN0432G2S-2G



Fig. 13.1-30

## FRN0216G2■-4G, FRN0260G2■-4G



Fig. 13.1-31

- FRN0325G2■-4G, FRN0377G2■-4G


Fig. 13.1-32

FRN0432G2■-4G, FRN0520G2■-4G


Fig. 13.1-33

## - FRN0650G2■-4G, FRN0740G2■-4G



Fig. 13.1-34

FRN0960G2■-4G, FRN1040G2ם-4G


Fig. 13.1-35

## ■ FRN01170G2■-4G, FRN1386G2■-4G



Fig. 13.1-36

### 13.2 Keypad

(Unit: mm)


Fig. 13.2-1


Fig. 13.2-2

## APPENDICES

## Contents

Appendix A Trouble-free Use of Inverters (Notes on Electrical Noise) ..... - 1
A. 1 Effect of inverters on other devices ..... - 1
[1] Effect on AM radios ..... - 1
[2] Effect on telephones ..... - 1
[3] Effect on pressure sensors ..... - 1
[4] Effect on position detectors (pulse encoders) ..... - 1
[5] Effect on proximity switches ..... - 1
A. 2 Noise ..... - 2
[ 1 ] Inverter Operating Principle and Noise .....  2
[2] Types of noise .....  3
A. 3 Measure .....  5
[ 1] Noise prevention prior to installation .....  5
[ 2 ] Implementation of noise prevention measures ..... - 6
[3] Noise prevention examples ..... - 9
Appendix B Japanese Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage (General-purpose Inverters) ..... 13
B. 1 Application of general-purpose inverters ..... 13
[ 1] Application for Other Than Special Customers ..... 13
[ 2 ] Application for "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage" ..... 13
B. 2 Complying with "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage" ..... 15
[1] Calculation of equivalent capacity (Pi) ..... 15
[2] Harmonic Current Calculation ..... 16
[3] Examples of calculation ..... 18
Appendix C Effect on Insulation of General-purpose Motors Driven with 400 V Class Inverters ..... 19
C. 1 Generating mechanism of surge voltages ..... 19
C. 2 Effect of surge voltages ..... 20
C. 3 Countermeasures against surge voltages ..... 21
[ 1] Using a surge suppressor unit (SSU) ..... 21
[2] Suppressing surge voltages ..... 21
[3] Using motors with enhanced insulation ..... 21
C. 4 Regarding existing equipment ..... 22
[ 1] In case of a motor being driven with 400 V class inverter ..... 22
[2] In case of an existing motor driven using a newly installed 400 V class inverter ..... 22
Appendix D Inverter Generating Loss ..... 23
Appendix E Conversion to other than SI Units ..... 24
E. 1 Conversion of units ..... 24
E. 2 Calculation formulas ..... 25
Appendix F Permissible Current of Insulated Wires ..... 26
Appendix G Conformity with Standards ..... 29
G. 1 Compliance with European Standards ( $\boldsymbol{(})$ ..... 29
[1] Compliance with EMC standards ..... 29
[2] Compliance with European Low Voltage Directive ..... 34
G. 2 Harmonic Component Regulations in EU ..... 43
[1] General comments ..... 43
[ 2 ] Compliance with the harmonic component regulation ..... 43
G. 3 Compliance with UL Standards and Canadian Standards (cUL certification) ..... 44
[1] General comments ..... 44
[2] UL Standards and Canadian Standards (cUL Certification) Compatibility ..... 44
G. 4 Compliance with Functional Safety Standards ..... 49
[1] General ..... 49
[2] Notes for compliance with functional safety standards ..... 51
[3] Inverter output status when STO is activated ..... 52
[4] EF alarm and inverter-output status ..... 53
[5] Precautions for releasing STO ..... 54
Appendix H Inverter Replacement Precautions (When Using PWM Converter (RHC series)) ..... 55
H. 1 Applicable inverters ..... 55
H. 2 Changing the connection method (inverter control power auxiliary input terminals (R0, T0)) ..... 56

## Appendix A Trouble-free Use of Inverters (Notes on Electrical Noise)

Excerpt from technical material of the Japan Electrical Manufacturers' Association (JEMA) (December 2008)

## A. 1 Effect of inverters on other devices

Inverters have been and are rapidly expanding its application fields. This paper describes the effect that inverters have on electronic devices already installed or on devices installed in the same system as inverters, as well as introducing noise prevention measures. (Refer to "A. 3 [ 3 ] Noise prevention examples" for details.)

## [1] Effect on AM radios

Phenomenon: If an inverter operates, AM radios may pick up noise radiated from the inverter. (An inverter has almost no effect on FM radios or television sets.)
Probable cause: The noise radiated from the inverter may be received by a radio.
Measure: Inserting a noise filter on the power supply side of the inverter is effective.

## [2] Effect on telephones

Phenomenon: If an inverter operates, nearby telephones may pick up noise radiated from the inverter in conversation so that it may be difficult to hear.
Probable cause: A high-frequency leakage current radiated from the inverter and motors enters shielded telephone cables, causing noise.
Measure: $\quad$ It is effective to commonly connect the grounding terminals of the motors and return the common grounding line to the grounding terminal of the inverter.

## [3] Effect on pressure sensors

Phenomenon: If an inverter operates, pressure sensors may malfunction.
Probable cause: Noise may penetrate through a grounding wire into the signal line.
Measure: $\quad$ It is effective to install a noise filter on the power supply side of the inverter or to change the wiring.
[4] Effect on position detectors (pulse encoders)
Phenomenon: If an inverter operates, pulse encoders may produce erroneous pulses that shift the stop position of a machine.
Probable cause: Erroneous pulses are liable to occur when the signal lines of the PG and power lines are bundled together.
Measure: $\quad$ The influence of induction noise and radiated noise can be reduced by separating the PG signal lines and power lines. Providing noise filters at the input and output terminals is also an effective measure.
[5] Effect on proximity switches
Phenomenon: If an inverter operates, proximity switches (capacitance-type) may malfunction.
Probable cause: The capacitance-type proximity switches may provide inferior noise immunity.
Measure: It is effective to connect a filter to the input terminals of the inverter or change the power supply treatment of the proximity switches. The proximity switches can be replaced with superior noise immunity types such as magnetic types.

## A. 2 Noise

This section gives a summary of noises generated in inverters and their effects on devices subject to noise.

## [ 1] Inverter Operating Principle and Noise

Fig. A.2-1 shows an Outline of inverter configuration. The inverter converts AC to DC (rectification) in a converter unit, and converts DC to AC (inversion) with 3-phase variable voltage and variable frequency. The conversion (inversion) is performed by PWM implemented by switching six transistors (IGBT: Insulated Gate Bipolar Transistor, etc.), and is used for variable speed motor control.

Switching noise is generated by high-speed on/off switching of the six transistors. Noise current (i) is emitted and at each high-speed on/off switching, the noise current flows through stray capacitance (C) of the inverter, cable and motor to the ground. The amount of the noise current is expressed as follows:

$$
\mathrm{i}=\mathrm{C} \cdot \mathrm{dv} / \mathrm{dt}
$$

It is related to the stray capacitance (C) and dv/dt (switching speed of the transistors). Further, this noise current is related to the carrier frequency since the noise current flows each time the transistors are switched on or off.

Noise is generated by the DC/DC power supply converter for the control circuit during transistor switching.
These noise frequency bands extend across several tens of MHz , and may interfere with communication devices such as AM radios, factory wireless networks, and telephones.


Fig. A.2-1 Outline of inverter configuration

## [ 2 ] Types of noise

Noise generated in an inverter is propagated through the main circuit wiring to the power supply and the motor so as to affect a wide range of applications from the power supply transformer to the motor. The various propagation routes are shown in Fig. A.2-2. According to those routes, noises are roughly classified into three types:
(1) to (3) are conducted noise, (4) is induction noise, and (5) is radiated noise. Details are given below.


Fig. A.2-2 Noise propagation routes

## (1) Conducted noise

The noise that has occurred in the inverter and propagates through a conductor to influence peripheral equipment is called conducted noise. Some conducted noise will propagate through the main circuit (1). If the ground wires are connected to a common ground, conducted noise will propagate through route (2). As shown in route (3), some conducted noise will propagate through signal lines or shielded wires.


Fig. A.2-3 Conducted noise

## (2) Induction noise

When wires or signal lines of peripheral devices are brought close to the wires on the input and output sides of the inverter through which noise current is flowing, noise will be induced into those wires and signal lines of the devices by electromagnetic induction (Fig. A.2-4) or electrostatic induction (Fig. A.2-5). This is called "induction noise" (4).


Fig. A.2-4 Electromagnetic induction noise


Fig. A.2-5 Electrostatic induction noise

## (3) Radiated noise

Noise generated in an inverter radiates through the air with input side and output side main circuit wires, and ground wires acting as antennas, and this affects peripheral devices, as well as broadcast and wireless communication. This noise is called "radiated noise" as shown below as (5). Not only wires but motor frames or control system panels containing inverters may also act as antennas.


Fig. A.2-6 Radiated noise

## A. 3 Measure

As the noise prevention is strengthened, the more effective it is. However, with the use of appropriate measures, noise problems may be resolved easily. It is necessary to implement economical noise prevention according to the noise level and the equipment conditions.

## [ 1] Noise prevention prior to installation

Before installing an inverter in your control panel or installing an inverter panel, you need to consider noise prevention. Once noise problems occur, it will cost additional materials and time for solving them.

Noise prevention prior to installation includes:
(1) Separate the main circuit from the control circuit.
(2) Accommodate the main circuit wiring in a metal pipe (conduit pipe).
(3) Use shielded wire or twisted shielded wire in the control circuit.
(4) Perform reliable grounding work and wiring.

These noise prevention measures can avoid most noise problems.

## [ 2 ] Implementation of noise prevention measures

There are two types of noise prevention measures--one for noise propagation routes and the other for noise receiving sides (that are affected by noise).
The basic measures for reducing the effect of noise at the receiving side include:
(1) Separating the main circuit wiring from the control circuit wiring, avoiding noise effect. Measures on the noise-affected side are:
(2) Lower the noise level for example by installing a noise filter.
(3) Suppress the noise level for example by using a metal wiring pipe or metal control panel.
(4) Block the noise propagation route for example by using an insulation transformer for power source.

Table A.3-1 lists the Noise prevention measures, their goals, and propagation routes.
Table A.3-1 Noise prevention measures

| Noise prevention method |  | Goal of noise prevention measures |  |  |  | Propagation route |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  |  |  |  |
| Wiring and installation | Separate main circuit from control circuit | Y |  |  |  |  | Y |  |
|  | Minimize wiring length | Y |  |  | Y |  | Y | Y |
|  | Avoid parallel and bundled wiring | Y |  |  |  |  | Y |  |
|  | Use appropriate grounding | Y |  |  | Y |  | Y | Y |
|  | Use shielded wire and twisted shielded wire | Y |  |  |  |  | Y | Y |
|  | Use shielded cable in main circuit |  |  | Y |  |  |  | Y |
|  | Use metal conduit pipe |  |  | Y |  |  | Y | Y |
| Control panel | Appropriate arrangement of devices in panel | Y |  |  |  |  | Y | Y |
|  | Metal control panel |  |  | Y |  |  | Y | Y |
| Anti-noise devices | Line filter | Y |  |  | Y | Y |  | Y |
|  | Insulation transformer |  | Y |  |  | Y |  | Y |
| Measures taken on noise-affected side | Use a decoupling capacitor for control circuit | Y |  |  |  |  | Y | Y |
|  | Use ferrite core for control circuit | Y |  |  |  |  | Y | Y |
|  | Line filter | Y |  |  |  | Y |  |  |
| Other IMs | Separate power supply systems | Y | Y |  |  | Y |  |  |
|  | Lower the carrier frequency |  |  |  | Y | Y | Y | Y |

In the table, a column marked with $Y$ shows a measure expected to produce an effect depending on the conditions. An empty column shows an ineffective measure.

What follows is noise prevention measures for the inverter drive configuration.

## (1) Wiring and grounding

As shown in Fig. A.3-1, separate the main circuit wiring from control circuit wiring as far as possible regardless of being located inside or outside the system control panel containing an inverter. Use shielded wires and twisted shielded wires that will block out extraneous noises, and minimize the wiring distance. Also avoid bundled wiring of the main circuit and control circuit or parallel wiring.


Fig. A.3-1 Separate wiring

For the main circuit wiring, use a metal conduit pipe and connect its wires to the ground to prevent noise propagation (see Fig. A.3-2).

The shield (braided wire) of a shielded wire should be securely connected to the base (common) side of the signal line at only one point to avoid the loop formation resulting from a multi-point connection (see Fig. A.3-3).
The grounding is effective not only to reduce the risk of electrical shocks due to leakage current, but also to block noise penetration and radiation. Corresponding to the main circuit voltage, the grounding work should be Class D ( 300 VAC or less) and Class C ( 300 to 600 VAC). Each ground wire is to be provided with its own ground or separately wired to a grounding point.


Fig. A.3-2 Grounding of metal conduit pipe


Fig. A.3-3 Treatment of braided wire of shielded wire

## (2) Control panel

The system control panel containing an inverter is generally made of metal, which can shield noise radiated from the inverter itself.
When installing other electronic devices such as a programmable logic controller in the same control panel, be careful with the layout of each device. If necessary, arrange shield plates between the inverter and peripheral devices.

## (3) Anti-noise devices

To reduce the noise propagated through the electrical circuits and the noise radiated from the main circuit wiring to the air, a line filter and power supply transformer should be used (see Fig. A.3-4).

Line filters are classified into simple-type filters including capacitive filters to be connected in parallel to a power line and inductive filters to be connected in series to a power line and authentic filters (LC filters) to address radio noise restrictions. They are used selectively used to meet the target noise reduction effect. Power transformers include generally used insulation transformers, shield transformers and noise-cut transformers, which have different effects to block propagation of noise.


Fig. A.3-4 Various filters and their connection

## (4) Noise prevention measures at the receiving side

It is important to strengthen the noise immunity of those electronic devices installed in the same control panel as the inverter or located near an inverter. Line filters and shielded or twisted shielded wires are used to block the penetration of noise in the signal lines of these devices. The following treatments are also implemented.

1) Lower the circuit impedance by connecting capacitors or resistors to the input and output terminals of the signal circuit in parallel.
2) Increase the circuit impedance for noise by inserting choke coils in series in the signal circuit or passing signal lines through ferrite core beads.
It is also effective to widen the signal base lines ( 0 V line) or grounding lines.

## (5) Other IMs

The level of generating/propagating noise will change with the carrier frequency of the inverter. The higher the carrier frequency, the higher the noise level.

In an inverter whose carrier frequency can be changed, lowering the carrier frequency can reduce the generation of electrical noise and result in a good balance with the audible noise of the motor under driving conditions.

## [ 3] Noise prevention examples

Table A.3-2 lists examples of the measures to prevent noise generated by a running inverter.
Table A.3-2 Examples of noise prevention measures

| No. | Target device | Phenomenon | Measure | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 1 | AM radio | Noise enters the AM radio broadcast ( 500 to 1500 kHz ) when the inverter is operated. <br> <Possible cause> <br> Radiated noise from the power source and output wiring of inverted was received by the AM radio. | 1) Install an LC filter at the power supply side of the inverter. (In some cases, a capacitive filter may be used as a simple method.) <br> 2)Install a metal conduit wiring between the motor and inverter. Or use shielded wiring. <br> Note: <br> Minimize the distance between the LC filter and the inverter (within 1 m ). | 1)The radiated noise of the wiring can be reduced. <br> 2)Reduce the conducted noise to the power source or apply shielded wiring. Or use shielded wiring. <br> Note: <br> Sufficient improvement may not be expected in narrow regions such as between mountains. |
| 2 | AM radio | Noise enters the AM radio broadcast ( 500 to 1500 kHz ) when the inverter is operated. <br> <Possible cause> <br> Radiated noise from the power line of inverter's power source was received by the AM radio. | 1) Install inductive filters at the input and output sides of the inverter. <br> The number of turns of the zero-phase reactor (or ferrite ring) should be as large as possible. Minimize the distance between the inverter and the inductive filter (within $1 \mathrm{~m})$. <br> 2) When further improvement is necessary, install LC filters. | 1)The radiated noise of the wiring can be reduced. |

Table A.3-2 Examples of noise prevention measures (cont.)

| No. | Target device | Phenomenon | Measure | Not |
| :---: | :---: | :---: | :---: | :---: |
| 3 | Telephone (in a common private residence at a distance of 40 m ) | When driving a ventilation fan with an inverter, noise enters a telephone in a private residence at a distance of 40 m . <br> <Possible cause> <br> High-frequency leak current of the inverter and motor flows into the shielded ground of the telephone cable on the way back via the ground of the pole transformer to cause noise by electrostatic induction. | 1)Connect the ground terminals of the motors in a common connection. Return to the inverter panel, and insert a 1 $\mu \mathrm{F}$ capacitor between the input terminal of the inverter and ground. | 1) The effect of the inductive filter and LC filter may not be expected because of sound frequency component. <br> 2)In the case of a $V$ connection power supply transformer in a 200 V system, it is necessary to connect capacitors as shown in the following figure, because of different potentials to ground. |
| 4 | Photoelectric relay | A photoelectric relay malfunctioned when the inverter runs the motor. <br> (The inverter and motor are installed in the same place (for overhead traveling)). <br> <Possible cause> <br> Input power line of the inverter and wiring of the photoelectric relay run parallel for 30 to 40 m with a spacing of about 25 mm , which invites induction noise. Due to conditions of the installation, these lines cannot be separated. | 1)As a temporary measure, Insert a $0.1 \mu \mathrm{~F}$ capacitor between the 0 V terminal of the power supply circuit in the detection unit of the overhead photoelectric relay and a frame of the overhead panel. <br> 2)As a permanent measure, move the 24 V power supply from the ground to the overhead unit so that signals are sent to the ground side with relay contacts in the ceiling part. | 1)Separate the wiring ( 30 cm or more) <br> 2)When separation is impossible, signals can be received and sent with dry contacts etc. <br> 3)Do not wire lowcurrent signal lines and power lines in parallel. |

Table A.3-2 Examples of noise prevention measures (cont.)

| No. | Target device | Phenomenon | Measure | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 5 | Photoelectric relay | A photoelectric relay malfunctioned when the inverter runs the motor. <br> <Possible cause> <br> While the inverter is sufficiently away from the photoelectric relay, the power source is connected in common. Conducted noise has entered from the power source line. | 1)Insert a $0.1 \mu \mathrm{~F}$ capacitor between the output common terminal of the amplifier of the photoelectric relay and the frame. | 1) If a low-current circuit at the malfunctioning side is observed, the measures may be simple and economical. |
| 6 | Proximity switch (capacitance type) | A proximity switch malfunctioned. <br> <Possible cause> <br> The electrostatic capacitive proximity switch has a low noise immunity, and is vulnerable to circuit conducted noise and radiated noise. | 1) Install an LC filter at the output side of the inverter. <br> 2) Install a capacitive filter at the input side of the inverter. <br> 3) Ground the $0 V$ (common) line of the DC power supply of the proximity switch through a capacitor to the box body of the machine. | 1) Noise generated in the inverter can be reduced. <br> 2)The switch is superseded by a proximity switch of superior noise immunity (such as a magnetic type). |

Table A.3-2 Examples of noise prevention measures (cont.)

| No. | Target device | Phenomenon | Measure | Notes |
| :---: | :---: | :---: | :---: | :---: |
| 7 | Pressure sensor | A pressure sensor malfunctioned. <br> <Possible cause> <br> Noise enters from the box body via the shielded wire to cause malfunctioning of the pressure sensor. | 1) Install an LC filter on the input side of the inverter. <br> 2)Connect the shield of the shielded wire of the pressure sensor to the 0 V line (common) of the pressure sensor, changing the original connection. | 1)The shielded parts of shield wires for sensor signals are connected to a common point in the system. <br> 2)Conductive noise from the inverter can be reduced. |
| 8 | Position detector (pulse encoder) | Erroneous-pulse outputs from a pulse converter caused a shift in the stop position of a crane. <br> <Possible cause> <br> The motor power line and the signal line for the encoder are wired together in a bundle. This produces induction noise to cause output of error pulses. | 1) Install an LC filter and a capacitive filter at the input side of the inverter. <br> 2) Install an LC filter at the output side of the inverter. | 1)This is an example of a measure where the power line and signal line cannot be separated. <br> 2)Induction noise and radiated noise at the output side of the inverter can be reduced. |
| 9 | Programmable logic controller (PLC) | The PLC program sometimes malfunctions. <br> <Possible cause> <br> Power sources of the inverter and PLC are in the same system so that noise enters PLC via the power source. | 1) Install a capacitive filter and an LC filter on the input side of the inverter. <br> 2)Install an LC filter on the output side of the inverter. <br> 3)Lower the carrier frequency of the inverter. | 1) Total conducted noise and induction noise in the electric line can be reduced. |

## Appendix B Japanese Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage (Generalpurpose Inverters)

Agency of Natural Resource and Energy of Japan published the following two guidelines for suppressing harmonic noise in September 30, 1994.
(1) "Guideline to Reduce Harmonic Emissions Caused by Electrical and Electronic Equipment for Household and General Use"
(2) "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage"

These guidelines were enacted based on the assumption that the use of electronic devices generating harmonic current would continue to rise in the future, and that they would lead to the prevention of harmonic interference at devices connected to systems by applying regulations beforehand. These guidelines apply to all electrical and electronic devices used with a commercial power supply and which generate harmonic current, however, the following explanation applies only to "general-purpose inverters".

Refer to "Japan Electrical Manufacturers' Association JEM-TR201" for details on how to calculate harmonic current.

## B. 1 Application of general-purpose inverters

## [ 1] Application for Other Than Special Customers

From January 2004, general-purpose inverters (input current of 20A or less) were excluded from the "Guideline to Reduce Harmonic Emissions Caused by Electrical and Electronic Equipment for Household and General Use" (established September, 1994) enacted by the Ministry of Economy, Trade and Industry. Customers for whom the "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage" does not apply are recommended to connect the "DC reactor" indicated in the catalog or this manual to the inverter as in the past.

## [ 2] Application for "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage"

All customers receiving high voltage or special high voltage fall under the scope of the "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage". Devices generating harmonic current such as "general-purpose inverters" are not regulated directly, but for each customer using a power supply. It is necessary to calculate such values as the amount of harmonic current generated by individual devices.

## (1) Regulation scope

Generally speaking, regulations apply if the following two conditions are satisfied.

- The device is receiving high or extra-high voltage.
- Converter load "equivalent capacity" exceeds the standard value ( 50 kVA when receiving 6.6 kV ) for the receiving voltage.
If calculating "equivalent capacity" in accordance with the guidelines, a supplementary description is provided in "B. 2 [ 1 ] Calculation of equivalent capacity (Pi)".


## (2) Regulation method

Regulate the size (calculated value) of the harmonic current flowing from the customer's power receipt point to the system. Regulation values are proportional to contracted demand. Guideline regulation values are shown in Table B.1-1.

If calculating "harmonic current" in accordance with the guidelines, a supplementary description is provided in "B. 2 Complying with "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage"".

Table B.1-1 Harmonic outflow current upper limit per 1 kW of contracted demand ( $\mathrm{mA} / \mathrm{kW} \mathrm{)}$

| Receiving voltage | 5th | 7th | 11th | 13th | 17th | 19th | 23rd | 25th and above |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 6.6 kV | 3.5 | 2.5 | 1.6 | 1.3 | 1.0 | 0.90 | 0.76 | 0.70 |
| 22 kV | 1,8 | 1.3 | 0.82 | 0.69 | 0.53 | 0.47 | 0.39 | 0.36 |

(3) Inspection interval

The guideline has been applied.
The estimation for "Voltage distortion factor" required as the indispensable conditions when entering into the consumer's contract of electric power is already expired.

## B. 2 Complying with "Guideline for Suppressing Harmonics by Customers Receiving High Voltage or Special High Voltage"

If performing calculations for "general-purpose inverters" in accordance with the guidelines, do so as follows.
The following descriptions are based on "Application Guide for Evaluation of Harmonic Currents Emitted by Consumers of Middle or High Voltage Power Supply" (JEAG 9702-2013) published by the Japan Electrical Manufacturer's Association (JEMA).

## [ 1] Calculation of equivalent capacity (Pi)

Equivalent capacity is calculated by multiplying the (input rated capacity) by (conversion factor), however, the input rated capacity value is not indicated in previous general-purpose inverter catalogs, and is therefore described below.

## (1) "Inverter rated capacity" corresponding to "Pi"

- In the guidelines, a 6-pulse converter is used as a reference for conversion factor 1, and therefore it is necessary to express the general-purpose inverter input rated capacity as a value including the harmonic current equivalent to conversion factor 1.
- In particular, calculate the input fundamental current I1 from the kW rating and efficiency of the motor and the efficiency of the inverter as loads and then calculate:
Input rated capacity $=\sqrt{ } 3 \times$ (power voltage) $\times I 1 \times 1.0228 / 1000(k V A) .1 .0228$ is the 6 -pulse converter (effective value current)/(fundamental harmonic current) value.
- When a general-purpose motor or inverter motor is used, the appropriate value shown in Table B.2-1 can be used. Select a value based on the kW rating of the motor used, irrespective of the inverter type.

The "input rated capacity" expressed here can be applied only if performing the calculation indicated in the harmonic guidelines, and cannot be used to select inverter power supply side devices and wiring size, etc., and therefore caution is required.
(1)

Refer to manufacturer catalogs or technical material for information on peripheral equipment capacity selection.
Table B.2-1 "Input Rated Capacities" of general-purpose inverters determined by the applicable motor ratings

| Applicable motor <br> $(\mathrm{kW})$ | 0.1 | 0.2 | 0.4 | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Pi}(\mathrm{kVA})$ | 200 V | 0.22 | 0.35 | 0.57 | 0.97 | 1.95 | 2.81 | 4.61 | 6.77 | 9.07 | 13.1 | 17.6 | 21.8 |
|  | 400 V | 0.22 | 0.35 | 0.57 | 0.97 | 1.95 | 2.81 | 4.61 | 6.77 | 9.07 | 13.1 | 17.6 | 21.8 |


| Applicable motor <br> $(\mathrm{kW})$ | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 | 132 | 160 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Pi}(\mathrm{kVA})$ | 200 V | 25.9 | 34.7 | 42.8 | 52.1 | 63.7 | 87.2 | 104 | 127 |  |  |
|  | 400 V | 25.9 | 34.7 | 42.8 | 52.1 | 63.7 | 87.2 | 104 | 127 | 153 | 183 |


| Applicable motor <br> $(\mathrm{kW})$ | 200 | 220 | 250 | 280 | 315 | 355 | 400 | 450 | 500 | 630 |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\operatorname{Pi}(\mathrm{kVA})$ | 200 V | 400 V | 229 | 252 | 286 | 319 | 359 | 405 | 456 | 512 | 570 |

## (2) "Ki (conversion factor)" size

Depending on whether an optional ACR (AC reactor) or DCR (DC reactor) is used, apply the appropriate conversion factor specified in the appendix to the guideline. The conversion factor sizes are listed in Table B.2-2.
Table B.2-2 "Conversion Factors Ki" for general-purpose inverters determined by reactors

| Circuit class | Circuit type |  | Conversion factor Ki | Main applications |
| :---: | :---: | :---: | :---: | :---: |
| 3 | Three-phase bridge (capacitor smoothing) | No reactor used | $\mathrm{K} 31=3.4$ | - General-purpose inverters <br> - Elevators <br> - Cold air refrigerating machines <br> - Other equipment in general |
|  |  | Reactor used (AC side) | $\mathrm{K} 32=1.8$ |  |
|  |  | Reactor used (DC side) | K33 $=1.8$ |  |
|  |  | Reactor used (AC, DC side) | K34 $=1.4$ |  |

[^48]
## [ 2 ] Harmonic Current Calculation

## (1) "Fundamental harmonic current" size

- When you calculate the amount of harmonics according to Table 2 in Appendix of the Guideline, you have to previously know the input fundamental harmonic current.
- Apply the appropriate value shown in Table B.2-3 based on the kW rating of the motor, irrespective of the inverter type or whether a reactor is used.
Note If the input voltage is different, calculate the input fundamental current in inverse proportion to the voltage.

Table B.2-3 "Input fundamental harmonic current" of general-purpose inverters determined by applicable motor ratings

| Applicable motor (kW) |  | 0.4 | 0.75 | 1.5 | 2.2 | 3.7 | 5.5 | 7.5 | 11 | 15 | 18.5 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input fundamental harmonic current (A) | 200 V | 1.62 | 2.74 | 5.50 | 7.92 | 13.0 | 19.1 | 25.6 | 36.9 | 49.8 | 61.4 |
|  | 400 V | 0.81 | 1.37 | 2.75 | 3.96 | 6.50 | 9.55 | 12.8 | 18.5 | 24.9 | 30.7 |
| 6.6 kV conversion value (mA) |  | 49 | 83 | 167 | 240 | 394 | 579 | 776 | 1121 | 1509 | 1860 |


| Applicable motor (kW) |  | 22 | 30 | 37 | 45 | 55 | 75 | 90 | 110 | 132 | 160 |
| ---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input fundamental <br> harmonic current (A) | 200 V | 73.1 | 98.0 | 121 | 147 | 180 | 245 | 293 | 357 |  |  |
|  | 2220 | 2970 | 3660 | 4450 | 5450 | 7450 | 8910 | 10850 | 13090 | 15640 |  |


| Applicable motor (kW) |  | 200 | 220 | 250 | 280 | 315 | 355 | 400 | 450 | 500 | 630 |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Input fundamental <br> harmonic curren (A) | 200 V | 400 V | 323 | 355 | 403 | 450 | 506 | 571 | 643 | 723 | 804 |
|  | 1013 |  |  |  |  |  |  |  |  |  |  |
| 6.6 kV conversion value (mA) | 19580 | 21500 | 24400 | 27300 | 30700 | 34600 | 39000 | 43800 | 48700 | 61400 |  |

## (2) Harmonic current calculation

Generally speaking, harmonic current is calculated using "Table 3 Three-phase bridge (capacitor smoothing)" in "Guidelines - Appendix 2". Refer to Table B.2-4 for the guidelines appendices.

Table B.2-4 Amount of harmonic current generation (\%), three-phase bridge (capacitor smoothing)

| Degree | 5 th | 7th | 11th | 13th | 17th | 19th | 23rd | 25th |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| No reactor used | 65 | 41 | 8.5 | 7.7 | 4.3 | 3.1 | 2.6 | 1,8 |
| Reactor used (AC side) | 38 | 14.5 | 7.4 | 3.4 | 3.2 | 1.9 | 1.7 | 1.3 |
| Reactor used (DC side) | 30 | 13 | 8.4 | 5.0 | 4.7 | 3.2 | 3.0 | 2.2 |
| Reactor used (AC, DC side) | 28 | 9.1 | 7.2 | 4.1 | 3.2 | 2.4 | 1.6 | 1.4 |

- AC side reactor: $3 \%$
- DC side reactor: Stored energy is equivalent to 0.08 to 0.15 ms ( $100 \%$ load conversion)
- Smoothing capacitor: Stored energy is equivalent to 15 to 30 ms ( $100 \%$ load conversion)
- Load: 100\%
$n_{\text {th }}$ degree harmonic current ( $A$ )

$$
=\text { Fundamental harmonic current (A) x }
$$

The harmonic current for each degree is obtained as follows.

## (3) Maximum availability factor

- For a load like elevators, which provides intermittent operation, or a load with a sufficient designed motor rating, reduce the current by multiplying the equation by the "maximum availability factor" of the load.
- According to the Appendix to Guideline, "Maximum availability factor of equipment refers to the ratio of the maximum capacity of the operating equipment to the total capacity of the harmonic generation equipment. Capacity of the operating equipment shall be an average value over 30 minutes."
- In general, the maximum availability factor is calculated according to this definition, but the standard values shown in Table B.2-5 are recommended for inverters for building equipment, and therefore these values should also be referred to when handling similar equipment.

Table B.2-5 Availability factors of inverters, etc. for building equipment (standard values)

| Equipment type | Inverter capacity category | Single inverter availability |
| :--- | :---: | :---: |
| Air conditioning systems | 200 kW or less | 0.55 |
|  | Over 200 kW | 0.60 |
| Sanitary pumps | - | 0.30 |
| Elevators | - | 0.25 |
| Refrigerators, freezers | 50 kW or less | 0.60 |
| UPS (6-pulse) | 200 kVA | 0.60 |

Correction coefficient according to contract demand level
Since the total availability factor decreases if the scale of a building increases, the calculation of reduced harmonics with the correction coefficient $\beta$ defined in Table B.2-6 is permitted.

Table B.2-6 Correction coefficient according to the building scale

| Contract demand (kW) | Correction coefficient $\beta$ |
| :---: | :---: |
| 300 | 1.00 |
| 500 | 0.90 |
| 1,000 | 0.85 |
| 2,000 | 0.80 |

Note: If the contract demand is between two specified values listed in Table B.2-6, calculate the value by interpolation.
Note: The correction coefficient $\beta$ is to be determined as a matter of consultation between the customer and electric power company for the customers receiving the electric power over 2000 kW or from the special high voltage lines.

## (4) Degree of harmonics to be calculated

The higher the degree of harmonics, the lower the current flows. This is the property of harmonics generated by inverters so that the inverters are covered by "The case not causing a special hazard" of the term 3.(3) in the above Appendix for the 9th or higher degrees of the harmonics.
Therefore, "It is sufficient that the 5th and 7th harmonic currents should be calculated."

## [ 3 ] Examples of calculation

(1) Equivalent capacity

| Example of loads | Input capacity and <br> No. of inverters | Conversion factor | Equivalent capacity |
| :---: | :---: | :---: | :---: |
| [Example (1)] $400 \mathrm{~V}, 3.7 \mathrm{~kW}, 10$ units <br> with AC/DC reactor | $4.61 \mathrm{kVA} \times 10$ units | $\mathrm{K} 32=1.4$ | $4.61 \times 10 \times 1.4=64.54 \mathrm{kVA}$ |
| [Example (2)] $400 \mathrm{~V}, 1.5 \mathrm{~kW}, 15$ units <br> with AC reactor | $2.93 \mathrm{kVA} \times 15 \mathrm{units}$ | $\mathrm{K} 34=1.8$ | $2.93 \times 15 \times 1.8=79.11 \mathrm{kVA}$ |
|  | See Table B.2-1 | See Table B.2-2 |  |

## (2) Harmonic current for every harmonic order

Example 1: $400 \mathrm{~V}, 3.7 \mathrm{~kW}, 10$ units (with AC reactor), maximum availability factor: 0.55

| 6.6 kV side fundamental current (mA) | Harmonic current onto 6.6 kV lines (mA) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $394 \times 10=3940$ | $\begin{gathered} 5 \text { th } \\ (38 \%) \end{gathered}$ | $\begin{gathered} \text { 7th } \\ (14.5 \%) \\ \hline \end{gathered}$ | $\begin{gathered} 11 \mathrm{th} \\ (7.4 \%) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 13 \text { th } \\ (3.4 \%) \\ \hline \end{gathered}$ | $\begin{gathered} 17 \text { th } \\ (3.2 \%) \\ \hline \end{gathered}$ | $\begin{gathered} \hline 19 \text { th } \\ (1.9 \%) \\ \hline \end{gathered}$ | $\begin{gathered} 23 \mathrm{rd} \\ (1.7 \%) \end{gathered}$ | $\begin{gathered} 25 \mathrm{th} \\ (1.3 \%) \end{gathered}$ |
|  | 823.5 | 314.2 |  |  |  |  |  |  |
| See Table B.2-3 and Table B.2-5 | See Table B.2-4 |  |  |  |  |  |  |  |

Example 2: $400 \mathrm{~V}, 3.7 \mathrm{~kW}, 15$ units (with AC/DC reactor), maximum availability factor: 0.55

| 6.6 kV side fundamental current (mA) | Harmonic current onto 6.6 kV lines (mA) |  |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $394 \times 15=5910$ | $\begin{gathered} \text { 5th } \\ (28 \%) \end{gathered}$ | $\begin{gathered} 7 \text { th } \\ (9.1 \%) \end{gathered}$ | $\begin{gathered} \hline 11 \text { th } \\ (7.2 \%) \end{gathered}$ | $\begin{gathered} 13 \mathrm{th} \\ (4.1 \%) \end{gathered}$ | $\begin{gathered} 17 \mathrm{th} \\ (3.2 \%) \end{gathered}$ | $\begin{gathered} \text { 19th } \\ (2.4 \%) \end{gathered}$ | $\begin{gathered} \hline 23 \mathrm{rd} \\ (1.6 \%) \end{gathered}$ | $\begin{gathered} 25 \mathrm{th} \\ (1.4 \%) \end{gathered}$ |
|  | 910.1 | 295.8 |  |  |  |  |  |  |
| See Table B.2-3 and Table B.2-5 | See Table B.2-4 |  |  |  |  |  |  |  |

# Appendix C Effect on Insulation of General-purpose Motors Driven with 400 V Class Inverters 

Excerpt from technical material of the Japan Electrical Manufacturers' Association (JEMA) (March 1995)

## Preface

When an inverter drives a motor, surge voltages generated by switching the inverter elements are superimposed on the inverter output voltage and applied to the motor terminals. If the surge voltages are too high they may have an effect on the motor insulation and some cases have resulted in damage.

For preventing such cases this document describes the generating mechanism of the surge voltages and countermeasures against them.

Refer to "A. 2 [ 1 ] Inverter Operating Principle and Noise" for details of the principle of inverter operation.

## C. 1 Generating mechanism of surge voltages

As the inverter rectifies a commercial power source voltage and smoothes into a DC voltage, the magnitude E of the DC voltage becomes about times that of the source voltage (about 620 V in case of an input voltage of 440 VAC). The peak value of the output voltage is usually close to this DC voltage value.
But, as there exists inductance ( L ) and stray capacitance ( C ) in wiring between the inverter and the motor, the voltage variation due to switching the inverter elements causes a surge voltage originating in LC resonance and results in the addition of high voltage to the motor terminals. (See Fig. C.1-1.)
This voltage sometimes reaches up to about twice that of the inverter DC voltage ( $620 \mathrm{~V} \times 2=$ approximately 1,200 V ) depending on a switching speed of the inverter elements and wiring conditions.


Fig. C.1-1 Voltage waveform of individual portions

A measured example in Fig. C.1-2 illustrates the relation of a peak value of the motor terminal voltage with a wiring length between the inverter and the motor.

From this it can be confirmed that the peak value of the motor terminal voltage ascends as the wiring length increases and becomes saturated at about twice the inverter DC voltage.

The shorter a pulse rise time becomes, the higher the motor terminal voltage rises even in the case of a short wiring length.


Excerpt from Journal of IEEJ, No. 7, vol. 107, 1987

Fig. C.1-2 Measured example of wiring length and peak value of motor terminal voltage

## C. 2 Effect of surge voltages

The surge voltages originated in LC resonance of wiring may be applied to the motor terminals and depending on their magnitude sometimes cause damage to the motor insulation.
When the motor is driven with a 200 V class inverter, the dielectric strength of the insulation is no problem even the peak value at the motor terminal voltage increases twice due to the surge voltages (the DC voltage is only about 300 V ).
But in case of a 400 V class inverter, the DC voltage is approximately 600 V and depending on the wiring length, the surge voltages may greatly increase and sometimes result in damage to the insulation.

## C. 3 Countermeasures against surge voltages

When driving a motor with a 400 V class inverter, the following are countermeasures against damage to the motor insulation by the surge voltages.

## [ 1] Using a surge suppressor unit (SSU)

A surge suppressor unit (SSU) is a newly structured unit using circuits based on the impedance-matching theory of a transmission line. Just connecting the SSU to the surge suppressor cable of the existing equipment can greatly reduce the surge voltage that results in a motor dielectric breakdown.


For 50 m of wiring length: SSU 50TA-NS


For 100 m of wiring length: SSU 100TA-NS

## [ 2 ] Suppressing surge voltages

To suppress surge voltage, a method is employed which involves suppressing voltage rise and peak value.

## (1) Output reactor

If wiring length is relatively short, the surge voltages can be suppressed by reducing the voltage rise time (dv/dt) with the installation of an $A C$ reactor on the output side of the inverter. (See Fig. C.3-1(1) .)

However, if the wiring length becomes long, suppressing the peak voltage due to surge voltage may be difficult.

## (2) Output filter

Installing a filter on the output side of the inverter allows the peak value of the motor terminal voltage to be reduced. (See Fig. C.3-1(2) .)


## (1) Output reactor

(2) Output filter

Fig. C.3-1 Method to suppress surge voltage

Tip If the wiring length between the inverter and the motor is comparatively long, the crest value of the surge voltage can be suppressed by connecting a surge suppressor unit (SSU) to the motor terminal. For details, refer to Chapter 11 "11.13 Surge Suppression Unit (SSU)".

## [ 3] Using motors with enhanced insulation

Enhanced insulation of a motor winding allows its surge withstanding to be improved.

## C. 4 Regarding existing equipment

## [ 1] In case of a motor being driven with 400 V class inverter

A survey over the last five years on motor insulation damage due to the surge voltages originating from switching of inverter elements shows that the damage incidence is $0.013 \%$ under the surge voltage condition of over $1,100 \mathrm{~V}$ and most of the damage occurs several months after commissioning the inverter. Therefore there seems to be little probability of occurrence of motor insulation damage after a lapse of several months of commissioning.
[ 2 ] In case of an existing motor driven using a newly installed 400 V class inverter We recommend suppressing the surge voltages with the methods shown in "C. 3 ".

## Appendix D Inverter Generating Loss

The table below lists the inverter generating loss.
Table C.4-1

| $\begin{aligned} & \bar{\omega} \\ & \begin{array}{l} \overline{0} \\ \sum_{0} \\ 0 \\ \omega \\ \hline \end{array} \end{aligned}$ | Inverter type | Inverter generated loss (W) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | HHD specification |  | HND specification |  |
|  |  | Low carrier | High carrier | Low carrier | High carrier |
|  | FRN0003G2S-2G | 35 | 45 | - | - |
|  | FRN0005G2S-2G | 50 | 60 | - | - |
|  | FRN0008G2S-2G | 80 | 110 | - | - |
|  | FRN0011G2S-2G | 110 | 140 | - | - |
|  | FRN0018G2S-2G | 170 | 210 | - | - |
|  | FRN0032G2S-2G | 240 | 310 | 290 | 370 |
|  | FRN0046G2S-2G | 300 | 415 | 410 | 550 |
|  | FRN0059G2S-2G | 450 | 620 | 500 | 670 |
|  | FRN0075G2S-2G | 540 | 700 | 630 | 840 |
|  | FRN0088G2S-2G | 660 | 860 | 770 | 970 |
|  | FRN0115G2S -2G | 790 | 1040 | 1120 | 1250*1 |
|  | FRN0146G2S-2G | 1300 | 1450 | 1650 | 1750*1 |
|  | FRN0180G2S-2G | 1300 | 1550 | 1650 | 1850*1 |
|  | FRN0215G2S-2G | 1450 | 1600 | 1850 | 1950*1 |
|  | FRN0288G2S-2G | 1750 | 1900 | 2250 | 2400*1 |
|  | FRN0346G2S-2G | 2300 | 2550*1 | 2700 | 2800*2 |
|  | FRN0432G2S-2G | 2750 | 3050*1 | 3250 | 3350*2 |
|  | FRN0002G2■-4G | 35 | 60 | - | - |
|  | FRN0003G2■-4G | 45 | 80 | - | - |
|  | FRN0004G2■-4G | 60 | 110 | - | - |
|  | FRN0006G2■-4G | 80 | 140 | - | - |
|  | FRN0009G2■-4G | 130 | 230 | - | - |
|  | FRN0018G2■-4G | 170 | 300 | 210 | 370 |
|  | FRN0023G2■-4G | 230 | 400 | 300 | 520 |
|  | FRN0031G2■-4G | 300 | 520 | 360 | 610 |
|  | FRN0038G2■-4G | 360 | 610 | 460 | 770 |
|  | FRN0045G2■-4G | 440 | 770 | 510 | 870 |
|  | FRN0060G2■-4G | 510 | 900 | 710 | 1310*1 |
|  | FRN0075G2■-4G | 800 | 1150 | 1000 | 1250*1 |
|  | FRN0091G2■-4G | 1000 | 1450 | 1250 | 1550*1 |
|  | FRN0112G2■-4G | 1100 | 1600 | 1350 | 1700*1 |
|  | FRN0150G2■-4G | 1350 | 1950 | 1950 | 2400*1 |
|  | FRN0180G2■-4G | 1600 | 2150*1 | 2000 | 2250*2 |
|  | FRN0216G2■-4G | 1900 | 2600*1 | 2250 | 2550*2 |
|  | FRN0260G2■-4G | 2300 | 3050*1 | 2700 | 3050*2 |
|  | FRN0325G2■-4G | 2500 | 3300*1 | 3050 | 3400*2 |
|  | FRN0377G2■-4G | 3100 | 4000*1 | 3900 | 4350*2 |
|  | FRN0432G2■-4G | 3850 | 5000*1 | 4250 | 4750*2 |
|  | FRN0520G2■-4G | 4350 | 5600*1 | 5600 | 6200*2 |
|  | FRN0650G2■-4G | 5300 | 6900*1 | 6500 | 7300*2 |
|  | FRN0740G2■-4G | 6000 | 7800*1 | 7500 | 8350*2 |
|  | FRN0960G2■-4G | 6450 | 8450*1 | 8100 | 9100*2 |
|  | FRN1040G2■-4G | 7350 | 9650*1 | 9200 | 10350*2 |
|  | FRN1170G2■-4G | 9600 | 10700*1 | 11550 | 12950*2 |
|  | FRN1386G2■-4G | 11900 | 13300*1 | 13500 | 13800*2 |

(Note) $\square$ in the inverter type is replaced by a letter of the alphabet.
S (basic type), E (type with built-in EMC filter)
Low carrier : 2 kHz
High carrier : FRN0115G2S-2G/FRN0060G2口-4G or less : 16 kHz [*1: 10 kHz ]
FRN0146G2S-2G/FRN0075G2口-4G or higher : 15 kHz [*1: $\left.10 \mathrm{kHz},{ }^{*} 2: 6 \mathrm{kHz}\right]$

## Appendix E Conversion to other than SI Units

All expressions given in Chapter 10 "SELECTING OPTIMAL MOTOR AND INVERTER CAPACITIES" are based on SI units (The International System of Units). This section explains how to convert expressions to other units.

## E. 1 Conversion of units

## (1) Force

- 1 [kgf] $\approx 9.8$ [N]
- $1[\mathrm{~N}] \approx 0.102$ [kgf]
(2) Torque
- 1 [kgf $\cdot \mathrm{m}] \approx 9.8[\mathrm{~N} \cdot \mathrm{~m}]$
- $1[\mathrm{~N} \cdot \mathrm{~m}] \approx 0.102[\mathrm{kgf} \cdot \mathrm{m}]$
(3) Power (energy)
- $1[\mathrm{kgf} \cdot \mathrm{m}] \approx 9.8[\mathrm{~N} \cdot \mathrm{~m}]=9.8[\mathrm{~J}]=9.8[\mathrm{~W} \cdot \mathrm{~s}]$
(4) Power
- $1[\mathrm{kgf} \cdot \mathrm{m} / \mathrm{s}] \approx 9.8[\mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}]=9.8[\mathrm{~J} / \mathrm{s}]=9.8[\mathrm{~W}]$
- $1[\mathrm{~N} \cdot \mathrm{~m} / \mathrm{s}] \approx 1[\mathrm{~J} / \mathrm{s}]=1[\mathrm{~W}] \approx 0.102[\mathrm{kgf} \cdot \mathrm{m} / \mathrm{s}]$
(5) Rotation speed
- $1\left[\mathrm{~min}^{-1}\right]=\frac{2 \pi}{60}[\mathrm{rad} / \mathrm{s}] \approx 0.1047[\mathrm{rad} / \mathrm{s}]$
- $1[\mathrm{rad} / \mathrm{s}]=\frac{60}{2 \pi}\left[\mathrm{~min}^{-1}\right] \approx 9.549\left[\mathrm{~min}^{-1}\right]$
(6) Inertia constant
$J\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ : moment of inertia
$\mathrm{GD}^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]$ : flywheel effect
- $\mathrm{GD}^{2}=4 \mathrm{~J}$
- $\mathrm{J}=\frac{\mathrm{GD}^{2}}{4}$
(7) Pressure, stress
- 1 [mmAq] $\approx 9.8[\mathrm{~Pa}] \approx 9.8\left[\mathrm{~N} / \mathrm{m}^{2}\right]$
- $1[\mathrm{~Pa}] \approx 1\left[\mathrm{~N} / \mathrm{m}^{2}\right] \approx 0.102[\mathrm{mmAq}]$
- 1 [bar] $\approx 100000[\mathrm{~Pa}] \approx 1.02\left[\mathrm{~kg} \cdot \mathrm{~cm}^{2}\right]$
- 1 [kg•cm²] $\approx 98000[\mathrm{~Pa}] \approx 980[\mathrm{mbar}]$
- 1 barometric pressure = 1013 [mbar] = 760 [ mmHg$]$ $=101300[\mathrm{~Pa}] \approx 1.033\left[\mathrm{~kg} / \mathrm{cm}^{2}\right]$


## E. 2 Calculation formulas

(1) Torque, power, rotation speed

- $\mathrm{P}[\mathrm{W}] \approx \frac{2 \pi}{60} \cdot \mathrm{~N}\left[\mathrm{~min}^{-1}\right] \cdot \tau[\mathrm{N} \cdot \mathrm{m}]$
$\cdot P[W] \approx 1.026 \cdot \mathrm{~N}\left[\mathrm{~min}^{-1}\right] \cdot \mathrm{T}[\mathrm{kgf} \cdot \mathrm{m}]$
- $\tau[\mathrm{N} \cdot \mathrm{m}] \approx 9.55 \cdot \frac{\mathrm{P}[\mathrm{W}]}{\mathrm{N}\left[\mathrm{min}^{-1}\right]}$
- T $[\mathrm{kgf} \cdot \mathrm{m}] \approx 0.974 \cdot \frac{\mathrm{P}[\mathrm{W}]}{\mathrm{N}\left[\mathrm{min}^{-1}\right]}$
(2) Kinetic energy
$\cdot E[J] \approx \frac{1}{182.4} \cdot \mathrm{~J}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right] \cdot \mathrm{N}^{2}\left[\left(\mathrm{~min}^{-1}\right)^{2}\right]$
$\cdot E[J] \approx \frac{1}{730} \cdot G^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right] \cdot \mathrm{N}^{2}\left[\left(\mathrm{~min}^{-1}\right)^{2}\right]$
(3) Linear motion load torque
[Driving mode]
- $\tau[\mathrm{N} \cdot \mathrm{m}] \approx 0.159$
$\frac{\mathrm{V}[\mathrm{m} / \mathrm{min}]}{\mathrm{N}_{\mathrm{M}}\left[\mathrm{min}^{-1}\right] \cdot \eta_{G}} \cdot \mathrm{~F}[\mathrm{~N}]$
- $\mathrm{T}[\mathrm{kgf} \cdot \mathrm{m}] \approx 0.159 \quad \frac{\mathrm{~V}[\mathrm{~m} / \mathrm{min}]}{\mathrm{N}_{\mathrm{M}}\left[\mathrm{min}^{-1}\right] \cdot \eta_{\mathrm{G}}} \cdot \mathrm{F}[\mathrm{kgf}]$
[Braking mode]
- $\tau[\mathrm{N} \cdot \mathrm{m}] \approx 0.159$
- T $[\mathrm{kgf} \cdot \mathrm{m}] \approx 0.159$

$$
\begin{aligned}
& \frac{\mathrm{V}[\mathrm{~m} / \mathrm{min}]}{\mathrm{N}_{\mathrm{M}}\left[\mathrm{~min}^{-1}\right] / \eta_{\mathrm{G}}} \cdot \mathrm{~F}[\mathrm{~N}] \\
& \frac{\mathrm{V}[\mathrm{~m} / \mathrm{min}]}{\mathrm{N}_{\mathrm{M}}\left[\mathrm{~min}^{-1}\right] / \eta_{\mathrm{G}}} \cdot \mathrm{~F}[\mathrm{kgf}]
\end{aligned}
$$

## (4) Acceleration torque

[Driving mode]
$\cdot \tau[\mathrm{N} \cdot \mathrm{m}] \approx \frac{\mathrm{J}\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]}{9.55} \cdot \frac{\Delta \mathrm{~N}\left[\mathrm{~min}^{-1}\right]}{\Delta \mathrm{t}[\mathrm{s}] \cdot \eta_{\mathrm{G}}}$
$\cdot \mathrm{T}[\mathrm{kgf} \cdot \mathrm{m}] \approx \frac{\mathrm{GD}^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]}{375} \cdot \frac{\Delta \mathrm{~N}\left[\mathrm{~min}^{-1}\right]}{\Delta \mathrm{t}[\mathrm{s}] \cdot \eta_{\mathrm{G}}}$
[Braking mode]
$\cdot \tau[\mathrm{N} \cdot \mathrm{m}] \approx \frac{\mathrm{J}\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]}{9.55} \cdot \frac{\Delta \mathrm{~N}\left[\mathrm{~min}^{-1}\right] \cdot \eta_{\mathrm{G}}}{\Delta \mathrm{t}[\mathrm{s}]}$
$\cdot \mathrm{T}[\mathrm{kgf} \cdot \mathrm{m}] \approx \frac{\mathrm{GD}^{2}\left[\mathrm{~kg} \cdot \mathrm{~m}^{2}\right]}{375} \cdot \frac{\Delta \mathrm{~N}\left[\mathrm{~min}^{-1}\right] \cdot \eta_{\mathrm{G}}}{\Delta \mathrm{t}[\mathrm{s}]}$

## (5) Acceleration time

$\cdot \mathrm{t}_{\mathrm{ACC}}[\mathrm{s}] \approx \frac{\mathrm{J}_{1}+\mathrm{J}_{2} / \eta_{\mathrm{G}}\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]}{\tau_{\mathrm{M}}-\tau_{\mathrm{L}} / \eta_{\mathrm{G}}[\mathrm{N} \cdot \mathrm{m}]} \cdot \frac{\Delta \mathrm{N}\left[\mathrm{min}^{-1}\right]}{9.55}$
$\cdot \mathrm{t}_{\mathrm{ACC}}[\mathrm{s}] \approx \frac{\mathrm{GD}_{1}{ }^{2}+\mathrm{GD}_{2}{ }^{2} / \eta_{\mathrm{G}}\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]}{\mathrm{T}_{\mathrm{M}}-\mathrm{T}_{\mathrm{L}} / \eta_{\mathrm{G}}[\mathrm{kgf} \cdot \mathrm{m}]} \cdot \frac{\Delta \mathrm{N}\left[\mathrm{min}^{-1}\right]}{375}$
(6) Deceleration time
$\cdot \mathrm{t}_{\mathrm{DEC}}[\mathrm{s}] \approx \frac{\mathrm{J}_{1}+\mathrm{J}_{2} \cdot \eta_{\mathrm{G}}\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]}{\tau_{\mathrm{M}}-\tau_{\mathrm{L}} \cdot \eta_{\mathrm{G}}[\mathrm{N} \cdot \mathrm{m}]} \cdot \frac{\Delta \mathrm{N}\left[\mathrm{min}^{-1}\right]}{9.55}$
$\cdot \mathrm{t}_{\mathrm{DEC}}[\mathrm{s}] \approx \frac{\mathrm{GD}_{1}{ }^{2}+\mathrm{GD}_{2}{ }^{2} \cdot \eta_{\mathrm{G}}\left[\mathrm{kg} \cdot \mathrm{m}^{2}\right]}{\mathrm{T}_{\mathrm{M}}-\mathrm{T}_{\mathrm{L}} \cdot \eta_{\mathrm{G}}[\mathrm{kgf} \cdot \mathrm{m}]} \cdot \frac{\Delta \mathrm{N}\left[\mathrm{min}^{-1}\right]}{375}$

## Appendix F Permissible Current of Insulated Wires

The tables below list the permissible current of IV wires, HIV wires, and 600 V cross-linked polyethylene insulated wires.

- IV wire (maximum permissible temperature: $60^{\circ} \mathrm{C}\left(140^{\circ} \mathrm{F}\right)$ )

Table F-1 (a) Permissible current of insulated wires

| $\begin{aligned} & \text { Wire size } \\ & \left(\mathrm{mm}^{2}\right) \end{aligned}$ | Permissible current Threshold value ( $30^{\circ} \mathrm{C}$ or less) lo (A) | Aerial wiring |  |  |  |  | Wire duct wiring ( 3 wires or less in same duct) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 35^{\circ} \mathrm{C} \\ (\mathrm{Io} \times 0.91) \\ \text { (A) } \end{gathered}$ | $\begin{gathered} 40^{\circ} \mathrm{C} \\ (\mathrm{Io} \times 0.82) \\ \text { (A) } \end{gathered}$ | $\begin{gathered} 45^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.71) \\ \text { (A) } \end{gathered}$ | $\begin{gathered} 50^{\circ} \mathrm{C} \\ (\mathrm{Io} \times 0.58) \\ (\mathrm{A}) \\ \hline \end{gathered}$ | $\begin{gathered} 55^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.41) \end{gathered}$ <br> (A) | $\begin{gathered} 35^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.64) \end{gathered}$ <br> (A) | $\begin{gathered} 40^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.57) \end{gathered}$ <br> (A) | $\begin{gathered} 45^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.49) \end{gathered}$ <br> (A) | $\begin{gathered} 50^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.40) \end{gathered}$ <br> (A) |
| 2.0 | 27 | 24 | 22 | 19 | 15 | 11 | 17 | 15 | 13 | 10 |
| 3.5 | 37 | 33 | 30 | 26 | 21 | 15 | 23 | 21 | 18 | 14 |
| 5.5 | 49 | 44 | 40 | 34 | 28 | 20 | 31 | 28 | 24 | 19 |
| 8.0 | 61 | 55 | 49 | 43 | 35 | 24 | 38 | 34 | 30 | 24 |
| 14 | 88 | 80 | 71 | 62 | 50 | 35 | 56 | 50 | 43 | 35 |
| 22 | 115 | 104 | 93 | 81 | 66 | 46 | 73 | 65 | 56 | 46 |
| 38 | 162 | 147 | 132 | 114 | 93 | 66 | 103 | 92 | 80 | 65 |
| 60 | 217 | 198 | 177 | 153 | 125 | 88 | 138 | 124 | 107 | 87 |
| 100 | 298 | 272 | 243 | 210 | 172 | 121 | 190 | 170 | 147 | 120 |
| 150 | 395 | 360 | 322 | 279 | 228 | 161 | 252 | 225 | 195 | 159 |
| 200 | 469 | 428 | 382 | 331 | 270 | 191 | 299 | 268 | 232 | 189 |
| 250 | 556 | 507 | 453 | 393 | 321 | 226 | 355 | 317 | 275 | 224 |
| 325 | 650 | 593 | 530 | 459 | 375 | 265 | 415 | 371 | 321 | 262 |
| 400 | 745 | 680 | 608 | 526 | 430 | 304 | 476 | 425 | 368 | 301 |
| 500 | 842 | 768 | 687 | 595 | 486 | 343 | 538 | 481 | 416 | 340 |
| $2 \times 100$ | 497 | 453 | 405 | 351 | 286 | 202 | 317 | 284 | 246 | 200 |
| $2 \times 150$ | 658 | 600 | 537 | 465 | 379 | 268 | 420 | 376 | 325 | 265 |
| $2 \times 200$ | 782 | 713 | 638 | 552 | 451 | 319 | 499 | 446 | 387 | 316 |
| $2 \times 250$ | 927 | 846 | 756 | 655 | 535 | 378 | 592 | 529 | 458 | 374 |
| $2 \times 325$ | 1083 | 988 | 884 | 765 | 625 | 442 | 692 | 618 | 536 | 437 |
| $2 \times 400$ | 1242 | 1133 | 1014 | 878 | 717 | 507 | 793 | 709 | 614 | 501 |
| $2 \times 500$ | 1403 | 1280 | 1145 | 992 | 810 | 572 | 896 | 801 | 694 | 567 |

■ HIV wire (maximum permissible temperature: $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right)$ )
Table F-1 (b) Permissible current of insulated wires

| Wire size ( $\mathrm{mm}^{2}$ ) | Permissible current <br> Threshold value ( $30^{\circ} \mathrm{C}$ or less) lo (A) | Aerial wiring |  |  |  |  | Wire duct wiring ( 3 wires or less in same duct) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 35^{\circ} \mathrm{C} \\ (\text { (lo } \times 0.94) \end{gathered}$ <br> (A) | $\begin{gathered} 40^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.88) \end{gathered}$ <br> (A) | $\begin{gathered} 45^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.81) \end{gathered}$ <br> (A) | $\begin{gathered} 50^{\circ} \mathrm{C} \\ (\text { lo } \times 0.74) \end{gathered}$ <br> (A) | $\begin{gathered} 55^{\circ} \mathrm{C} \\ (10 \times 0.66) \end{gathered}$ <br> (A) | $\begin{gathered} 35^{\circ} \mathrm{C} \\ (\text { (Io } \times 0.65) \end{gathered}$ <br> (A) | $\begin{gathered} 40^{\circ} \mathrm{C} \\ (\text { (oo } \times 0.61) \end{gathered}$ <br> (A) | $\begin{gathered} 45^{\circ} \mathrm{C} \\ (\mathrm{Io} \times 0.57) \end{gathered}$ <br> (A) | $\begin{gathered} 50^{\circ} \mathrm{C} \\ (\text { (lo } \times 0.52) \end{gathered}$ <br> (A) |
| 2.0 | 33 | 31 | 29 | 26 | 24 | 21 | 21 | 20 | 18 | 17 |
| 3.5 | 45 | 42 | 39 | 36 | 33 | 29 | 29 | 27 | 25 | 23 |
| 5.5 | 60 | 56 | 52 | 48 | 44 | 39 | 39 | 36 | 34 | 31 |
| 8.0 | 74 | 69 | 65 | 59 | 54 | 48 | 48 | 45 | 42 | 38 |
| 14 | 107 | 100 | 94 | 86 | 79 | 70 | 69 | 65 | 60 | 55 |
| 22 | 140 | 131 | 123 | 113 | 103 | 92 | 91 | 85 | 79 | 72 |
| 38 | 198 | 186 | 174 | 160 | 146 | 130 | 128 | 120 | 112 | 102 |
| 60 | 265 | 249 | 233 | 214 | 196 | 174 | 172 | 161 | 151 | 137 |
| 100 | 364 | 342 | 320 | 294 | 269 | 240 | 236 | 222 | 207 | 189 |
| 150 | 483 | 454 | 425 | 391 | 357 | 318 | 313 | 294 | 275 | 251 |
| 200 | 574 | 539 | 505 | 464 | 424 | 378 | 373 | 350 | 327 | 298 |
| 250 | 680 | 639 | 598 | 550 | 503 | 448 | 442 | 414 | 387 | 353 |
| 325 | 796 | 748 | 700 | 644 | 589 | 525 | 517 | 485 | 453 | 413 |
| 400 | 912 | 857 | 802 | 738 | 674 | 601 | 592 | 556 | 519 | 474 |
| 500 | 1,031 | 969 | 907 | 835 | 762 | 680 | 670 | 628 | 587 | 536 |
| $2 \times 100$ | 608 | 571 | 535 | 492 | 449 | 401 | 395 | 370 | 346 | 316 |
| $2 \times 150$ | 805 | 756 | 708 | 652 | 595 | 531 | 523 | 491 | 458 | 418 |
| $2 \times 200$ | 957 | 899 | 842 | 775 | 708 | 631 | 622 | 583 | 545 | 497 |
| $2 \times 250$ | 1,135 | 1066 | 998 | 919 | 839 | 749 | 737 | 692 | 646 | 590 |
| $2 \times 325$ | 1,326 | 1246 | 1,166 | 1,074 | 981 | 875 | 861 | 808 | 755 | 689 |
| $2 \times 400$ | 1,521 | 1429 | 1,338 | 1,232 | 1,125 | 1,003 | 988 | 927 | 866 | 790 |
| $2 \times 500$ | 1,718 | 1614 | 1,511 | 1,391 | 1,271 | 1,133 | 1,116 | 1,047 | 979 | 893 |

## 600 V crosslinked polyethylene insulated wire (maximum permissible temperature: $90^{\circ} \mathrm{C}\left(194{ }^{\circ} \mathrm{F}\right)$ )

Table F-3 (c) Permissible current of insulated wires

| Wire size ( $\mathrm{mm}^{2}$ ) | Permissible current <br> Threshold value ( $30^{\circ} \mathrm{C}$ or less) lo (A) | Aerial wiring |  |  |  |  | Wire duct wiring (3 wires or less in same duct) |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\begin{gathered} 35^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.95) \\ (\mathrm{A}) \end{gathered}$ | $\begin{gathered} 40^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.91) \end{gathered}$ <br> (A) | $\begin{gathered} 45^{\circ} \mathrm{C} \\ (10 \times 0.86) \end{gathered}$ <br> (A) | $\begin{gathered} 50^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.81) \\ (\mathrm{A}) \end{gathered}$ | $\begin{gathered} 55^{\circ} \mathrm{C} \\ \text { (lo } \times 0.76 \text { ) } \end{gathered}$ <br> (A) | $\begin{gathered} 35^{\circ} \mathrm{C} \\ \text { (Io } \times 0.67 \text { ) } \end{gathered}$ <br> (A) | $\begin{gathered} 40^{\circ} \mathrm{C} \\ \text { (lo } \times 0.63 \text { ) } \end{gathered}$ <br> (A) | $\begin{gathered} 45^{\circ} \mathrm{C} \\ (\mathrm{lo} \times 0.60) \\ (\mathrm{A}) \end{gathered}$ | $\begin{gathered} 50^{\circ} \mathrm{C} \\ \text { (lo } \times 0.57 \text { ) } \end{gathered}$ <br> (A) |
| 2.0 | 38 | 36 | 34 | 32 | 30 | 28 | 25 | 23 | 22 | 21 |
| 3.5 | 52 | 49 | 47 | 44 | 42 | 39 | 34 | 32 | 31 | 29 |
| 5.5 | 69 | 65 | 62 | 59 | 55 | 52 | 46 | 43 | 41 | 39 |
| 8.0 | 86 | 81 | 78 | 73 | 69 | 65 | 57 | 54 | 51 | 49 |
| 14 | 124 | 117 | 112 | 106 | 100 | 94 | 83 | 78 | 74 | 70 |
| 22 | 162 | 153 | 147 | 139 | 131 | 123 | 108 | 102 | 97 | 92 |
| 38 | 229 | 217 | 208 | 196 | 185 | 174 | 153 | 144 | 137 | 130 |
| 60 | 306 | 290 | 278 | 263 | 247 | 232 | 205 | 192 | 183 | 174 |
| 100 | 421 | 399 | 383 | 362 | 341 | 319 | 282 | 265 | 252 | 239 |
| 150 | 558 | 530 | 507 | 479 | 451 | 424 | 373 | 351 | 334 | 318 |
| 200 | 663 | 629 | 603 | 570 | 537 | 503 | 444 | 417 | 397 | 377 |
| 250 | 786 | 746 | 715 | 675 | 636 | 597 | 526 | 495 | 471 | 448 |
| 325 | 919 | 873 | 836 | 790 | 744 | 698 | 615 | 578 | 551 | 523 |
| 400 | 1,053 | 1,000 | 958 | 905 | 852 | 800 | 705 | 663 | 631 | 600 |
| 500 | 1,190 | 1,130 | 1,082 | 1,023 | 963 | 904 | 797 | 749 | 714 | 678 |
| $2 \times 100$ | 702 | 666 | 638 | 603 | 568 | 533 | 470 | 442 | 421 | 400 |
| $2 \times 150$ | 930 | 883 | 846 | 799 | 753 | 706 | 623 | 585 | 558 | 530 |
| $2 \times 200$ | 1,105 | 1,049 | 1,005 | 950 | 895 | 839 | 740 | 696 | 663 | 629 |
| $2 \times 250$ | 1,310 | 1,244 | 1,192 | 1,126 | 1,061 | 995 | 877 | 825 | 786 | 746 |
| $2 \times 325$ | 1,531 | 1,454 | 1,393 | 1,316 | 1,240 | 1,163 | 1,025 | 964 | 918 | 872 |
| $2 \times 400$ | 1,756 | 1,668 | 1,597 | 1,510 | 1,422 | 1,334 | 1,176 | 1,106 | 1,053 | 1,000 |
| $2 \times 500$ | 1,984 | 1,884 | 1,805 | 1,706 | 1,607 | 1,507 | 1,329 | 1,249 | 1,190 | 1,130 |

## Appendix G Conformity with Standards

## G. 1 Compliance with European Standards ( ( € )

The CE marking on Fuji products indicates that they comply with the essential requirements of the Electromagnetic Compatibility (EMC) Directive, Low Voltage Directive, and Machinery Directive issued by the Council of the European Communities.

## Note <br> Keep the ambient temperature to $50^{\circ} \mathrm{C}$ or less to comply with European standards. Products with no standards indicated do not comply with European Standards.

Table G.1-1 Compliance standards

|  | Standards |
| :--- | :--- |
|  | EN 61800-3 <br> Immunity: Second environment (Industrial) <br> Emission: <br> Eategory C2 or C3 <br> (Refer to Table G.1-2. Applicable only when an optional EMC-compliant filter is <br> attached.) <br> : Category C3 (Applicable only to the EMC filter built-in type of inverters) |
| Low Voltage <br> Directive | Adjustable speed electrical power drive systems. <br> Part 5-1: Safety requirements. Electrical, thermal and energy EN61800-5-1:2007 |
| Machine | EN ISO 13849-1 $\quad$ : Cat.3 PL:e <br> EN 60204-1$\quad$: Stop Category 0 <br> Directives <br> EN 61800-5-2 <br> EN 62061$\quad$SIL3 (Functional Safety : STO) |

* A basic type inverter that does not have a built-in EMC filter complies with the EMC Directive by combining it with an external filter dedicated to Fuji.


## Warning

Category C2 : In a domestic environment this product may cause radio interference in which case supplementary mitigation measures may be required.

Category C3: This type of PDS is not intended to be used on a low-voltage public network which supplies domestic premises ; radio frequency interference is expected if used on such a network.

Category C2 and C3: It has a risk about other equipment malfunction or breakdown by radiated electric field strength out of frequency range that is defined EN 61800-3: $2004+\mathrm{A} 1: 2012$ 2nd Environment and EN/IEC 61800-3: 2018 2nd Environment.

## [ 1] Compliance with EMC standards

The CE marking on inverters does not ensure that the entire equipment including our CE-marked products is compliant with the EMC Directive. Therefore, CE marking for the equipment shall be the responsibility of the equipment manufacturer. For this reason, Fuji's CE mark is indicated under the condition that the product shall be used within equipment meeting all requirements for the relevant Directives. Instrumentation of such equipment shall be the responsibility of the equipment manufacturer.
Generally, machinery or equipment includes not only our products but other devices as well. Manufacturers, therefore, shall design the whole system to be compliant with the relevant Directives.

## - List of EMC-compliant filters

To comply with standards, either use an inverter with built-in EMC filter, or use an inverter with no built-in EMC filter in combination with a dedicated Fuji external filter (option). No matter what the application, please install noise filters using the following recommended installation method. It is recommended that noise filters be installed inside metal cabinets to ensure more reliable compliance with standards.

Tip Our EMC compliance test is performed under the following conditions.
Wiring length (of the shielded cable) between the inverter (EMC filter built-in type) and motor: 5 m

[^49]Table G.1-2 EMC-compliant filters

| Power system | Inverter type | Filter type |  |
| :---: | :---: | :---: | :---: |
|  |  | HHD specification | HND specification |
| Three-phase 200 V | FRN0003G2S-2G | EFL-0.75SP-2 (*1) | - |
|  | FRN0005G2S-2G |  |  |
|  | FRN0008G2S-2G | EFL-3.7SP-2 (*1) |  |
|  | FRN0011G2S-2G |  |  |
|  | FRN0018G2S-2G |  |  |
|  | FRN0032G2S-2G | EFL-7.5SP-2 (*1) | EFL-7.5SP-2 (*1) |
|  | FRN0046G2S-2G |  | EFL-15SP-2 (*1) |
|  | FRN0059G2S-2G | EFL-15SP-2 (*1) |  |
|  | FRN0075G2S-2G |  |  |
|  | FRN0088G2S-2G | EFL-22SP-2 (*1) | EFL-22SP-2 (*1) |
|  | FRN0115G2S -2G |  | SF5536-180-40 |
|  | FRN0146G2S-2G | FS5536-180-40 | 5536-250-9 |
|  | FRN0180G2S-2G | FS5536-250-99-1 |  |
|  | FRN0215G2S-2G |  | SF5536-400-99-1 |
|  | FRN0288G2S-2G | FS5536-400-99-1 |  |
|  | FRN0346G2S-2G |  |  |
|  | FRN0432G2S-2G |  | FN3359-600-99 |
| Three-phase 400 V | FRN0002G2■-4G | FS5536-5-07(EFL-0.75G11-4) | - |
|  | FRN0003G2■-4G |  |  |
|  | FRN0004G2■-4G | $\begin{aligned} & \text { FS5536-12-07 } \\ & \text { (EFL-4.0G11-4) } \end{aligned}$ |  |
|  | FRN0006G2■-4G |  |  |
|  | FRN0009G2■-4G | FS21312-18-07 |  |
|  | FRN0018G2■-4G | $\begin{aligned} & \text { FS5536-35-07 } \\ & \text { (EFL-7.5G11-4) } \end{aligned}$ | $\begin{aligned} & \text { FS5536-35-07 } \\ & \text { (EFL-7.5G11-4) } \end{aligned}$ |
|  | FRN0023G2■-4G |  |  |
|  | FRN0031G2■-4G |  | FS5536-50-07 |
|  | FRN0038G2■-4G | $\begin{aligned} & \text { FS5536-50-07 } \\ & \text { (EFL-15G11-4) } \end{aligned}$ | $\begin{aligned} & \text { FS5536-72-07 } \\ & \text { (EFL-22G11-4) } \end{aligned}$ |
|  | FRN0045G2■-4G | $\begin{aligned} & \text { FS5536-72-07 } \\ & \text { (EFL-22G11-4) } \end{aligned}$ |  |
|  | FRN0060G2■-4G |  | FS21312-78-07 |
|  | FRN0075G2■-4G | FS5536-100-35 | FS5536-100-35 |
|  | FRN0091G2■-4G |  | FS5536-180-40 |
|  | FRN0112G2口-4G | FS5536-180-40 |  |
|  | FRN0150G2■-4G |  |  |
|  | FRN0180G2■-4G |  |  |
|  | FRN0216G2■-4G |  | FS5536-250-99-1 |
|  | FRN0260G2■-4G | FS5536-250-99-1 |  |
|  | FRN0325G2■-4G |  | FS5536-400-99-1 |
|  | FRN0377G2■-4G | FS5536-400-99-1 |  |
|  | FRN0432G2■-4G |  |  |
|  | FRN0520G2■-4G |  | FN3359-600-99(*2) |
|  | FRN0650G2■-4G | FN3359-600-99 (*2) | FN3359-800-99 (*2) |
|  | FRN0740G2■-4G |  |  |
|  | FRN0960G2■-4G | FN3359-800-99 (*2) | FN3359-1000-99 (*2) |
|  | FRN1040G2■-4G |  |  |
|  | FRN1170G2■-4G | FN3359-1000-99 (*2) | FN3359-1600-99 (*2) |
|  | FRN1386G2■-4G | FN3359-1600-99 (*2) |  |

(*1) Filter type EFL- $\square$ SP- $\square$ : Pass the EMC filter input cables (power cables and grounding cable in a bundle) through the attached ferrite ring reactor for reducing radio noise.
(*2) Emission Category C3

## Recommended installation method

To make the machinery or equipment fully compliant with the EMC Directive, certified technicians should wire the motor and inverter in strict accordance with the procedure described below.

## EMC-compliant filter (option) installation method

(1) Mount the inverter and the filter on a grounded panel or metal plate. Use shielded wires for the motor cable and route the cable as short as possible. Firmly clamp the shields to the metal plate to ground them. Furthermore, connect shields and motor grounding terminals electrically. Use wiring guides to keep the input line away from the output line as far as possible.
For inverters with a capacity of FRN0032G2S-2G/FRN0018G2口-4G to FRN0059G2S-2G/FRN0031G2口4G, connect the input grounding wire to the grounding terminal at the front, left-hand side, and the output grounding wire to that on the main circuit terminal block.
(Refer to Fig. G.1-1)


Fig. G.1-1 Wiring for the EMC Filter Built-in Type with a Capacity of FRN0032G2S-2G/ FRN0018G2■-4G to FRN0059G2S-2G/FRN0031G2■-4G
(2) For connection to inverter's control terminals and for connection of the RS-485 communication signal cable, use shielded wires. As with the motor connections, clamp the shields firmly to a grounded panel.
(3) If noise from the inverter exceeds the permissible level, enclose the inverter and its peripherals within a metal panel as shown in Fig. G.1-2.


Fig. G.1-2 EMC-compliant filter (option) installation method

## In case of EMC filter built-in type inverter

(1) Mount the inverter on a grounded panel or metal plate. Use shielded wires for the motor cable and route the cable as short as possible. Firmly clamp the shields to the metal plate to ground them. Further, connect the shielding layers electrically to the grounding terminal of the motor. Use a wiring guide, etc., and try as best as possible to keep input wires and output wires separate from one another.
(2) For connection to inverter's control terminals and for connection of the RS-485 communication signal cable, use shielded wires. As with the motor connections, clamp the shields firmly to a grounded panel.
(3) If noise from the inverter exceeds the permissible level, enclose the inverter and its peripherals within a metal panel as shown in Fig. G.1-3.


Fig. G.1-3 Installation method for built-in type EMC-compliant filter

## Leakage current of EMC-filter built-in type of inverters

An EMC filter uses grounding capacitors for noise suppression which increase leakage current. The use of grounding capacitors leads to an increase in leakage current, and therefore a check should be carried out to ensure that the power supply system has not been affected.

## $\triangle$ CAUTIONA

As the touch current (leakage current) of inverters with EMC-filter is relatively high, it is of essential importance to always assure a reliable connection to Protective Earth (PE). (Current values are shown in Table G.1-3.)
In Table G.1-3, for the inverter types whose leakage currents are equal to or exceed the critical value of 3.5 mA AC or 10 mA DC (IEC 61800-5-1), the minimum cross sectional area of the PE-conductor should be:

- $10 \mathrm{~mm}^{2}$ (Cu-conductors)
- $16 \mathrm{~mm}^{2}$ (Al-conductors)

Failure to observe this could result in electric shock.
Table G.1-3 Leakage current of EMC filter built-in type of inverters

| Power system | Inverter type | Leakage current (mA) |
| :---: | :---: | :---: |
| Three-phase 400 V *1) | FRN0002G2E-4G | 3 |
|  | FRN0003G2E-4G |  |
|  | FRN0004G2E-4G |  |
|  | FRN0006G2E-4G |  |
|  | FRN0009G2E-4G |  |
|  | FRN0018G2E-4G | 7 |
|  | FRN0023G2E-4G |  |
|  | FRN0031G2E-4G |  |
|  | FRN0038G2E-4G | 5 |
|  | FRN0045G2E-4G |  |
|  | FRN0060G2E-4G |  |
|  | FRN0075G2E-4G | 11 |
|  | FRN0091G2E-4G |  |
|  | FRN0112G2E-4G |  |
|  | FRN0150G2E-4G | 5 |
|  | FRN0180G2E-4G |  |
|  | FRN0216G2E-4G |  |
|  | FRN0260G2E-4G |  |
|  | FRN0325G2E-4G |  |
|  | FRN0377G2E-4G |  |
|  | FRN0432G2E-4G |  |
|  | FRN0520G2E-4G |  |
|  | FRN0650G2E-4G |  |
|  | FRN0740G2E-4G |  |
|  | FRN0960G2E-4G |  |
|  | FRN1040G2E-4G |  |
|  | FRN1170G2E-4G |  |
|  | FRN1386G2E-4G |  |

*1)Calculated based on these measuring conditions: $480 \mathrm{~V} / 60 \mathrm{~Hz}$, neutral grounding, interphase voltage unbalance ratio of $2 \%$.

## [ 2 ] Compliance with European Low Voltage Directive

General-purpose inverters are subject to compliance with the European Low Voltage Directive. The CE marking on inverters represents a self-declaration that the product complies with the Low Voltage Directive.

## - Note

If using as a European Low Voltage Directive compatible product, compatibility with Low Voltage Directive 2014/35/EU is achieved by installing the product as follows.

## Compliance with European standards

Adjustable speed electrical power drive systems.
Part 5-1: Safety requirements. Electrical, thermal and energy EN61800-5-1

## Compliance with European Low Voltage Directive


(cont.)

Compliance with European Low Voltage Directive（cont．）

| Power supply system | Standard applicable motor（kW） | Inverter type | Specification | Fuse rating（A） |
| :---: | :---: | :---: | :---: | :---: |
| Three－phase 400 V | 0.4 | FRN0002G2口－4G | HHD | 50（IEC 60269－4） |
|  | 0.75 | FRN0003G2口－4G |  |  |
|  | 1.5 | FRN0004G2■－4G |  |  |
|  | 2.2 | FRN0006G2■－4G |  | 63（IEC 60269－4） |
|  | 3.7 | FRN0009G2口－4G |  |  |
|  | 5.5 | FRN0018G2■－4G | HHD | 100（IEC 60269－4） |
|  | 75 |  | HND |  |
|  | 7.5 | FRN0023G2■－4G | HHD |  |
|  | 11 |  | HND |  |
|  |  | FRN0031G2■－4G | HHD | 125 （IEC60269－4） |
|  | 15 |  | HND |  |
|  |  | FRN0038G2口－4G | HHD | 160（IEC 60269－4） |
|  | 18.5 |  | HND |  |
|  |  | FRN0045G2■－4G | HHD |  |
|  | 22 |  | HND |  |
|  |  | FRN0060G2■－4G | HHD | 200（IEC 60269－4） |
|  | 30 |  | HND |  |
|  |  | FRN0075G2口－4G | HHD | 315（IEC 60269－4） |
|  | 37 |  | HND |  |
|  |  | FRN0091G2■－4G | HHD |  |
|  | 45 |  | HND |  |
|  |  | FRN0112G2■－4G | HHD | 350（IEC 60269－4） |
|  | 55 |  | HND |  |
|  |  | FRN0150G2口－4G | HHD | 400（IEC 60269－4） |
|  | 75 |  | HND |  |
|  |  | FRN0180G2■－4G | HHD | 350（IEC 60269－4） |
|  | 90 |  | HND |  |
|  |  | FRN0216G2■－4G | HHD |  |
|  | 110 |  | HND |  |
|  |  | FRN0260G2■－4G | HHD | 400（IEC 60269－4） |
|  | 132 |  | HND |  |
|  |  | FRN0325G2■－4G | HHD | 500（IEC 60269－4） |
|  | 160 |  | HND |  |
|  |  | FRN0377G2■－4G | HHD | 550（IEC 60269－4） |
|  | 200 |  | HND |  |
|  |  | FRN0432G2■－4G | HHD | 700（IEC 60269－4） |
|  | 220 |  | HND |  |
|  |  | FRN0520G2■－4G | HHD | 800（IEC 60269－4） |
|  | 280 |  | HND |  |
|  |  | FRN0650G2■－4G | HHD | 1000（IEC 60269－4） |
|  | 355 |  | HND |  |
|  | 315 | FRN0740G2■－4G | HHD | 1100（IEC 60269－4） |
|  | 400 |  | HND |  |
|  | 355 | FRN0960G2口－4G | HHD | 1250（IEC 60269－4） |
|  | 400 |  | HND |  |
|  | 500 |  | HND |  |
|  | 400 | FRN1040G2口－4G | HHD | 1500（IEC 60269－4） |
|  | 500 |  | HND |  |
|  | 560 |  | HND |  |
|  | 500 | FRN1170G2■－4G | HHD | 2000（IEC60269－4） |
|  | 630 |  | HND |  |
|  |  | FRN1386G2■－4G | HHD |  |
|  | 710 |  | HND |  |

Note）The $\square$ in the inverter type is replaced by a letter of the alphabet indicating the type．

（cont．）

## Compliance with European Low Voltage Directive(cont.)

## WARNING

3. When used with the inverter, a molded case circuit breaker (MCCB), residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) or magnetic contactor (MC) should conform to the EN or IEC standards.
4. When you use a residual-current-operated protective device (RCD)/earth leakage circuit breaker (ELCB) for protection from electric shock in direct or indirect contact power lines or nodes, be sure to install type B of RCD/ELCB on the input (primary) of the inverter.


Note:
*1 The frame size and model of the MCCB or RCD/ELCB (with overcurrent protection) will vary, depending on the power transformer capacity. Refer to the related technical documentation for details.
*2 Sensitivity current settings in the TT-system vary each country, so follow the instructions of the authorities.
(cont.)

Compliance with European Low Voltage Directive（cont．）
$\triangle$ WARNING』


Note：A box $(\square)$ in the above table replaces $S$（Basic type）or E（EMC filter built－in type）depending on the enclosure．
＊1 The frame size and model of the MCCB or RCD／ELCB（with overcurrent protection）will vary，depending on the power transformer capacity．Refer to the related technical documentation for details．
＊2 Sensitivity current settings in the TT－system vary each country，so follow the instructions of the authorities．
（cont．）

## Compliance with European Low Voltage Directive (cont.)

## $\triangle$ WARNING』

5.The inverter should be used in an environment that does not exceed Pollution Degree 2 requirements. If the environment has a Pollution Degree 3 or 4, install the inverter in an enclosure of IP54 or higher.
6. Install the inverter, AC or DC reactor, input or output filter in an enclosure with minimum degree of protection of IP2X (Top surface of enclosure shall be minimum IP4X when it can be easily accessed), to prevent human body from touching directly to live parts of these equipment.
7. Do not connect any copper wire directly to grounding terminals. Use crimp terminals with tin or equivalent plating to connect them.
8. When you use an inverter at an altitude of more than 2000 m , you should apply basic insulation for the control circuits of the inverter. The inverter cannot be used at altitudes of more than 3000 m .
9.Use the wires indicated in IEC60364-5-52.

|  |  | Inverter type |  | Molded-case circuitbreaker (MCCB) or earth leakage circuit breaker (RCD/ELCB) *1 rated current |  | Recommended wire size ( $\mathrm{mm}^{2}$ ) |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Main terminal |  |  |  |  |  |  |
|  |  |  |  |  |  | Main power supply input [L1/R, L2/S, L3/T] *2 <br> Grounding for inverter [ ${ }^{(3)}$ ] *3 |  | $\begin{gathered} \text { Inverter } \\ \text { output } \\ {[\mathrm{U}, \mathrm{~V}, \mathrm{~W}] * 2} \end{gathered}$ | $\left\|\begin{array}{c} \mathrm{DC} \\ \text { reactor } \\ {[\mathrm{P} 1, \mathrm{P}(+)]^{*} 2} \end{array}\right\|$ | Braking resistor $\left[\begin{array}{c}\mathrm{P}(+), \mathrm{DB}]\end{array}\right.$ |  |  |
|  |  |  |  | With DC reactor | Without DC reactor | $\begin{aligned} & \text { With } \\ & \text { DC } \\ & \text { reactor } \end{aligned}$ | Without DC reactor |  |  |  |  |  |
|  | 0.4 | FRN0003G2S-2G | HHD | 5 | 5 | 2.5 | 2.5 | 2.5 | 2.5 | 2.5 | 0.75 | - |
|  | 0.75 | FRN0005G2S-2G |  |  | 10 |  |  |  |  |  |  |  |
|  | 1.5 | FRN0008G2S-2G |  | 10 | 15 |  |  |  |  |  |  | 2.5 |
|  | 2.2 | FRN0011G2S-2G |  |  | 20 |  |  |  |  |  |  |  |
|  | 3.7 | FRN0018G2S-2G |  | 20 | 30 |  | 4 |  |  |  |  |  |
|  | 5.5 | FRN0032G2S-2G | HHD | 30 | 50 | 4 | 6 | 4 | 4 |  |  |  |
|  | 7.5 |  | HND | 40 | 75 | 6 | 10 | 6 | 6 |  |  |  |
|  |  | FRN0046G2S-2G | HHD |  |  |  |  | 10 |  |  |  |  |
|  |  |  | HND | 50 | 100 | 10 | 16 |  | 16 |  |  |  |
|  | 11 | FRN0059G2S-2G | HHD |  |  |  |  |  |  |  |  |  |
|  | 15 |  | HND | 75 | 125 | 16 | 25 | 16 | 25 |  |  |  |
|  |  | FRN0075G2S-2G | HHD |  |  |  |  |  |  |  |  |  |
|  | 18.5 |  | HND | 100 | 150 | 25 | 35 | 25 | 35 |  |  |  |
|  |  | FRN0088G2S-2G | HHD |  |  |  |  |  |  |  |  |  |
|  | 22 |  | HND |  | 175 | 35 | 50 | 35 |  |  |  |  |
|  |  | FRN0115G2S -2G | HHD |  |  |  |  |  |  |  |  |  |
|  | 30 |  | HND | 150 | 200 | 50 | 70 | 50 | 70 |  |  |  |
|  |  | FRN0146G2S-2G | HHD |  |  |  |  |  |  |  |  |  |
|  | 37 |  | HND | 175 | 250 | 70 | 95 | 70 | 95 |  |  |  |
|  |  | FRN0180G2S-2G | HHD |  |  |  |  |  |  | 4 |  |  |
|  | 45 |  | HND | 200 | 300 | 70 | $50 \times 2$ | 95 | $35 \times 2$ |  |  |  |
|  |  | FRN0215G2S-2G | HHD |  |  |  |  |  |  | 6 |  |  |
|  | 55 |  | HND | 250 | 350 | $35 \times 2$ | $70 \times 2$ | $35 \times 2$ | $50 \times 2$ |  |  |  |
|  |  | FRN0288G2S-2G | HHD |  |  |  |  |  |  | 10 |  |  |
|  | 75 |  | HND | 350 | - | $70 \times 2$ | - | $70 \times 2$ | $95 \times 2$ |  |  |  |
|  |  | FRN0346G2S-2G | HHD |  |  |  |  |  |  | - |  |  |
|  | 90 |  | HND | 400 |  | $70 \times 2$ |  | $95 \times 2$ | $120 \times 2$ |  |  |  |
|  |  | FRN0432G2S-2G | HHD |  |  |  |  |  |  |  |  |  |
|  | 110 |  | HND | 500 |  | $120 \times 2$ |  | $120 \times 2$ | $150 \times 2$ |  |  |  |

Note:
*1 The frame size and type of a MCCB or RCD/ELCB (with overcurrent protection) vary with the capacity of the power supply transformer. Refer to the related technical documents for detailed selection.
*2 The recommended wire sizes for the main circuit terminals are examples of using a PVC wire (for $70^{\circ} \mathrm{C}, 600$ V ) at a surrounding temperature of $40^{\circ} \mathrm{C}$.
*3 Only one piece of wire with a recommended size can be connected to a ground terminal.
(cont.)

## $\triangle$ WARNINGA



Note: A box ( $\square$ ) in the above table replaces $S$ (Basic type) or E (EMC filter built-in type) depending on the enclosure.
*1 The frame size and type of a MCCB or RCD/ELCB (with overcurrent protection) vary with the capacity of the power supply transformer. Refer to the related technical documents for detailed selection.
*2 The recommended wire sizes for the main circuit terminals are examples of using a PVC wire (for $70^{\circ} \mathrm{C}, 600$ V ) at a surrounding temperature of $40^{\circ} \mathrm{C}$.
*3 Only one piece of wire with a recommended size can be connected to a ground terminal.
(cont.)

Compliance with European Low Voltage Directive（cont．）
WARNING』

|  |  | Inverter type |  | Molded case circuit breaker （MCCB） or Earth leakage breaker （RCD／ELCB）＊1 Rated current |  | Recommended wire size（ $\mathrm{mm}^{2}$ ） |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  |  |  |  |  | Main terminal |  |  |  |  |  |  |
|  |  |  |  |  |  | Main circuit power inputs ［L1／R，L2／S， L3／T］＊2 <br> Grounding for inverter［ $\left[\begin{array}{l}\text { en }\end{array}{ }^{*} 3\right.$ |  | Inverter outputs ［U，V，W］ ＊2 | DC reactor connection ［P1，P（＋）］ ＊2 | Braking resistor$\begin{gathered} {[\mathrm{P}(+), \mathrm{DB}]} \\ * 2 \end{gathered}$ |  |  |
|  |  |  |  | With DC reactor | Without DC reactor | With DC reactor | $\begin{gathered} \text { Without } \\ \text { DC } \\ \text { reactor } \end{gathered}$ |  |  |  |  |  |
|  | 315 | FRN0740G2■－4G | HHD |  |  | $185 \times 2$ |  | $185 \times 2$ | $240 \times 2$ |  |  |  |
|  | 355 | FRN0650G2■－4G | HND | 800 |  | $240 \times 2$ |  | $240 \times 2$ | $300 \times 2$ |  |  |  |
|  |  | FRN0960G2■－4G | HHD |  |  |  |  |  |  |  |  |  |
| O-O | 400 | FRN0740G2■－4G | HND |  |  | $300 \times 2$ |  | $300 \times 2$ | $240 \times 3$ |  |  |  |
| $\oplus$ | 400 | FRN1040G2■－4G | HHD |  |  | $300 \times 2$ |  | $300 \times 2$ | $240 \times 3$ |  |  |  |
| $$ | 500 | FRN0960G2■－4G | HND | 1200 | － | $240 \times 3$ | － | $300 \times 3$ | $240 \times 4$ | － | 0.75 | 2.5 |
| 区் | 560 | FRN1040G2■－4G | HND |  |  | $300 \times 3$ |  | $240 \times 4$ | $300 \times 4$ |  |  |  |
|  | 630 | FRN1170G2■－4G | HND | 1400 |  |  |  | $300 \times 4$ |  |  |  |  |
|  |  |  | HHD |  |  | $300 \times 4$ |  |  | $(300 \times 3) * 4$ |  |  |  |
|  | 710 | FRN1386G2■－4G | HND | 1600 |  |  |  | $\begin{gathered} 300 \times 5 \\ (300 \times 3) * 4 \\ \hline \end{gathered}$ | $\begin{gathered} 300 \times 6 \\ (300 \times 4) * 4 \\ \hline \end{gathered}$ |  |  |  |

Note ：A box（ $\square$ ）in the above table replaces $S$（Basic type）or $E$（EMC filter built－in type）depending on the enclosure．
＊1 The frame size and type of a MCCB or RCD／ELCB（with overcurrent protection）vary with the capacity of the power supply transformer．Refer to the related technical documents for detailed selection．
＊2 The recommended wire sizes for the main circuit terminals are examples of using a PVC wire（for $70^{\circ} \mathrm{C}, 600$ V ）at a surrounding temperature of $40^{\circ} \mathrm{C}$ ．
＊3 Only one piece of wire with a recommended size can be connected to a ground terminal．
${ }^{*} 4 \mathrm{In}$ case of using a XLPE wire（for $90^{\circ} \mathrm{C}, 600 \mathrm{~V}$ ）at a surrounding temperature of $40^{\circ} \mathrm{C}$ ．
10．An IEC61800－5－1 5．2．3．6．3 Short－circuit Current Test has been carried out on this inverter under the following conditions．
Current when shorted：10，000 A
240 V or less（200V series，FRN0115G2S－2G or lower）
230 V or less（200V series，FRN0146G2S－2G or higher）
480 V or less（400V series）
11. Use this inverter at the following power supply system.

*1 Use this inverter at the following IT system.

| Non-earthed (isolated from earth) <br> IT system | Can be used. <br> In this case the insulation between the control interface and the <br> main circuit of the inverter is basic insulation. |
| :--- | :--- |
| IT system which earthed neutral <br> by an impedance | Thus do not connect SELV circuit from external controller <br> directly (make connection using a supplementary insulation). <br> Use an earth fault detector able to disconnect the power within <br> 5s after the earth fault occurs. |
| Corner earthed / Phase-earthed <br> IT system by an impedance | Cannot be used. |

*2 Cannot apply to Corner earthed / Phase-earthed TT system of 400V type
12. Solid state motor overload protection (motor protection by electronic thermal overload relay) is provided in each model. Use function codes F10 to F12 to set the protection level.
(Finished)

## ■ Compatibility with Revised EMC and Low Voltage Directive

In the revised EMC Directive (2014/30/EU ) and Low Voltage Directive (2014/35/EU ), it is necessary to clearly state the name and the address of manufacturers and importers to enhance traceability. Importers shall be indicated as follows when exporting products from Fuji Electric to Europe.
(Manufacturer)
Fuji Electric Co., Ltd.
5520, Minami Tamagaki-cho, Suzuka-city, Mie 513-8633, Japan

## (Importer in Europe)

Fuji Electric Europe GmbH
Goethering 58, 63067 Offenbach / Main, Germany
<Precaution when exporting to Europe>

- Not all Fuji Electric products in Europe are necessarily imported by the above importer. If any Fuji Electric products are exported to Europe via another importer, please ensure that the importer is clearly stated by the customer.


## G. 2 Harmonic Component Regulations in EU

## [1] General comments

When you use general-purpose industrial inverters in the EU, the harmonics emitted from the inverter to power lines are strictly regulated as stated below.
If an inverter whose rated input is 1 kW or less is connected to public low-voltage power supply, it is regulated by the harmonics emission regulations from inverters to power lines (with the exception of industrial low-voltage power lines). (Refer to Fig. G.2-1.)


Fig. G.2-1 Power supply system

## [ 2 ] Compliance with the harmonic component regulation

Table G.2-1 Compliance with harmonic component regulations

| Power supply voltage | Inverter type *1 | w/o DCR | w/ DCR | Applicable DC reactor type |
| :---: | :---: | :---: | :---: | :---: |
| Three-phase 200 V | FRN0003G2S-2G | $Y^{* 2}$ | $Y^{* 2}$ | DCR2-0.4 |
|  | FRN0005G2S-2G | $Y^{* 2}$ | Y *2 | DCR2-0.75 |
| Three-phase 400 V | FRN0002G2■-4G | N | Y | DCR4-0.4 |
|  | FRN0003G2■-4G | N | Y | DCR4-0.75 |

Y: Meets EN61000-3-2 (+A14) standard, and therefore the product may be connected to a commercial voltage power supply.

N : Does not meet EN61000-3-2 (+A14) standard. If connecting the product to a commercial low voltage power supply, it will be necessary to obtain the permission of the local power company. When harmonic current data is necessary, consult your Fuji Electric representative.
*1: The $\square$ in the inverter type is replaced by a letter of the alphabet indicating the type.
*2: Evaluated by the level of harmonics flow to the 400 VAC line when three-phase 200 VAC power is supplied from the three-phase 400 VAC power via a step-down transformer.

## G. 3 Compliance with UL Standards and Canadian Standards (cUL certification)

## [1] General comments

UL Standards (Underwriters Laboratories Inc. standards) are North American safety standards used to prevent fire and other such accidents, and offer protection to users, service technicians, and the general public.
cUL indicates that products which comply with CSA standards are certified by UL. cUL certified products are as effective as those certified as complying with CSA standards.

## [ 2 ] UL Standards and Canadian Standards (cUL Certification) Compatibility

Compatibility with UL Standards and Canadian Standards (cUL certification) is ensured by installing inverters with UL/cUL marking in accordance with the following. (Products with no standards indicated do not comply with European Standards.)

UL Standards and Canadian Standards (cUL Certification) Compatibility

## $\triangle$ WARNING $\wedge$

## High available fault current - damage warning:

The opening of the branch-circuit protective device may be an indication that a fault current has been interrupted. To reduce the risk of fire or electric shock, current-carrying parts and other components of the controller should be examined and replaced if damaged. If burnout of the current element of an overload relay occurs, the complete overload relay must be replaced.

1. Solid state motor overload protection (motor protection by electronic thermal overload relay) is provided in each model.
Use function codes F10 to F12 to set the protection level. Refer to the description below.
2.Use Cu wire only.

Use copper wire for wiring.
3. Use Class 1 wire only for control circuits.

Use Class 1 wire for control circuits.
4.Short circuit rating
"Suitable For Use On A Circuit Of Delivering Not More Than 100,000 rms Symmetrical Amperes, 240 Volts Maximum for 200 V class input when protected by Semiconductor Protection Fuses having an interrupting rating not less than 100,000 rms Symmetrical Amperes, 240 Volts Maximum." Models FRN; rated for 200V class input.
"Suitable For Use On A Circuit Of Delivering Not More Than 100,000 rms Symmetrical Amperes, 480 Volts Maximum when protected by Semiconductor Protection Fuses having an interrupting rating not less than 100,000 rms Symmetrical Amperes, 480 Volts Maximum." Models FRN; rated for 400 V class input.
"Integral solid state short circuit protection does not provide branch circuit protection. Branch circuit protection must be provided in accordance with the National Electrical Code and any additional local codes."
5.Field wiring connections must be made by a UL Listed and CSA Certified closed-loop terminal connector sized for the wire gauge involved. Connector must be fixed using the crimp tool specified by the connector manufacturer.
When wiring terminals, refer to the recommended wire sizes, and use UL/CSA certified round crimp terminals. Crimp terminals should be crimped using the crimping tool recommended by the manufacturer.
(cont.)

UL Standards and Canadian Standards (cUL Certification) Compatibility (cont.)

(cont.)

UL Standards and Canadian Standards (cUL Certification) Compatibility (cont.)


Note: Control circuit terminal tightening torque: $6.1 \mathrm{lb}-\mathrm{in}(0.7 \mathrm{~N} \cdot \mathrm{~m})$, recommended wire size: AWG18 $\left(0.8 \mathrm{~mm}^{2}\right)$
*1 No terminal end treatment is required for connection.
*2 Use $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right) \mathrm{Cu}$ wire only.
Use copper wire with maximum permissible temperature of $75^{\circ} \mathrm{C}$.
*3 The wire size of UL Open Type and Enclosed Type are common. Please contact us if UL Open Type exclusive wire is necessary.
(cont.)

UL Standards and Canadian Standards (cUL Certification) Compatibility (cont.)


Note 1) Control circuit terminal tightening torque: $6.1 \mathrm{lb}-\mathrm{in}(0.7 \mathrm{~N} \cdot \mathrm{~m})$, recommended wire size: AWG18 ( $0.8 \mathrm{~mm}^{2}$ )
Note 2) The $\square$ in the inverter type is replaced by a letter of the alphabet indicating the type.
*1 No terminal end treatment is required for connection.
*2 Use $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right) \mathrm{Cu}$ wire only.
Use copper wire with maximum permissible temperature of $75^{\circ} \mathrm{C}$.
*3 The wire size of UL Open Type and Enclosed Type are common. Please contact us if UL Open Type exclusive wire is necessary.
(cont.)

UL Standards and Canadian Standards (cUL Certification) Compatibility (cont.)


Note 1) Control circuit terminal tightening torque: $6.1 \mathrm{lb}-\mathrm{in}(0.7 \mathrm{~N} \cdot \mathrm{~m})$, recommended wire size: AWG18 ( $0.8 \mathrm{~mm}^{2}$ )
Note 2) The $\square$ in the inverter type is replaced by a letter of the alphabet indicating the type.
*1 No terminal end treatment is required for connection.
*2 Use $75^{\circ} \mathrm{C}\left(167^{\circ} \mathrm{F}\right) \mathrm{Cu}$ wire only.
Use copper wire with maximum permissible temperature of $75^{\circ} \mathrm{C}$.
*3 The wire size of UL Open Type and Enclosed Type are common. Please contact us if UL Open Type exclusive wire is necessary.
*4 It is showing the wire size for UL Open Type.
See additional material INR-SI47-1365 for UL Enclosed Type (Pack with TYPE1 kit).
(Finished)

## G. 4 Compliance with Functional Safety Standards

## [1] General

With FRENIC-MEGA Series, the motor coasts to a stop by turning off (opening) the connection between terminals [EN1]-[PLC] or [EN2]-[PLC]. This is a safe shutdown function of Cat. 0 (uncontrolled stop) specified in EN 60204-1 and complies with the functional safety standards.
When constructing a safety system, a safety shut-off device was required outside the inverter, but using safe torqueoff (STO) eliminates the need for an external safety shut-off device.

Table G.4-1 Functional safety performance

| EN ISO 13849-1 |  |
| :---: | :---: |
| Category | 3 |
| Performance Level | e |
| Average Diagnostic Coverage | Medium (DCavg) |
| Response time | 50 ms or less (Response time) |
| Mean dangerous failure time for each channel | >62 years (MTTFd) |
| EN 61508-1 to -7 <br> EN 61800-5-2 |  |
| Safety function | Safe Torque Off (STO) |
| Safety integrity level | SIL3 |
| Hardware Fault Tolerance | 1 (HFT) |
| Safe failure fraction | 90 \% or more (SFF) |
| Average probability of failure of a hazardous function upon request for actuation | 1.58E-05 (PFDavg) |
| Mean frequency of hazardous failures $\left[\mathrm{h}^{-1}\right]$ | 2.60E-09 (PFH) |

## $\triangle$ WARNING $\triangle$

- Although the specified STO is used for EN 61800-5-2 for the output breaker-off function of this inverter, it does not completely shut off the power supply and the motor electrically. Therefore, depending on the application of the inverter, for the safety of the final user, for example, a mechanically locking brake and motor terminal protection to prevent electric shock are required.
- The output breaker-off function of this inverter does not completely shut off the power supply and the motor electrically. Therefore, turn off the power supply of the inverter securely and wait at least 5 minutes (FRN0115G2S-2G/FRN0060G2■-4G or less)/10 minutes (FRN0146G2S-2G/FRN0075G2■-4G or more) before wiring or maintenance work.
- For the synchronous motor (synchronous motor), voltage is generated at the terminal during coasting with the output shut-off function. Make sure that the synchronous motor is stopped securely before performing maintenance, inspection, and wiring.


## Caution, risk of electric shock

## Pin [EN1][EN2] and Peripheral Circuit and Internal Circuit Configuration



Fig. G.4-1 FRENIC-MEGA

Note When the terminal [EN1] and [EN2] are used as functional safety, turn off both SW7 on the control PCB.

Table G.4-2 State of terminals [EN1][EN2]-[PLC] and inverters

| Digital input signal |  | EF alarm* | Inverter status | Remarks |
| :---: | :---: | :---: | :---: | :---: |
| [EN1] | [EN2] |  |  |  |
| ON (short circuit) | ON <br> (short circuit) | None | Completion of operation preparation |  |
|  |  | Yes | Output shutdown (STO) | Logical mismatch detecttion * |
| OFF <br> (open circuit) | OFF <br> (open circuit) | None | Output shutdown (STO) |  |
|  |  | Yes | Output shutdown (STO) | Logical mismatch detection * |
| ON <br> (short circuit) | OFF <br> (open circuit) | Yes | Output shutdown (STO) | Logical mismatch detection * |
| OFF <br> (open circuit) | ON <br> (short circuit) | Yes | Output shutdown (STO) | Logical mismatch detection * |

## [ 2 ] Notes for compliance with functional safety standards

## 1) Safety Requirements

All of the following requirements must be met in order to comply with functional safety.

## 1-1) Installation

- Turn off both SW7 on the control PCB.
- Install the inverter in a cabinet with a protective enclosure IP54 or higher.
- Also comply with the European standard EN 61800-5-1 and EN 61800-3 as inverters or mechanical equipment.
- To ensure redundancy, wire the terminals [EN1] and [EN2] independently.
- For ON/OFF of terminals [EN1] and [EN2], use a safety component with EN ISO 13849-1 Cat. 3 PL:e or higher.
- When using an external power supply, use a SELV power supply.


## 1-2) STO test

- Check that STO operates properly once every three months.


## 2) Notes for using STO

- When constructing a product safety system in STO, the machinery manufacturer is responsible for the product safety system required by the machinery manufacturer to conduct a risk assessment of the entire machinery equipment, including other equipment, devices, and wires, as well as the external equipment and wires connected to the terminals [EN1][EN2], to ensure that the entire machinery equipment conforms to that product safety system. Also, for preventive maintenance, be sure to perform periodic inspections to confirm that the product safety system operates properly.
- Input short pulses to terminal [EN1] and [EN2] for less than 1 ms when performing a diagnosis with the safety PLC.
If a single fault is detected in the inverter, an alarm is output to the external device and the inverter coasts the motor even if the terminal [EN1] and [EN2] are ON. (The alarm outputting function is not guaranteed to be outputted with all single faults, but can be adapted to EN ISO 13849-1 Cat. 3 PL:e.)
-The logical discrepancy due to the signal delay between the terminals [EN1] and [EN2] should be 50 ms or less. Outputs an ELF alarm when it exceeds 50 ms .


## 3) Wiring for terminal [EN1], [EN2]

- The terminal [EN1] and [EN2] are used to wire the safety circuitry. Since the reliability is obtained by connecting each signal independently, be careful not to short-circuit the signal in the middle of wiring.


## [ 3] Inverter output status when STO is activated

When the terminal [EN1] and [EN2] are turned OFF, the inverter enters the STO state.
Fig. G.4-2 shows the inverter output status when terminal [EN1] and [EN2] are turned OFF while the inverter is stopped.
The inverter ready status will be complete when the terminal [EN1] and [EN2] inputs turn ON.


Fig. G.4-2 Inverter output status when terminal [EN1], [EN2] is turned OFF while the inverter is stopped

Fig. G.4-3 shows the timing chart when terminal [EN1] and [EN2] are turned OFF while the inverter is running. Input to terminal [EN1] and [EN2] turns OFF, the inverter enters the STO condition, and the motor coasts to a stop.

| RUN commandTerminal[EN1][EN2] | Run |  |
| :---: | :---: | :---: |
|  | ON | OFF |
| Inverter output | Running | sto |

Fig. G.4-3 Inverter output status when terminal [EN1], [EN2] is turned OFF during inverter operation

## [4] にた alarm and inverter-output status

FRENIC-MEGA monitors the logical discrepancy of the signal input to the terminal [EN1] and [EN2], and continuously diagnoses the failure of the safety circuit.
Fig. G.4-4 shows the timing chart for the $E[=1$ alarm following a terminal [EN1] or [EN2] input mismatch. A STO condition occurs at the inverter when terminal [EN1] and [EN2] are turned OFF. If the terminal [EN1] and [EN2] input mismatch lasts longer than 50 ms , the inverter will interpret that there is an abnormality with the safely system and output an ELF alarm.
To operate the EN terminal circuit correctly by operating the terminal [EN1] and [EN2], hold ON/OFF of [EN1] and [EN2] for 2 s or more. If it is not held for more than 2 s , an $E \mathbb{E}$ alarm may occur.

In the event of an $E F$ alarm, it will be necessary the power supply shut off or the alarm reset to cancel the safety status.


Fig. G. 4-4ETE alarm (logical mismatch) and inverter-output status

## [ 5] Precautions for releasing STO

If the terminal [EN1] and [EN2] are turned OFF during inverter operation, the inverter forcibly coasts to a stop.
After that, if [EN1] and [EN2] are turned ON with the operation command being input, the inverter restarts the output. Be careful when resetting the safety components. (Fig. G.4-5)


Figure G.4-5 When STO is released

## Appendix H Inverter Replacement Precautions (When Using PWM Converter (RHC series))

If using the RHC series and replacing the following inverters, it is necessary to change the connection method for the inverter control power auxiliary input terminals (R0, T0). The replaced inverter may not function normally if the connection method is not changed. Be sure to change the connection method.

## H. 1 Applicable inverters

Table H.1-1

| Applicable inverter (before change) | Replacement inverter (after change) |
| :--- | :--- |
| <FRENIC5000G11S series> | FRENIC-MEGA series |
| • FRN30G11S-2, FRN30P11S-2 inverter or higher | (FRENIC-VG series) |
| • FRN30G11S-4, FRN30P11S-4 inverter or higher | (FRENIC-Eco series) |
| <FRENIC-VG7S series> | (FRENIC-Ace series) |
| • FRN18.5VG7S-2, FRN18.5VG7S-4 inverter or higher | (FRENIC-Lift series) |
| <FRENIC-MEGA series> |  |
| •FRN G1 |  |

## H. 2 Changing the connection method (inverter control power auxiliary input terminals (RO, TO))

(1) RHC series: if using ■ RHC7.5-2C to RHC90-2C, ■ RHC7.5-4C to RHC220-4C

Applicable inverter (before change) connection diagram


Change the

1) Inverter control power auxiliary input terminals (RO, TO)

Be sure to connect to the main power supply via contact $b$ on the power supply circuit electromagnetic contactor (73 or MC).
2) Fan power auxiliary input terminals (R1, T1) * Only on models equipped with R1, T1 terminals Be sure to connect to the main power supply without going via contact $b$ on the power supply circuit electromagnetic contactor (73 or MC).


Fig. H.2-2
(2) RHC series: If using when $\square$ RHC280-4C to RHC630-4C, ■ RHC400-4C VT specification applied If using $\quad$ RHC500B to RHC800B-4C
Applicable inverter (before change) connection diagram


Fig. H.2-3
Replacement inverter (after change) connection diagram


Change the

1) Inverter control power auxiliary input terminals (R0, T0)

Be sure to connect to the main power supply via contact $b$ on the power supply circuit electromagnetic contactor (52).
2) Fan power auxiliary input terminals (R1, T1) * Only on models equipped with R1, T1 terminals Be sure to connect to the main power supply without going via contact $b$ on the power supply circuit electromagnetic contactor (73 or 52).


Fig. H.2-4

High-Performance Multi-Function Inverter

## FRENIC - MEGA (G2) series

## User's Manual

First Edition February 2022

Fuji Electric Co., Ltd.

- No part of this manual may be reproduced or copied without prior written permission from Fuji Electric Co., Ltd.
- The content of this manual may be subject to change without notice.
- Every effort has been made to ensure the accuracy of the content of this instruction manual. However, please contact Fuji Electric if there is anything that is unclear, or if any errors or omissions and so on are found.
- Notwithstanding the above, Fuji Electric accepts no responsibility for any adverse effects occurring through the use of this product.


## Fuji Electric Co., Ltd.

Gate City Ohsaki, East Tower, 11-2, Osaki 1-chome, Shinagawa-ku, Tokyo, 141-0032, Japan
Phone: +81 354357058
URL www.fujielectric.com/


[^0]:    Note
    Incorrect handling due to negligence of the description accompanying this icon may undermine the true performance of the FRENIC-MEGA, and incorrect operation or settings may result in an accident.

    Tip
    Indicates reference items helpful for operation and data entry for the inverter.
    Indicates references.

[^1]:    Note
    The inverter types indicated in all tables in this manual are expressed in the form＂FRN＊＊＊＊${ }^{*}$ a－2G， FRN＊＊＊＊G2ם－4G＂．

[^2]:    *: Upper case and lower case characters are used based on the displayed content.

[^3]:    Note
    When the same alarm occurs repeatedly in succession，the alarm information for the first and the most recent occurrences will be preserved and the information for other occurrences in－between will be discarded．The number of consecutive occurrences will be preserved as the first alarm information．

[^4]:    Note
    In the case of G2E (type with built-in EMC filter), noise may be produced from the reactor or capacitors inside the inverter due to distortion in the power supply voltage, but this is not an abnormality.

[^5]:    Note
    When accessing the function code P02*, take into account that changing the P02* data automatically updates the data of some function codes. Refer to Chapter 5 "5.3.4 P codes (Motor 1 parameters) and "5.3.5 H codes (High performance functions)" for details.

    Note By initializing motor constants after setting the above function codes, there will be function codes that are rewritten automatically. Refer to Chapter 5 " 5.3 .4 P codes (Motor 1 parameters) and " 5.3 .5 H codes (High performance functions)" for details.

[^6]:    Note
    When accessing the function code P02＊，take into account that changing the P02＊data automatically updates the data of some function codes．Refer to Chapter 5 ＂5．3．4 P codes（Motor 1 parameters）and ＂5．3．5 H codes（High performance functions）＂for details．

    Note
    By initializing motor constants after setting the above function codes，there will be function codes that are rewritten automatically．Refer to Chapter 5 ＂5．3．4 P codes（Motor 1 parameters）and＂5．3．5 H codes（High performance functions）＂for details．

[^7]:    Note
    If a filter other than the Fuji output filter (option) (OFL-aca-4A) is connected to the inverter's output (secondary) circuit, the tuning result cannot be assured. When replacing the inverter connected with such a filter, make a note of the old inverter's settings for the primary resistance \%R1, leakage reactance \%X, no-load current, and rated slip frequency, and specify those values to the new inverter's function codes.
    Vibration that may occur when the motor's coupling is elastic can be regarded as normal vibration due to the output voltage pattern applied in tuning. The tuning does not always result in an error; however, run the motor and check its running state.

[^8]:    Note
    The setting method without changing reference point and by using gain and bias individually is the same as for Fuji's 11-series inverter.

[^9]:    Note

    - When bias (F18) and bias reference point (C50) is set to arbitrary value (A1 point, A2 point, and A3 point, etc.), as shown in the diagram below, it is determined by the bias value (F18).

[^10]:    Note
    When changing maximum output frequency (F03) in order to make the operation frequency a larger value, change the frequency limiter (upper limit) (F15) as well.

[^11]:    Note
    When rated voltage at base frequency (F05) is " 0 ", the data of non-linear V/f ( H 50 to H 53 , H 65 , and H 66 ) and F06 becomes invalid (linear V/f for at or below base frequency, and constant voltage for at or higher than base frequency).

[^12]:    Note

    - When S-curve acceleration/deceleration and curve acceleration/deceleration is selected by curve acceleration/deceleration H 07 , the actual acceleration/deceleration time becomes longer than the set value.
    - If acceleration/deceleration time is set shorter than necessary, current limiting function, torque limit or anti-regenerative function may operate and acceleration/deceleration time may become longer than the set value.

[^13]:    Note
    If the electronic thermal overload relay function is set incorrectly, the motor will not be protected, and may burn out.

    Temperature characteristics of motor is used for motor overload early warning "OL" as well. Even if only overload early warning is used, it is necessary to set temperature characteristics of the motor (F10, F12) ( $\mathbb{D}$ Function code E34)
    For disabling motor overload alarm, set F11 $=0.00$ (Disable).

[^14]:    Note
    If using a dedicated Fuji motor for vector control, motor overheat protection using an NTC thermistor will activate, eliminating the need for an electronic thermal overload relay. Set F11 to 0.00 A (disabled), and connect the motor NTC thermistor to terminal [V2]. Furthermore, for PTC thermistor built-in motor, by connecting PTC thermistor to terminal [V2], it is possible to protect the motor. Refer to H 26 to find the details.

[^15]:    Note
    The time until voltage decreases to the momentary power failure restart allowance voltage from undervoltage differs greatly depending on the inverter capacity and with/without option.

[^16]:    Note

    - Use auto energy saving operation at base frequency of 60 Hz or lower. By setting the base frequency to 60 Hz or higher, energy saving operation may be less effective, or offer no benefit. Auto energy saving operation operates at a frequency less than the base frequency. Auto energy saving operation will be disabled if the frequency is equal to or higher than the base frequency.
    - This function controls in accordance with motor characteristics. Therefore, set the base frequency 1 (F04), rated voltage at base frequency 1 (F05), and other pertinent motor parameters (P01 through P03 and P06 through P99) in line with the motor capacity and characteristics, or else perform autotuning (P04).
    - Under speed sensorless vector control, auto energy saving operation is disabled.

[^17]:    Note
    Although the setting range of the torque is $\pm 300 \%$, the torque limiter determined by the overload current of the unit internally limits the torque current output. Therefore, the torque current output is automatically limited at a value lower than $300 \%$, the maximum setting value.
    The setting range is the plus/minus range, but a plus value should be set for other than upper/lower limit torque limiting ( $\mathrm{H} 75=2$ ). Operation will be performed with an absolute value if a minus value is set.

[^18]:    If these terminals have been set up to have the same data, the operation priority is given in the following order: E61 $>\mathrm{E} 62>\mathrm{E} 63>\mathrm{E} 66$.

[^19]:    Note Speed detection is performed, but the motor starts based on the H09: Auto search mode setting. The motor starts from the speed detection value only if auto search is enabled with function code H 09 set to 1 or 2 . If $\mathrm{H} 09=0$ (factory default), the speed detection value is ignored, and the motor starts from the starting frequency.

[^20]:    Note
    Due to the above restriction, if writing function codes continuously in ascending order by communication with RS-485, etc., be sure to write F80 first.
    Motor capacity 1 (P02) does not automatically move one rank up. Configure to match the applied motor rating as required. Furthermore, if motor constants are initialized, set the motor type with P99 after setting P 02 , and initialize the motor with H 03 . The same applies to motor 2 to 4 .

[^21]:    Note
    A negative logic (Active OFF) command cannot be assigned to the functions marked with "-" in the "Active OFF" column.

    The "External alarm" (data $=1009$ ) and "Force to stop" (data $=1030$ ) are fail-safe terminal commands. In the case of "External alarm" when data = 1009, "Active ON" (alarm is triggered when ON); when data = 9, "Active OFF" (alarm is triggered when OFF).

[^22]:    Tip Use this alarm trip command from external equipment when you have to immediately shut down the inverter output in the event of an abnormal situation in peripheral equipment.

[^23]:    Note
    Shutting down the inverter power during operation stop loses the frequency compensation data saved in the memory. At the time of restart, therefore, the inverter runs at the frequency without compensation so

[^24]:    Tip This terminal command "REV" can be assigned only to E98 or E99.

[^25]:    Note
    Note that auto search may not fully provide the performance depending on load conditions, motor parameters, wiring length, and other external factors.

[^26]:    Tip
    The approximate rated slip frequency for the applicable motor should be used for the H 28 setting value as a guide.

[^27]:    Note
    The condition given above tends to produce a rather large measurement error. If this mode gives you a lifetime alarm, set H98 (Protection/maintenance function) back to the default setting (Bit 3 (Select life judgment threshold of DC link bus capacitor) $=0$ ) and conduct the measurement under the condition at the time of factory shipment.

[^28]:    Note
    If H26 (thermistor (operation selection)) data is set to "1" (PTC: 17114 'l trips, inverter stops), the inverter is stopped without a warning occurring, regardless of the H82 (warning selection 2) bit 11 (PTC thermistor operation) setting.

[^29]:    Note
    In our factory default status, passwords are not provided excluding special products. Therefore, if the password set for H198 or H99 is unknown or forgotten, we do not answer or inform you of the password or its decoding method from protective status.
    For this reason, set and control the password at your own risk. If a password is set at the delivery of the product and its decoding is required, please contact the dealer you purchased or the unit manufacturer. (We are not able to know the passwords set by customers.)

[^30]:    Note
    If speed control constant selection 1 and 2: "MPRM1", "MPRM2" have been assigned to an input terminal, the parameter switching function will be disabled, and only the motor switching function will be enabled (normally, A42, b42, r42 = 0).

[^31]:    Note
    The inverter internally holds the PID command value set by UP/DOWN control and applies the held value at the next restart (including powering ON).

[^32]:    Note
    When speed control (dancer) is selected ( $\mathrm{J} 01 \neq 3 \rightarrow=3$ ), the J 06 setting value automatically changes to 0.0 s .

    To specify the filter time constant in detail, apply an analog input filter (C33, C38 and C43). When speed control (dancer) is not selected ( $\mathrm{J} 01=3 \rightarrow \neq 3$ ), the J 06 setting value automatically changes to 0.5 s . Set J06 after setting J01.

[^33]:    Note

    - When overload stop function operation begins, that mode is maintained, preventing re-acceleration. To accelerate, turn OFF the run command, and then turn it back ON again.
    - Under vector control with speed sensor and sensorless vector control, the J65 $=3$ stopper contact function is disabled.
    - The motor may overheat if stopped for a long period of time with the stopper contact function.
    - If using the stopper contact function for lifting applications, be sure to use in combination with the machine brake.
    - Even if J65 is set to 3, if normal torque limiting is enabled first during acceleration, etc., the stopper contact function will be disabled. Set the operation mode (J66) and timer time (J67) to ensure that the stopper contact function is enabled after the normal torque limit operation ends.

[^34]:    Note
    Note: Resolution of each function code is different from the FRENIC-MEGA (G1).

[^35]:    Note

    - Brake signals are valid only for motor 1 , and when motor 2 to 4 is selected by switching the motor, the brake signal turns ON. However, brake signals are also enabled with A98, b98, or r98.
    - When the inverter is shut down due to an alarm status or coast to stop command, the brake control signal is immediately applied.
    - The stop is determined after the output frequency exceeds "F25 stop frequency + E30 frequency arrival hysteresis width", and then the output frequency falls below F25.
    To inch the motor (repeatedly turn ON and OFF the run command in a short time), adjust F25 and E30.

[^36]:    * Either (3001) or (3002) is available to use, and only one of these functions can be used.

[^37]:    Note
    If measuring the output current with a moving-iron type meter, and the output voltage with a rectifier type meter, an error may occur. Furthermore, there is also a risk of meter burnout. To measure with greater accuracy, the use of a digital AC power meter is recommended.

[^38]:    Note

    - Connecting the keypad to COM port 1 automatically switches to the keypad protocol; there is no need to change the function code setting.

[^39]:    * Refer to Chapter 2 "2.2.7 Operating various switches" for details on SW2.

[^40]:    무
    ■ S (basic type), E (type with built-in EMC filter)

[^41]:    Note
    If using motors with output of 75 kW or higher, be sure to use a DC reactor (DCR).

[^42]:    Note

    - At the time of shipping, a jumper bar is connected across terminals P 1 and $\mathrm{P}(+)$ on the terminal block. Remove the jumper bar when connecting a DCR.
    (A shorting bar is not connected on inverters with output of 75 kW or higher.)

[^43]:    ${ }^{\square}-S$ (basic type), E (type with built-in EMC filter)

[^44]:    *1 HIV (heat-resistant polyvinyl chloride insulated wire) and crosslinked polyethylene are anticipated.
    *2 THW (heat-resistant IV cable) is anticipated.

[^45]:    * If using multiple inverters, ensure that addresses do not overlap.
    *RSW1 is set to " 0 ", and RSW2 is set to " 0 " (station No. $=00$ ) by factory default.

[^46]:    *1 Underlined values are factory default setting values.

[^47]:    ＊1 Underlined values are factory default setting values．

[^48]:    Note Some models are equipped with a reactor as a standard accessory.

[^49]:    Note
    To use Fuji inverters in combination with a PWM converter, the basic type of inverters having no built-in EMC filter should be used. Use of an EMC filter built-in type may increase heat of capacitors in the inverter, resulting in damage. In addition, the effect of the EMC filter can no longer be expected.

